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1. Introduction 

In many industrial engineering and other technological processes, it is crucial to characterise 
heat and mass transfer, for example to avoid thermo mechanical damages.  
Particularly, in the inlet region of internal pulsed flows, unsteady dynamic and thermal 
effects can present large amplitudes. These effects are mainly located in the wall region. This 
suggests the existence of intense unsteady stresses at the wall (shear, friction or thermal 
stresses). Our studies (André et al., 1987; Batina, 1995; Creff et al., 1985) show that there 
could exist an 'adequacy' of different parameters such as Reynolds or Prandtl numbers, 
leading to large amplitudes for the unsteady velocity and temperature in the entry zone if 
compared to those encountered downstream in the fully developed region.  Consequently, 
in order to obtain convective heat transfer enhancement, most of the studies are linked to:  
- Firstly, the search for optimal geometries (undulated or grooved channels, tube with 

periodic sections, etc.) : among those geometrical studies, one can quote the 
investigations of  Blancher, 1991; Ghaddar et al., 1986, for the wavy or grooved plane 
geometries, in order to highlight the influence of the forced or natural disturbances on 
heat transfer. 

- Secondly, the search for particular flow conditions (transient regime, pulsed flow, etc.): 
for example those linked to the periodicity of the pressure gradient (Batina, 1995; Batina 
et al. 2009; Chakravarty & Sannigrahi, 1999; Hemida et al., 2002), or those which impose 
a periodic velocity condition (Lee et al., 1999; Young Kim et al., 1998) or those which 
carry on time periodic deformable walls. 

The main objective of this study is to analyse the special case of convective heat transfer of 
an unsteady pulsed, laminar, incompressible flow in axisymmetric tubes with periodic 
sections. The flow is supposed to be developing dynamically and thermally from the duct 
inlet. The wall is heated at constant and uniform temperature.  
One of the originality of this study is the choice of Chebyshev polynomials basis in both 
axial and radial directions for spectral methods, the use of spectral collocation method and 
the introduction of a shift operator to satisfy non homogeneous boundary conditions for 
spectral Galerkin formulation. A comparison of results obtained by the two spectral 
methods is given. A Crank - Nicolson scheme permits the resolution in time.  
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1.1 Nomenclature 

 

a thermal diffusity 2m s⎡ ⎤
⎣ ⎦  λ  dimensionless total wavelength 

e  reduced amplitude θ   dimensionless temperature: 

h wall function ( ) ( )WT T T Tθ ∞ ∞= − −  

H  periodic sinusoidal radius [ ]m  μ  dynamic viscosity 2Ns m⎡ ⎤
⎣ ⎦  

L geometric half-length tube [ ]m  ν μ ρ=  kinematic viscosity: 2m s⎡ ⎤
⎣ ⎦  

R tube radius at the constriction [ ]m  ρ  fluid density 3Kg m⎡ ⎤
⎣ ⎦  

r radial co-ordinate [ ]m  τ  modulation flow rate 

T fluid temperature [ ]K  ω  vorticity function [ ]1 s  

T∞  duct inlet temperature [ ]K  ψ   stream function 3m s⎡ ⎤
⎣ ⎦  

t time [ ]s  Ω  pulsation [ ]rad s  

u axial velocity [ ]m s  Dimensionless numbers 

0u  mean bulk velocity [ ]m s  Re  Reynolds number: 0Re = Ru ν  

v  radial velocity [ ]m s  Pr Prandtl number: =Pr aν  

z axial co-ordinate [ ]m  Nu Nusselt number 

Greek symbols 0m( )xθ  averaged bulk temperature 

WΦ wall heat flux 2W m⎡ ⎤
⎣ ⎦  Subscripts:  0 steady flow; W: wall 

1.2 Suggested keywords 

Convective heat transfer – sinusoidal constricted tube – axisymmetric geometry – pulsed 

laminar, incompressible flow – spectral collocation method – Chebyshev-Gauss-Lobatto 

mesh – spectral Galerkin formulation – shift operator method – Crank - Nicolson resolution 

in time. 

2. General hypothesis and governing equations 

2.1 General hypothesis 

We consider a Newtonian incompressible fluid flow developing inside an axisymmetric 
cylindrical duct with periodic sinusoidal radius. The unsteadiness imposed to the flow 
corresponds to a source of periodic pulsations generating plane waves. This flow is 
described in terms of an unsteady pulsed flow superimposed on a steady one, without 
reverse flow at the entry and the exit sections. With regard to the thermal problem, the wall 
is heated at constant and uniform temperature, and the fluid inlet temperature is equal to 
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the upstream ambient temperature. Physical constants are supposed to be independent of 
the temperature, which involves that the motion and energy equations are uncoupled.  

2.2 Governing equations 

With the 2D hypothesis, we use the vorticity-stream function formulation ( ),ω ψ  for the 
Navier-Stokes equations in which the incompressibility condition is automatically satisfied. 
In fact, the essential advantage of this formulation compared to the primitive variables 
(velocity-pressure formulation) is the reduction of the number of unknown functions and 
the non-used of the pressure. On the other hand, Navier-Stokes equations become a fourth 
order Partial Differential Equations whose expressions in cylindrical coordinates are: 

 
2 2

2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ1 1 2 1
ˆ ˆ

t r z r r r z z r rr r z

ω ψ ω ψ ω ψ ω ω ωω ν ν ω
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

− + + = + − = Δ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎝ ⎠
 (1) 

It is important to note that we have only one unknown function, i.e.: ψ . The vorticity 
function ω  is linked to ψ  by the relation: 

 
2 2

2 2

1
ˆ r

r rr z

ψ ψ ψω ω ψ
⎛ ⎞∂ ∂ ∂

= = − + − = −Δ⎜ ⎟⎜ ⎟∂∂ ∂⎝ ⎠
 (2) 

Velocity components are given by: 

 
1

u
r r

ψ∂
=

∂
 and 

zr ∂
∂

−=
ψ1

v  (3) 

The energy equation is: 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂

∂
+

∂

∂
=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+
∂
∂

r

T

rz

T

r

T
a

r

T

z

T
u

t

T 1
2

2

2

2

v  (4) 

3. Boundary conditions 

The present problem is unsteady. This unsteadiness is generated at the initial instant t=0, 
and is sustained during all the time by a source of upstream pulsations. For both steady and 
unsteady flow, the following boundary conditions are available for any time 0t ≥ : 
• Entry: for the thermal problem, the inlet fluid temperature is equal to the upstream 

ambient temperature: T T∞= .  

