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1. Introduction  

The use of inhibitors, both natural and synthetic has been a mainstay in the biochemical 
analysis of cellular pathways from glycolysis, the TCA cycle and the electron transport chain 
to DNA replication, cell signaling and apoptosis. With advents in screening technology, 
robotics and combinatorial chemistry, the field of chemical genetics was born. The 
development and use of small molecule inhibitors (SMIs) to modulate the activities of 
proteins has provided a wealth of knowledge on a variety of pathways and enhanced drug 
development targeting novel proteins and activities. The effectiveness of targeting enzyme-
substrate interactions is well established and only more recently have protein-protein 
interactions been effectively targeted with SMIs (Saha et al., 2010; Huang et al., 2008; De et 
al., 2009; Ballatore et al., 2010; Yang et al., 2010; Weber, 2010). While targeting protein-DNA 
interactions has been considered by some to be “undrugable interactions” we and others 
have succeeded in developing SMIs capable of inhibiting these often complex interactions. 
The ability to develop inhibitors of protein-DNA complex formation capable of in vivo 
activity opens up an entire new class of targetable molecule interactions for potential 
therapeutic benefit. One could envision inhibiting proteins involved in transcription in 
addition to DNA replication, DNA repair and recombination. This review will summarize 
the recent successes in targeting protein-DNA interactions and draw the distinction between 
those agents that inhibit these interactions directly versus those that reduce protein-DNA 
interactions via indirect mechanisms. We also highlight the development of DNA repair 
inhibitors focusing on the clinical utility of targeting DNA repair for cancer therapy.  

2. Inhibitors of DNA replication, repair and recombination  

Numerous DNA repair pathways are required for genomic stability and chromosome 
maintenance. Defects or deficiencies in DNA repair proteins, machinery and activity 
contribute to mutation driven carcinogenesis and the development of cancer. The 
importance of DNA repair has also been well established in the treatment response in 
numerous cancer types including testicular, ovarian and lung where defects in DNA repair 
increase the effectiveness of DNA damaging therapies. Exploiting the inherent genome 
instability in certain cancers via synthetic lethality targeting novel DNA repair proteins has 
progressed to clinical trials and holds the potential to significantly impact cancer treatment. 
First demonstrated in BRCA1/2-mutant breast cancer, targeting DNA repair with SMIs of 
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poly-ADP-ribose polymerase (PARP) proved clinically effective. While the exact 
mechanisms of PARP inhibition have not been completely elucidated, the idea of targeting 
DNA repair is gaining traction in both the laboratory and clinic. Supporting this is the recent 
editorial from Bruce Alberts in Science suggesting that all cancers will display some defect in 
DNA repair (Alberts, 2009). Some success in early phase trials has propelled this avenue of 
research though the number of targets is still limited.  
 

 

Table 1. Small molecule inhibitors of DNA repair proteins and transcription factors.  

2.1 PARP1 inhibitor – targeting single strand break repair  

Poly ADP-ribose polymerase (PARP) is a nuclear protein which binds to single-strand 

breaks (SSBs) in the DNA and signals downstream repair proteins to the site of damage, 

initiating DNA repair. PARPs direct involvement in SSB repair is the synthesis of ADP-

Target Inhibitor Reference

PARP-1 NU1085 Griffin et al., 1996; Delaney et al., 2000

NU1064 Bowman et al., 1998

NU1025 Bowman et al., 1998; Delaney et al., 2000

PD128763 Delaney et al., 2000

AG14361 Calabrese et al., 2004

ABT-888 Donawho et al., 2007

AG14447 Thomas et al., 2007

RPA MCI Anciano et al., 2010

TDRL-505 Shuck et al., 2010

XPA TDRL-X80 Neher et al., 2010

DNA-PK NU7441 Hardcastle et al., 2005; Leahy et al, 2004

NU7026 Veuger et al., 2003

ATM KU-55933 Hickson et al., 2004

C-Met MP470 Qi et al., 2009

Stat3 Galiellalactone Hellsten et al., 2008; Weidler, et al., 2000

Falvopiridol Lee et al., 2006

IS3295    Turkson et al., 2005

CPA-1 , CPA-7 Turkson et al., 2004

Platinum (V) tetracholoride Turkson et al., 2004

NF-kB Pristimerin Lu et al., 2010

KINK-1 Schon et al., 2008

DHMEQ Ariga et al., 2002

NOTCH SAHM1 Moellering et al., 2009

HOXA13 lactam carboxamide Ng et al., 2007
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ribose polymers, utilizing NAD+ as a substrate, which aids in DNA repair and cellular 

signaling (Calabrese et al., 2004). PARP also plays a role in the homologous recombination 