• Exit: the flow velocity is normal to the exit section and verifies the classical condition:  

 0=v  and 0
T u

z z

∂ ∂
= =

∂ ∂
. (5) 

• Axis: the flow preserves at each time an axial symmetry: 

 0
u T

r r

∂ ∂
= = =

∂ ∂
v . (6) 

• Wall: no slip condition is imposed and the wall is heated at constant temperature: 
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 0u = =v  ; WT T= . (7) 

For dynamic conditions at the entry section, we impose: 
- Steady flow (t=0 time step) 

• Entry: for the dynamic problem, Poiseuille profile boundary condition is chosen    

 ( )
2

00, 2 1
r

u z r u
R

⎛ ⎞⎛ ⎞⎜ ⎟= = − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (8) 

- Unsteady flow (t>0) 

• Entry: the source of imposes a periodic pressure gradient modulation. Then the velocity 

axial component and the stream function ψ  have a Fourier series expansion in time: 

 ( )0
1

( 0, , ) ( 0, ) 1
FN

n

f z r t f z r n t
=

⎛ ⎞
= = = + Ω⎜ ⎟⎜ ⎟

⎝ ⎠
∑ nτ .sin  (9) 

where f represents u  or ψ . At this section, to avoid reverse flow, we impose: 1τ < . 

4. New formulation and resolution of the dynamic and thermal problem 

4.1 New formulation of the dynamic problem 
4.1.1 Dimensionless quantities and variables transformations 

One chooses for dimensionless variables:  
 

 
0 0 0

ˆ
= ;  = ;  = ;  = ;  ;  ;  v =

o

r z t u v
r z t u

R R t u u

ω ψω ψ
ω ψ

= =## # # # # #
0

 (10) 

with 

 
0

L
=

u
t0  ; 0=

u

R
ω0  ; 2

0=u Rψ0  (11) 

The Reynolds number Re is based on the radius at the duct constriction: 
 

 0Re = Ru ν  (12) 
 

In order to obtain a computational square domain permitting the use of two dimensional 

Chebyshev polynomials, we proceed to a space variables transformation. This one is 

inspired by Sobey, 1980, and modified by Blancher, 1991. It has been adapted to the 

axisymmetric geometry used in this study. Afterwards, we note by ( )H z  the duct periodic 

radius. Then we define: 

 
( )

=
r

h x
ρ

#
 ; =  1

z
x

λ
−

#
 (13) 

with 

 ( ) ( )1
;  1 .

L
h x H x L

R R
λ = = ⎡ + ⎤⎣ ⎦  (14) 
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and (see equation 73) 

 ( ) ( ) ( )( )1 1 cos . 1 1 cos . 1
2 2

O O

e z e
H z R n h x n x

L
π π

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎡ ⎤= + − ⇔ = + − +⎨ ⎬⎜ ⎟⎢ ⎥ ⎣ ⎦⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
 (15) 

 

Finally, the study domain is transformed into a rectangle 1 1x− ≤ ≤  and 0 1ρ≤ ≤  
representing the half - space of the square: [ ] [ ]1,1 1,1− × − . 

4.1.2 New system of unsteady dynamic governing equations 

Considering the transformation of variables defined before, the new stream – vorticity 
formulation of this problem is: 
 

 
2

2

1 2 1
2

Re

f

g

h
h

t x x x h

ω ψ

ω ψ ω ψ ω ψ ψρ ω ω
ρ ρ ρ ρρ

= −Δ⎧
⎪

′⎨ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + − = Δ⎜ ⎟ ⎜ ⎟⎪ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎩

% #
% % %# # # # % %&#

 (16) 

 

where: 
 

 ( )
2 2 2 2

2 2 2 2 2
2 2

2 2f h h h h h hh
xx

ψ ψ ψ λ ψψ ρ λ ρ ρ
ρ ρ ρρ

⎧ ⎫⎡ ⎤∂ ∂ ∂ ∂⎪ ⎪⎡ ⎤′ ′ ′ ′′Δ = − + + + − −⎢ ⎥⎨ ⎬⎣ ⎦∂ ∂ ∂∂ ∂ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

# # # ##  (17) 

 

and 
 

 
( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

2 2

2 2

, , ,

, , ,

g g g

g

g g g

h

A x B x C x
x

D x E x F x
x x

ω λ ω

ω ω ωρ ρ ρ
ρρω

ω ωρ ρ ρ ω
ρ

⎧ =
⎪

⎡ ⎤⎪ ∂ ∂ ∂
+ +⎪ ⎢ ⎥

∂⎨ ∂ ∂⎢ ⎥Δ = −⎪ ⎢ ⎥∂ ∂⎪ ⎢ ⎥+ + +⎪ ∂ ∂ ∂⎢ ⎥⎣ ⎦⎩

% #
% % %

%
% % %

 (18) 

 

with: 
 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2
2 2 2 2 2

2

,    ;   ,   ;  , 6   ;  

, 2        ;    , 4       ;     , 2 3

g g g

g g g

A x h B x h C x h hh

D x hh E x hh F x h hh

λρ ρ λ ρ ρ ρ
ρ

ρ ρ ρ ρ

⎧
′ ′ ′′= = + = − −⎪⎪

⎨
⎪ ′ ′ ′ ′′= − = − = −⎪⎩

 (19) 

 

 2Re Re Reλ λ= =
& #  (20) 

 ( )
2 2 2 2

2 2 2 2 2
2 2

2 2f h h h h h hh
xx

ψ ψ ψ λ ψψ ρ λ ρ ρ
ρ ρ ρρ

⎧ ⎫⎡ ⎤∂ ∂ ∂ ∂⎪ ⎪⎡ ⎤′ ′ ′ ′′Δ = − + + + − −⎢ ⎥⎨ ⎬⎣ ⎦∂ ∂ ∂∂ ∂ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

# # # ##  (21) 

4.1.3 The dynamic steady problem formulation 

The dynamic steady problem corresponding to problem (16) is written as follows:  
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2

1 2 1
2

Re

f

g

h

x x x h r

ω ψ

ψ ω ψ ω ψ ψρ ω ω
ρ ρ ρ ρ

= −Δ⎧
⎪

′⎨ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞− + − = Δ⎜ ⎟⎪ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎩

% #
% %# # # # % %&

 (22) 

 

Important: for reason of convenience, the radius ρ  will be noted r .  
 

4.2 New formulation of the thermal problem 

For the thermal problem, the temperature θ#  is made dimensionless in a classic way: 
 

 
W

T T

T T
θ ∞

∞

−
=

−
#  (23) 

 

4.2.1 The thermal unsteady problem formulation 

Using (1) and (10)-(15), the dimensionless energy equation can be written as follows: 
 

 ( )2 2 1

RePr
fh h u h urh

t x r

θ θ θλ θ∂ ∂ ∂′+ + − = Δ
∂ ∂ ∂

# # # ### # &# v  (24) 

 

with: 
 

 ( )
2 2 2 2

2 2 2 2 2
2 2

2 2f h rh h r h r h hh
x r r rx r

θ θ θ λ θθ λ
⎡ ⎤∂ ∂ ∂ ∂⎡ ⎤′ ′ ′ ′′Δ = − + + + − +⎢ ⎥⎣ ⎦∂ ∂ ∂∂ ∂ ⎢ ⎥⎣ ⎦

# # # ##  (25) 

4.2.2 The thermal steady problem formulation 

The dimensionless steady state energy problem related to the equation (24) is: 

 ( )2 1

RePr
fh u h urh

x r

θ θλ θ∂ ∂′+ − = Δ
∂ ∂

# # ### # &v  (26) 

5. Numerical resolution using spectral methods 

5.1 Trial functions and development orders 

The spectral methods consist in projecting any unknown function ( ), ,f x r t  on trial 
functions as follows: 

 ( ) ( )
0 l 0

( , , ) ( )
x rN N

kl l k
k

f x r t f t P r Q x
= =

=∑ ∑  (27) 

where xN  and rN  are the development orders according to the axis x and r respectively. 
The basis functions ( )lP r  and ( )kQ x  are generally trigonometric or polynomial functions 
(Chebyshev, Legendre, etc.) according to different boundary conditions situations. The time 
dependant coefficients ( )klf t  are the unknowns of the problem. For our problem, the 
function f representsω% , ψ#  orθ# . For a steady problem, the coefficients ( )klf t  are time 
independent. 
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It is necessary to study the influence of the physical parameters such as the Reynolds 
number to remain in 2D hypothesis. From a numerical point of view we will show the 
influence of the polynomials degrees particularly for the thermal problem. 

5.2 The choice of basis functions  

Because no symmetry condition is imposed at the boundaries of our half-domain of study, 
we choose basis functions constructed from Chebyshev polynomials (Bernardi & Maday, 
1992; Canuto et al., 1988) instead of trigonometric trial functions. Then, ( )lP r  and ( )kQ x  are 
written as linear combination of Chebyshev polynomials. Their expressions depend on the 
boundary conditions and the spectral method used (Galerkin or collocation method). 
Generally, with Galerkin method, Dirichlet or Neuman boundary conditions imposed to 
trial functions must be homogeneous, but it is not necessary for collocation method (see 
Galerkin and collocation methods below). 

The basis ( )lP r  and ( )kQ x  are written as a linear combination of Chebyshev polynomials 
such as (Gelfgat, 2004; Shen, 1994, 1995, 1997):  

 ( ) ( ) ( ) ( ) ( ) ( )
1 1

  and  
n m

l l l l i k k k k i
i i

P r T r T r Q x T x T xα β+ +
= =

= + = +∑ ∑  (28) 

where n (respectively m) is the number of boundary conditions according to the radial 
direction r (respectively the axial direction x), and  ( )kT x  is the Chebyshev polynomial of 
degree k. 

5.2.1 Advantages and limitations of spectral methods 

Spectral methods are used successfully in many problems of physics, mainly those involving 
periodic physical phenomena in space and / or in time. Its main advantage is its high 
degree of accuracy, compared with some methods such as finite differences, finite elements 
or finite volumes (Bernardi & Maday, 1992; Canuto et al., 1988; Gelfgat, 2004; Shen, 1994, 
1995, 1997). Spectral methods are particularly suitable to study instabilities phenomena, self-
maintained or forced, occuring in Computational Fluid Dynamics. However, spectral 
methods are limited to simple geometries. For complicated study domains, an alternative 
way may be using spectral finite elements. The second disadvantage of these methods is 
their cost of implementing and their high CPU calculations. The matrices obtained are 
usually full and strategies for solving linear or nonlinear systems remain limited. 

6. Numerical resolution of the dynamic and thermal problem using spectral 
galerkin formulation 

6.1 Numerical resolution of the dynamic steady problem 

The steady dynamic problem is given by the equation (22). Generally, this problem is 
written with classical homogeneous boundary conditions. One of the originalities of this 
study is the use of a relevment function allowing the introduction of non homogeneous 
boundary conditions. For this reason, the unknown stream function ( , )x rψ#  is written by 
mean of the Poiseuille stream function 0( )rϕ  corresponding to the Poiseuille velocity 
imposed at the duct entry as: 

 0 0( , ) ( , ) ( )x r x r rψ ψ ϕ= +#  (29) 
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where the stream function 0( , )x rψ  verifies homogeneous boundary conditions in both 
directions x  and r . 
The equation (22) becomes: 

 ( )( ) ( )( ) ( ) ( )0 0 0 0
2

1 1 1 1 1 1

Re Rex r r r r r rr
Φ

ψ ψ ϕ ϕ
α ω α β ω β β ω γ ω γ βΦ Φ Φ

∂ ∂ ∂ ∂
+ + + + − = −

∂ ∂ ∂ ∂
& &  (30) 

with: 

 
( ) ( )

( )

2 ; 2 ; 4 ; 4 ;

; ;g g

h h
r r

r r x h x h
Φ Φ

Φ

ω Φ ω Φα ω ω α Φ β ω ω β Φ

γ ω ω γ Φ

′ ′∂ ∂ ∂ ∂
= − = − = − = −

∂ ∂ ∂ ∂
= Δ = Δ

 (31) 

 0( , ) ( )fx r rΦ ϕ= −Δ . (32) 