(HR) repair pathway (Helleday, 2010) and has been suggested to play a role in the 

alternative non-homologous end joining pathway (A-NHEJ) (Wang et al., 2006). The indirect 

role PARP plays in the HR pathway is through its ability to recognize SSBs. In the absence of 

PARP SSBs accumulate resulting in an increased number of collapsed replication forks 

which require DNA repair. Therefore, chemotherapeutics which elicit their toxic effects by 

damaging the DNA, have increased potency in combination treatment with PARP inhibitors 

due to a decrease in DNA repair and an accumulation of collapsed replication forks 

(Thomas et al., 2007). This increase in DNA damage results in cell death, which is a 

favorable outcome in the treatment of cancer. Researchers have used this knowledge to 

initiate the development of PARP inhibitors and over the past four decades numerous PARP 

inhibitors have entered clinical trials, some of which have been successfully incorporated 

into chemotherapeutic regimens.  

Initial PARP inhibitors were analogues of nicotinamide whose activities were useful for in 

vitro studies but were found to be of little clinical value. A second generation of inhibitors, 

which included benzimidazole-carboxamides, quinazolin-4-[3H]-ones and isoquinoline 

derivatives (NU1085, NU1025, PD128763) were shown to increase radio- and 

chemosensitivity in vitro (Delaney et al., 2000). NU1025 sensitized tumor cell lines to 

temozolomide and camptothecin, yet the specificity of NU1025 was not developed enough 

for use in preclinical trials. AG14361, a PARP inhibitor identified by a PARP1 activity assay, 

exploits the PARP1-catalyzed NAD-dependent incorporation of poly(ADP)ribose to 

histones (Thomas et al., 2007). Briefly, the incorporation of 32P-ADP-ribose into an insoluble 

material is measured following the transfer of radiolabeled phosphate from 32P-NAD. Data 

from this assay demonstrate a decrease in ADP transfer, suggestive of the inhibition of 

PARP1 activity. Additionally, AG14361 treatment increased a cells‘ susceptibility to three 

chemotherapeutics irinotecan, γ-irradiation and temozolomide with an IC50 value below 5 

nM (Calabrese et al., 2004). Although a number of PARP inhibitors have entered preclinical 

and clinical trials, most of these are competitive inhibitors with NAD+ and there is no data 

demonstrating disruption of the PARP-DNA interaction by SMIs. This is consistent with the 

separation of activities between the two zinc finger DNA binding domains and the catalytic 

domain though recent evidence proposes a model for the DNA dependent catalytic activity 

involving a DNA bound Zn domain 1 interaction with another critical domain required for 

catalytic activity (Langelier et al., 2011). How this is regulated by SMI binding again is yet to 

be determined.  

Currently there are over 40 ongoing clinical trials focusing on PARP inhibitors and patient 

response. Olaparib, a novel PARP1 inhibitor has entered into clinical trials and in 

conjunction with BRCA1/2 mutations has proven to increase efficacy of treatments and is in 

Phase II clinical trials. ABT-888 has been shown to not only inhibit PARP1 activity but to 

also inhibit PARP2 activity based on a PARP enzyme assay using purified protein 

(Donawho et al., 2007; Penning et al., 2009). More recently crystal structure data provided a  

potential mechanism for this specificity (Karlberg et al., 2010) and highlights the deep 

binding pocket that allow low nM inhibitors to be developed (Figure 1). While ABT-888 has 

entered into early phase clinical trials the true target remains to be determined (Kummar et 

al., 2010).  
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Fig. 1. Small Molecule Inhibitor of PARPs DNA Repair Activity.  A) Depicted is the 
inhibitory effect of a general PARP SMI which disrupts the PARP catalyzed addition of 
poly(ADP)ribose onto various substrates or PARP itself.  Disruption of this activity results 
in a decrease in DNA repair. B, C) Structural analysis of PARP- ABT-888 complex . PARP is 

colored according to secondary structure with red indicating α-helix, yellow β-sheet and 
green unstructured.  ABT-888 is colored by element. 