The corresponding Galerkin method consists in projecting the discretized equations on a 
Chebyshev polynomials basis, taking into account the whole boundary conditions (Canuto 
et al., 1988). Then, according to the general formulation of spectral methods, the stream-
function 0ψ  is projected on trial functions as follows: 

 ( ) ( ) ( )0 2
0 l 0

,
x rN N

kl l k
k

x r P r Q xψ ψ
= =

=∑ ∑  (33) 

Because of the symmetry property on the whole axisymmetric domain of the problem, 

( )2lP r  will be an even function. To construct the basis ( )2lP r , we choose a linear 
combination of Chebyshev polynomials such as (Gelfgat, 2004; Shen, 1994, 1995, 1997):  

 ( )2 2 2( )
1

( ) ( )
n

l l li l i
i

P r T r T rα +
=

= +∑  (34) 

where n is the number of boundary conditions according to radial direction r ( 3n =  here, 
see bellow). 
The coefficients liα  are determined so that ( )2lP r  satisfies the corresponding homogeneous 
boundary conditions: 

 2 0lP

r

∂
=

∂
 at 1r = ±   ( because 0

r

ψ∂
=

∂
#

 at  1r = ± ) (35) 

 ( )2 0 lP r =  at 1r = ±   (flow-rate condition at 1r = ± ) (36) 

 ( )2 0 lP r =  at 0r =  (axial symmetry)  (37) 

So, one can determine all coefficients liα . Finally we have: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 1 2 2 2 3

1 1

2 2
l l l l l

l l
P r T r T r T r T r

l l+ + +
+ +

= − − +
+ +

 (38) 

A similar analysis is available for the choice of ( )kQ x  basis functions: 
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 ( ) ( )
1

( ) ( )
m

k k ki k i
i

Q x T x T xβ +
=

= +∑  (39) 

where 3m =  here  (see bellow). The velocity boundary conditions imply that the stream 
function must satisfy the corresponding homogeneous boundary conditions as: 

 ( 1) 0kQ′ − =  at x -1=  ( 0 v =#  at 1x = − ) (40) 

 ( 1) 0kQ − =  at x -1=  (Poiseuille profile 1x = − ) (41) 

 (1) 0kQ′ =  at x 1=   ( 0 v =#  at 1x = ) (42) 

Finally we obtain: 

 ( ) ( ) ( ) ( )
( ) ( )

( )
( )

( ) ( ) ( )
( ) ( )

( )
2 22

1 2 32 2 2

3 1 3 1

2 2 2 2 2
k k k k k

k k k kk
Q x T x T x T x T x

k k k k k
+ + +

+ + + +
= − − +

+ + + + +
 (43) 

Let us define the Chebyshev scalar product as: 

 
2 2

1 1
( , ) ( , ) ( , )( . )

1 1
x r x r dxdr

x r
ψ φ ψ φ

Δ
=

− −
∫∫  (44) 

where Δ  is the square: [ ] [ ]1,1 1,1Δ = − × − . 
 Taking as test function: 

 ( ) ( )2 x r( , ) ,  for 0 k N ,  0 l Nk lx r Q x P rφ = ≤ ≤ ≤ ≤  (45) 

the Galerkin spectral method consist to make scalar products between the non linear 
equation (30)  and each test function ( ) ( )2i jQ x P r , by writing:  

 

( )( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )

0 0 0
22

0
2

1 1 1 1
,

Re

1 1
,

Re

i j

i j

Q x P r
x r r r rr

Q x P r
r r

Φ Φ

Φ Φ

ψ ψ ϕ
α ω α β ω β β ω γ ω

ϕ
γ β

∂ ∂ ∂⎛ ⎞+ + + + − =⎜ ⎟∂ ∂ ∂⎝ ⎠
∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠

&

&
 (46) 

Finally, we obtain a system of ( )( )1 1xr x rN N N= + +  non linear equations with xrN  
unknowns, solved by Newton algorithm. 

6.2 Numerical resolution of the dynamic unsteady problem 

From equation (16), introducing the unknown ψ  function such as:  

 ( ) ( ) ( ) ( ), , , ,x r t x r t r A tψ ψ ϕ= +#  (47) 

and using the equations (46), we define the operator in which the unknown coefficients 
depend now on time: 

( )( ) ( )( ) ( ) ( )2

1 1 1 1 1 1
( , , )

Re Re
L x r t

x r r r r r rr
ψ Φ Φ Φ Φ

ψ ψ ϕ ϕα ω α β ω β β ω γ ω γ β∂ ∂ ∂ ∂⎛ ⎞= − + + + + − + −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
& & (48) 
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Then the previous problem (16) can take the following form:  

 ( )2 , ,h L x r t
t

ψ
ω∂
=

∂

%
 where Φω ω ω= +%

 (49) 

 

The operator ( ), ,L x r tψ  is nonlinear. Notice that Φω  is the contribution coming from 
Poiseuille extension. The temporal discretization of (49) is made by using the ε –method, 
reduced here to Crank - Nicolson method. The advantage of this method is to be 
unconditionally stable. It leads to the equation below with 1 /2ε = , which corresponds to a 
two order scheme:  
 

 
( ) ( ) ( )1

1
2 2 ( , , )

, , 1 , ,

,

n n

n n

n n
f

x r t
h h L x r t L x r t

t t

n

Φ
ψ ψ

ω ω ω ε ε

ω ψ

+

+⎧ − ∂
+ = + −⎪

Δ ∂⎨
⎪ = −Δ ∀⎩

 (50) 

 

where the initial condition is given by the solution of the steady problem. 

The unknowns ( )kl tψ  are obtained by solving with Newton algorithm, at each time step, the 
non linear system obtained with scalar products between relation (50) and test 
functions ( ) ( )2i jQ x P r , as in equation (46). 
 

6.3 Numerical resolution of the thermal unsteady problem 
6.3.1 Choices of the basis functions  

The dimensionless energy equation is given by (25) and (25). The choice of the temperature 
basis functions is made in the same way as in the dynamic problem. In order to apply the 

Galerkin method, we consider the boundary conditions (heading 3) for the temperature θ . 

Let us set: 
 

 ( , , ) ( , , ) ( )Rx r t x r t rθ θ θ= +#  (51) 
 

where θ  is the solution satisfying the homogeneous boundary conditions and ( )R rθ  is a 
smoothed gap temperature imposed at the entry. The homogeneous temperatureθ , 
truncated at development orders xM  according to the axis x and rM  according to the 
radius r, is projected on the trial functions as follows:  
 

 ( ) ( ) ( )2
0 l 0

( , , )
x rM M

kl k l
k

x r t t q x p rθ θ
= =

=∑ ∑  (52) 

 

where ( )2lp r  and ( )kq x  are built from Chebyshev polynomials as in heading 5. According 
to temperature boundary conditions (heading 3), we obtain, at last: 

 ( )
2 2

1 22 2 2 2

4( 1) ( 1)
( ) ( ) ( ),  if  0

( 1) ( 2) ( 1) ( 2)
k k k k x

k k k
q x T x T x T x k M

k k k k
+ +

+ + +
= + − ≤ ≤

+ + + + + +
 (53) 

The polynomial ( )2lp r  is given by: 

 ( )2 2 2( 1)( ) ( ),         if 0l l l rp r T r T r l M+= − ≤ ≤  (54) 
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6.3.2 Resolution of the steady energy equation 

With (24) and ( , ) ( , ) ( )Rx r x r rθ θ θ= +# , the steady thermal problem is written as follows:  

 21 1 1 1 1
. . 2(1 ) .

RePr RePr
R

f f Rr
r r x r x r x r x r

ψ θ ψ θ θ ψ θθ θ∂ ∂ ∂ ∂ ∂ ∂ ∂
− + − − Δ = + Δ

∂ ∂ ∂ ∂ ∂ ∂ ∂
& &  (55) 

This problem is discretized by Galerkin spectral method explained above. The linear system 
obtained is solved by a Gauss type classical method. 

6.3.3 Resolution of the unsteady energy equation 

The unsteady problem is written as follows:  

 2 2

0

1 1 1 1 1 1 1 1
. . .

RePr RePr

( , ,0) ( , )

R
f f R

t r r x r x r r r x r x rh h

x r x r

θ ψ θ ψ θ ϕ θ ψ θθ θ

θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − − + − Δ + + Δ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
=

& &
 (56) 

where ( )0 ,x rθ  is the steady thermal problem solution. The equation (56) is numerically 

integrated in time by using the second order Crank-Nicolson scheme (
1

2
ε = ) which is 

formulated as follows: 

 ( ) ( ) ( )1

1

, , 1 , ,n n

n n

L x r t L x r t
t θ θ

θ θ ε ε+

+ −
= + −

Δ
 (57) 

where 

 
( ) 2

2

1 1 1 1 1
, , . . ( )

RePr

1 1 1
.

RePr

f

R
f R

L x r t A t
r r x r x r r r xh

r x rh

θ
ψ θ ψ θ ϕ θ θ

ψ θ θ

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= − − + − Δ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂⎛ ⎞+ + Δ⎜ ⎟∂ ∂⎝ ⎠

&

&
 (58) 

By projecting (57) in the Galerkin basis ( )2( ) ( )i j
ij

q x p r , one obtains at each time step a system 
of linear equations solved by the classical Gauss method.  
One can notice that the use of Chebyshev polynomials in both axial and radial directions is 
not obvious, and contribute to emphasize this numerical method. 

7. Numerical resolution of the dynamic and energy problem using spectral 
collocation method 

7.1 Numerical resolution of the dynamic problem 

For reasons of simplicity, we describe explicitly only the resolution of the steady dynamic 
problem. For the unsteady problem, we use Crank-Nicolson method for time integration as 
in (50); the unsteady problem resolution in space is identical to the steady case.  
The main interest of collocation method compared with Galerkin formulation is its 
simplicity: it is not necessary to build a relevment function to take into account non 
homogeneous boundary conditions. We introduce these conditions directly in the matrix of 
the system and/or in the basis trial functions. For this reason, it is easy to compute 
collocation procedure. Let us explain this method for the steady dynamic problem. 
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According to the general formulation of spectral methods (27), the stream-function ψ#  is 
projected on trial functions in the same manner as equation (33): 
 

 ( ) ( )2
0 l 0

( , )
x rN N

kl l k
k

x r P r Q xψ ψ
= =

=∑ ∑#  (59) 

 

We can apply the same approach used in Galerkin method to determine trial functions 

( )2lP r  and ( )kQ x . All conditions given by (35-42) are available, except the second condition 
(36) for ( )2lP r  and the second condition (41) for ( )kQ x . Then, with the method given by 
(34), we obtain:  

 ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2 22 2

2 2 2 1 2 22 2 2 2

2 1

2 1 2 1
l l l l

l l l l
P r T r T r T r

l l l l
+ +

+ − + +
= + −

+ + + + + +
 (60) 

and 

 ( ) ( )
( )

( )
2

22
2

k k k

k
Q x T x T x

k
+= −

+
 (61) 

The vorticity function can be written as follows: 

 ( )
0 l 0

,
x rN N

kl kl
k

A x rω ψ
= =

=∑ ∑%
 (62) 

where: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
2

2 2 2 2 2

,

   ;       ;   2   ;   2

kl f l k f l k f l k f l k

f f f f

A x r A P r Q x B P r Q x C P r Q x D P r Q x

A h B r r h C h hh D rhh
r

λρ

′′ ′′ ′ ′ ′⎧ = + + +
⎪
⎨

′ ′ ′′ ′= = + = − − = −⎪
⎩

 (63) 

 

Then, substituting ψ# andω%  by their expressions (59), (62) in the steady dynamic equation 
(22), we obtain the following discretized dynamic equation: 
 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0 l 0 0 l 0

0 l 0 0 l 0

2
0 l 0 0

1
. ,

                        . ,

2

x r x r

x r x r

x r

N N N N
x

l k kl kl kl
k k

N N N N
r

l k kl kl kl
k k

N N N

l k kl
k k

P r Q x A x r
r

P r Q x A x r

h
P r Q x r

hr

ψ ψ

ψ ψ

ψ

= = = =

= = = =

= = =

⎡⎛ ⎞ ⎛ ⎞
′⎢⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢⎝ ⎠ ⎝ ⎠⎣

⎤⎛ ⎞ ⎛ ⎞
′− ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎥⎝ ⎠ ⎝ ⎠⎦

⎛ ⎞ ′
′+ −⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

l 0 0 l 0

0 l 0

,

, , , , , ,
1

Re
, , , , , ,

x r x r

x r

N N N

l k kl kl kl
k

xx rr r
g kl g kl g klN N

kl
k xr rr

g kl g kl g kl

P r Q x A x r

A x r A x r B x r A x r C x r A x r

D x r A x r E x r A x r F x r A x r

ψ ψ

ψ

= = =

= =

⎡ ⎤⎛ ⎞ ⎛ ⎞
′⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤+ +
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
+ + +⎢ ⎥⎣ ⎦

∑ ∑ ∑ ∑

∑ ∑&

 (64) 
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with: 

 ( ) ( ),
, kl

kl

A x r
A x rα

α
∂

=
∂

 and ( ) ( )2 ,
, kl

kl

A x r
A x rαβ

α β
∂

=
∂ ∂

 (65) 

where α  or β  represents the space variable x  or r . The relation (65) is a function of local 
point ( ),x r ∈Δ , where Δ  is the square [ ] [ ]1,1 1,1− × − .  
The collocation method consists to write the above equation on specific points 

( )0
0

,
r

x

i j j N
j N

x x r r ≤ ≤
≤ ≤

= =  of Δ , called collocation points. We chose the collocation points of 

Chebyshev-Gauss-Lobatto [5], defined by:  

 ( )cosi xx i Nπ= −  and ( )cosj rr j Nπ= −  (66) 

with 0 xi N≤ ≤  and 0 rj N≤ ≤ . 
We recall that homogeneous boundary conditions are imposed on trial functions P2l(r) and 
Qk(x). The non homogeneous boundary conditions, like Poiseuille profile at the duct entry or  
flow-rate condition at the wall, are directly imposed in the matrix system . 
The nonlinear system obtained is solved by the Newton algorithm. 

7.2 Numerical resolution of the thermal problem 
Steady and unsteady energy equations are solved in the same manner as the dynamic 
problem, using spectral collocation method and Crank-Nicolson time-solver method 
described above. 
Concerning trial functions for steady and unsteady thermal problems, we use directly 
Chebyshev polynomials: 

 ( ) ( )l lp r T r=  and ( ) ( )k kq x T x=  (67) 

All boundary conditions are imposed in the matrix system. 

8. Convective heat transfer 

The local convective heat transfer coefficient hT is written as follows:  

 ( ), W
T

ref

h x t
T

Φ
=
Δ

 (68) 

where refTΔ  is a typical difference temperature reference. That one depends on the wall 
boundary conditions hypotheses. The main difficulty with convective unsteady heat transfer 
lies in the temperature reference choice. After several tests, we have chosen:  

 ( ) ( ), ,ref W mT x t T T x tΔ = −   (69) 

where Tm(x,t) is the mean bulk temperature given by: 

 ( )
( ) ( )

( )

1

0

1

0

, , . , , .
,

, , .
m

u x r t T x r t rdr
T x t

u x r t rdr
=
∫

∫
 (70) 
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The instantaneous convective heat transfer in unsteady flows can formally be defined by the 
local Nusselt number ( , )Nu x t , given by the relation:  

 ( ) ( ),
, TRh x t

Nu x t
k

=  (71) 

With the variables transform (heading 4), the Nusselt number can be written as follows:  

 ( )

( )

( )
2 2

,

1
,

1 ,
W

m

x t

r
Nu x t h

h x t

θ

λ
λ θ

⎛ ∂ ⎞
⎜ ⎟∂⎝ ⎠′= +
−

 (72) 

where h′  is the derivative oh the function h . 

9. Numerical results 

9.1 Definition of geometrical, physical and numerical parameters 

All results have been computed with Galerkin spectral method, except those used to make 
the comparison between Galerkin and collocation method (headings 6 and 7). The source of 
pulsations is located at the inlet section.The studied fluid is air, under normal conditions of 
temperature and pressure. The fluid flow is submitted to a pure sinusoidal pulsation. The 
previous studies [1, 2] showed that the numerical results are in the more stable mode if the 
ratio R L  is small, compared to the unit. Consequently, the basic geometry parameters are:  

R = 0,02 m ; 0,08L m=  ; 2e E R= = , 3 0,06 VR R m= = . 

The sinusoidal surface of the wall is represented by the function h: 

 ( ) ( )( )1 1 cos . 1
2

O

e
h x n xπ⎡ ⎤= + − +⎣ ⎦  (73) 

where On  indicates the number of geometrical periods chosen here equals to 3. 
 

0 5 10 15 20
INLET OUTLET

WALL

AXIS

Total Length = 2L

R
EH(z)

 

Fig. 1. Geometry of the study domain showing the projection of the Chebyshev -Gauss-
Lobatto mesh grid on the physical geometry (Nx=30 , Nr=5) 

9.1.1 Choice for the orders of truncature  

To ensure the accuracy of our results from the numerical point of view, we try several 
orders of truncature in the Chebyshev basis developments (Batchi, 2005) for details. When 
the orders of truncature increase, let eαβ  be the error calculated between two consecutive 
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truncature orders α  and β  of the stream function coefficients klψ  (respectively the 
temperature coefficients klθ ) relative to the steady flow. The expression of eαβ  is:  

 
,

max kl kl
k l

e f fα β
αβ = −  (74) 

where f α  represents ψ  or θ , for the truncature order α . 
For the dynamic point of view, we note first that the truncature errors eαβ  depend mainly 
on the parameter Nx. This means that the increase in the number of polynomials in the 
radial direction does not improve the convergence of the results. Secondly, figure 2.a shows 
that, globally, the amplitudes of eαβ  decrease when the values of Nx increase. With Nr fixed 
to 5 and 30Nx ≥ , the truncature errors eαβ  are negligible, about 42.10− . 
For a given value of Mr, we observe in figure 2.b a good convergence of the temperature 
coefficients when Mx increases.  But, unlike dynamic field, for the range of Mr values 
between 5 and 9, the analysis of the thermal field leads to slightly different conclusions. 
Indeed, probably due to the temperature conditions imposed on the entry section, the 
thermal field is more sensitive to the parameter Mr than dynamic field. For a fixed value of 
Mx, the temperature truncature errors increase with Mr. Then, optimal convergence is 
obtained for   Mr = 5. For this value, the truncature error is less than 810−  when 56Mx > . 
In conclusion, we have selected for the dynamic problem: Nx = 30 and Nr = 5, and for the 
thermal problem, we have chosen: Mx =120 and Mr = 5. 
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Mr = 7

Mr = 5

Legend

Error

 

                                       (a)                                                                            (b) 

Fig. 2. a) Maximum truncature error in the Chebyshev basis development of the stream 
function ψ  (steady flow, Re = 30). b) Maximum truncature error in the Chebyshev basis 
development of the temperature function θ  (steady flow, Re=30, Pr = 0.73) 

9.2 The steady flow 
9.2.1 Study of the dynamic field  

In order to study the dynamic behaviour of the flow according to the flow-rate, we varied 
the Reynolds number from 1 to 50.  Figure 3 shows that the flow remains "with parallel 

lines", i.e. of crawling type, until Re 10= . From this value, a vortex initially appears in the 
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first geometrical period, with a center shifted upstream and close to the wall.  Then, when 
Re increases, a less bulky vortex appears in the two other geometrical periods.  The center of 
each vortex moves towards the downstream while moving away from the wall more and 
more gradually. These results perfectly agree with those previously shown by Blancher, 
1991; Batina et al., 2004, 2009. 
 

Re = 5

Re = 30

Re = 10

Re = 50

 

Fig. 3. Streamlines parametric study versus Reynolds number (steady flow) 

9.2.2 Thermal study 

Figure 4 shows a comparative study of the convective heat transfer by means of the Nusselt 
number, in stationary regime. One can clearly see that the vortex has a negative influence on 
the heat transfer on almost the totality of the duct, except for the entry. Locally, we observe a 
light heat transfer enhancement at the constriction which increases with the amplitude of 
geometry. 
 

z/R
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e = 0
e = 1
e = 2
e = 3

0

Legend

 

Fig. 4. Heat transfer comparison (steady case): parametric study according to the reduced 
amplitude e of the geometry 

9.3 The unsteady flow 

In order to maintain the bidimensional hypothesis, the flow is submitted to low frequencies 
( 0 5f Hz≤ ≤ ) and the amplitude of pulsation τ  do not exceed 0.7. The number of time steps 
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by period is equal to 24. The Reynolds number is fixed to 30 corresponding to a total filling 
of the furrows. The corresponding steady regime is taken as initial condition for the 
unsteady mode (instant t=0).   
To understand better the fluid dynamic behaviour in pulsed regime, figure 5 shows the 
detail of the streamlines for one period T. We note that the vortices quickly disappear 
during the first instants, from t=0 to t=2T/8.  This interval of time corresponds to the phase 
of the flow acceleration, with a maximum reached for t=2T/8. After that, a phase of 
deceleration appears, with a passage to zero for t=T/2.  The size of the vortex is maximal for 
t=6T/8. This stage corresponds to the maximum of the flow deceleration ( 3 / 2t πΩ = ). In the 
central zone, the flow moves in positive direction, and close to the wall, the flow moves in 
opposite direction. After this, the fluid moves more closer to the wall.  For the acceleration 
phase which follows, the flow tends to take its initial aspect again. However, with t=T, we 
approximately find the form of the flow for t=0.  
 

t = 4T/8

t = 0 t = 2T/8

t = 6T/8

t = Tt = 15T/16

 

Fig. 5. Time history streamlines during one period, Ω=0.3, Re=30, Pr=0.73, 0.7τ =  

9.3.1 Temporal evolution of the unsteady temperature field 

Let us locate first particular control points in the duct (figure 6). Each point is chosen 
because we expect significant results on dynamical and thermal phenomena close to this 
region. 
 

Point 2
Point 1

Point 3

Point 4

Point 5

Point 6
Point 7

Point 8

Point 10
Point 9

 

Fig. 6. Localization of control points for the description of the time-history phenomena 

In order to have a global vision of the dynamic and thermal unsteady phenomena, we 
carried out a spectral analysis with the FFT method, for the velocity and temperature fields, 
on three temporal periods (t >10). The figures 7.a and 7.b show that the most significant 
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dynamic fluctuations are located at each constriction of the tube for axial velocities and 
downstream the constriction for radial velocities. 

 

0.082 0.165 0.247 0.329 0.412 0.494 0.576 0.659 0.741 0.824 0.906 0.988 1.071 1.153 1.235  

(a) 

0.018 0.035 0.053 0.071 0.088 0.106 0.124 0.141 0.159 0.177 0.194 0.212 0.230 0.247 0.265  

(b) 

0.004 0.011 0.019 0.026 0.034 0.042 0.049 0.057 0.064 0.072 0.080 0.087 0.095 0.102 0.110

 

(c) 

Fig. 7. Amplitudes fluctuations of the axial velocity (a), the radial velocity (b) and the 
temperature (c). Re=30, Pr=0.73, 0.7τ =  

One can thus expect a substantial modification of the thermal convective heat transfer in 
these privileged areas, due to the thermal boundary modifications corresponding to the 
entry section duct, and in the minimum sections as shown in figure 7.c. 
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9.4 Unsteady convective heat transfer 

On figure 8, we study, on the control point 4, the Nusselt number evolution versus the 
pulsation frequency Ω . This amplitude analysis is obtained by the FFT method realised on 
the instantaneous Nusselt number defined by equation (71). We observe the decrease of the 
Nusselt number amplitudes when Ω  increases. 
The instantaneous heat transfer does not correspond to a measurable physical reality. Thus 
it is necessary to consider the time averaged Nusselt number. So, we define: 

 ( ) ( ) ( )
2

0
, ,

2
Nu x Nu x t Nu x t dt

π
ω

ω
π

= = ∫  (75) 

To evaluate the contribution of the pulsation on the heat transfer, we compare ( )Nu x  with 
the Nusselt number 0Nu (x) obtained in steady flow.  We confirm in figure 9, a very 
significant increase of the heat transfer located at the constriction, and conversely a high 
reduction at maximum radius areas (zones of dead fluid). 
 

Ω

N
u
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Fig. 8. Evolution of Nusselt number (FFT method) versus the pulsation frequency on the 
control point 4 (Re=30; Pr=0.73; τ=0.7) 
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Fig. 9. Heat transfer comparison in steady and unsteady flow(Ω=10, Ω=5, 0.7τ = ) 
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9.5 Comparison between Galerkin and collocation spectral methods 
9.5.1 Dynamic and thermal results comparison 

In order to make comparison between Galerkin and collocation spectral methods, classical 

parameters are chosen: Re=30, Nx = 30 and Nr = 5 for both methods.  

When the flow is pulsed, we chose to study the dynamic and thermal fields at points 1, 7, 8 

and 9 of figure 6. Apart the periodicity previously highlighted, these curves show once 

again that there is nearly no difference between the two methods as shown in figures 10.  
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Fig. 10. Comparison between Galerkin and collocation methods during 3 periods, for control 

points: (a): point 1; (b): point 7; (c): point 8; (d): point 9. (Ω=0.3, Re=30, Pr=0.73, 0.7τ = ) 

In steady flow, the longitudinal evolution of heat transfer characterized by the Nusselt 
number shows a slight difference between the two models, located particularly in the 
vicinity of geometry furrows and constrictions (figure 11.a.). However, this difference does 
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not exceed two or three percent. In terms of unsteady heat transfer, comparison between the 
two methods shows that the average Nusselt number ( )Nu x  given by equation (75) 
presents slight differences similar to those observed in steady state regime (figure 11.b.). 
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                                       (a)                                                                            (b) 

Fig. 11. Heat transfer comparison between Galerkin and collocation methods. (a): steady 
case; (b): unsteady case (Ω=0.3, Re=30, Pr=0.73, 0.7τ = ) 

9.5.2 Comparison of performances and speed computations 

We have shown that Galerkin and collocation spectral methods, developed to the same 

truncature orders, give results with similar accuracy. The essential difference between these 

methods lies in their performances, rapidity and simplicity of computational implementation. 

The table below summarizes their performances. Let us define before: 

• On the one hand: 0GCPU  and 0CCPU  the CPU time to obtain the steady regime with 
Galerkin and collocation method respectively; 1GCPU  and 1CCPU  the CPU time to 
compute one period of the unsteady regime with Galerkin and collocation method 
respectively;  

• On the other hand: 0GNewton  and 0CNewton  the number of Newton iterations to 
compute the steady regime with Galerkin and collocation method respectively; 

1GNewton  and 1CNewton  the number of Newton iterations to compute one time step 
with Galerkin and collocation method respectively. 

At last, we define the ratios: 
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Then, we obtain the following results:, performed on the same computer: 
 

0CPU 1CPU 0Newton 1Newton

2.4 5.2 3.2 3.2 

Table 1. Comparison of performances between Galerkin and collocation spectral methods 
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10. Conclusions 

In this paper, numerical studies have been carried out on pulsating flows through 
axisymmetric sinusoidal ducts. Thus, the study emphasizes on the heat transfer 
modifications in this particular flows with rates modulation close to the unit. The results 
obtained have shown that the flow is influenced by many parameters including Reynolds 
numbers, rate modulation and amplitude of geometry. We observe that the results are 
encouraging and offer good perspectives in pulsed internal flows cases. From numerical 
point of view, the results obtained confirm the previous general conclusions in axisymmetric 
geometries (André et al., 1987, 1981; Batina et al., 1989, 1991, 2009), i.e.: 

• For the steady regime: all classical results are obtained with high precision. 

• For the unsteady regime, dynamic and thermal fields show an important heat transfer 
enhancement in the entry zone. A dynamic and thermal shock occur nearly this area. 
Mechanical tube behaviour can be modified in this region and the shear stress occurring 
during the pulsation can induce some damage if the tube is connected to a big tank. 
This phenomenon is of great interest in industrial structures. Nevertheless, convective 
heat transfer decrease when the fluid moves forward in the tube. 

The numerical solution was performed using Galerkin and collocation spectral methods 
whose main features were recalled. The numerical results obtained show that: 

• Steady and unsteady regimes do not depend on the spectral method used;  

• The unsteady dynamic and thermal phenomena are periodic in time, with a frequency 
equal to the frequency of pulsations. 

However, the collocation method is simpler to use and its computer calculations are faster. 
Out of these general conclusions, this study focusing on sinusoidal geometries induce 
especially  zones of dead fluid that locally have a negative influence on heat transfer, 
particularly for the steady flow. The spatial periodicity of the steady flow in this type of 
geometry is acquired only at the end of the second, even third geometrical period.  The 
transient phenomena are therefore relatively short in time.  Thus, the dynamic and thermal 
flow behaviours become periodic. 
Compared to models based on classical methods such as asymptotic developments, finite 
differences, finite volumes, finite elements, etc, our numerical method leads to the following 
remarks: 

• The accuracy of the present model is high.  

• The present computational code is easier to build compared to finite elements one, for 
example. 

• If we consider the CPU time, the present model needs few minutes to compute the 
numerical equations. This result traduces the efficiency of our model which is easier 
and more adapted to solve this particular problem. Nevertheless, compared to some 
industrial codes, our model have some disadvantages, such as: 
- the non linear coupled unsteady terms in Navier Stokes and Energy equations are 

not taken into account in the present model 
- this problem require smoother geometries 
- the order of polynomials developments increases strongly the computing time 

- when the modulation flow-rate approaches or exceeds the unity, we must choose 
 carefully some data to assume the algorithms convergence. For example, when 
 100%τ > , convergence conditions impose small time steps, and the CPU time on 
 classical computers can make our code prohibitive. 
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Actually, our model is extended to non linear coupled problems of unsteady Navier Stokes 
and Energy equations, and the results are very encouraging. Moreover, our model treats 
successfully the problem of heat and mass transfer in natural convection.  
In a final analysis, our numerical method based on a suitable spectral method is of a good 
accuracy.  One of its originality is the choice of Chebyshev polynomials basis in both axial 
and radial directions, and the use of a shift operator technique allow the introduction of non 
homogeneous boundary conditions in Galerkin formulation. The automatic construction of 
these polynomials basis is of a great interest. These particular mathematical and numerical 
tools have permitted the resolution of this non obvious problem which consists on pulsated 
unsteady flows associated to simultaneous developments dynamic and thermal fields. 
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