2.2 RPA inhibitors – targeting nucleotide excision repair, homologous recombination 
repair and DNA replication  

Replication protein A (RPA) is involved in nearly all DNA metabolic pathways. It’s 

involvement in the nucleotide excision repair (NER) pathway and the HR repair pathway is 

particularly important in the context of genome stability. RPA is the major human single 

strand DNA binding protein and participates in DNA replication at the fork, stabilizing 

single-stranded DNA (Wold, 1997). In NER RPA interacts with undamaged single strand 

DNA following the recognition of damaged nucleotides by Xeroderma Pigmentosum Group 

C (XPC), Rad23B and Centrin 2 in the initial steps of the NER pathway. RPA, together with 

the Xeroderma Pigmentosum Group A (XPA) protein and Transcription Factor II H (TFIIH), 

form the preincision complex of the NER pathway which is necessary for the proper 

functioning of the NER machinery (Araujo et al., 2000; Shuck et al., 2008). This preincision 

complex further guides the placement of downstream proteins such as Xeroderma 

Pigmentosum Group F (XPF) and Xeroderma Pigmentosum Group G (XPG) the proteins 

responsible for excising the damaged nucleotides. RPA also plays an indirect role in the HR 

repair pathway by interacting with Rad51 which initiates the HR pathway and promotes 

DNA strand exchange (Stauffer and Chazin, 2004; Sigurdsson et al., 2001). Disruption of 

RPA’s DNA binding activity via a SMI would disrupt the formation of a functional NER 

preincision complex and decrease the efficiency of the NER machinery. In relation to cancer 

therapy, a decrease in NER efficiency is beneficial since this is the main pathway utilized for 

the removal of bulky DNA adducts, such as those resulting from cisplatin treatment.  

Cisplatin is a common chemotherapeutic used as front line treatment for a number of 

cancers including those associated with the head and neck, non-small cell lung cancer 

(NSCLC), and testicular cancer. Cisplatin has a >90% cure rate for the treatment of testicular 

cancer (Einhorn, 2002); however in the case of NSCLC the response to cisplatin treatment 

varies significantly (Simon, 2008). Recurrence and resistance to cisplatin treatment are two 

significant clinical issues. In the cell, cisplatin elicits its toxic effect by forming covalent 

adducts with purine residues within the DNA. The NER preincision complex recognizes 

these bulky adducts and initiates the removal of the damaged nucleotides. Therefore, 
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inhibiting the NER machinery would result in an accumulation of cisplatin lesions on 

genomic DNA resulting in increased efficacy following treatment.  

TDRL-505 – Recently a number of putative SMIs of RPA’s DNA binding activity were 

identified and a subset of these putative inhibitors were analyzed in vitro. One inhibitor, 

TRDL-505, demonstrated an inhibitory effect on RPA’s DNA binding activity as shown by 

electrophoretic mobility shift assays (EMSA) and by fluorescence polarization assays using 

both single- and double-strand DNA substrates with an IC50 value of 12.9 µM (Shuck and 

Turchi, 2010). This reversible RPA inhibitor disrupted not only the interaction of full-length 

RPA but also of the p70 domain of RPA with DNA (Figure 2). The p70 domain of RPA 

contains two of the main OB-folds which are involved in the RPA-DNA interaction (Bochkarev 

and Bochkareva, 2004). After demonstrating that TRDL-505 reduced the formation of an RPA-

DNA complex, in vivo studies were initiated to study the cellular effect of TDRL-505. Although 

single agent treatment of lung cancer cell lines H460 and A549 with TDRL-505 resulted in a G1 

arrest and increased non-apoptotic cellular death, combination treatment with cisplatin 

resulted in a synergistic level of efficacy in both cell lines. Other in vivo analyses, such as 

immunofluorescence and foci formation demonstrated both a decrease in cellular 

concentration of RPA and foci formation following treatment with TDRL-505, suggesting that 

TDRL-505 may be affecting the NER activity and the replication activity of RPA (Shuck and 

Turchi, 2010). Although a number of in vitro and in vivo studies have demonstrated not only an 

interaction between TRDL-505 and RPA but also a synergistic effect increasing cisplatin 

efficacy, the molecule interactions between RPA and TDRL-505 have not been determined. 

Further, mouse model studies, in addition to clinical testing, are necessary to further 

characterize the inhibitory effect of TDRL-505. The initial data, however, provide substantial 

support for studies involving SMIs, which interact directly with proteins in the NER pathway, 

specifically those necessary for the preincision complex formation.  

 

 

Fig. 2. Interaction of TDRL-505 with Replication Protein A.  TDRL-505 is an in vitro 
characterized inhibitor of RPA’s DNA binding activity.  The modeled image demonstrates 
the potential interaction between TDRL-505 and RPA. 
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MCI – A second class of RPA inhibitors, containing a central isoborneol compound, 
irreversibly inhibit RPA’s DNA binding activity in vitro (Anciano Granadillo et al., 2010).  
This class of SMIs demonstrated an IC50 value below 5 µM and in some cases as low as 1 µM, 
depending on the cell line analyzed. Following single agent treatment, this class of 
compounds induced a classical apoptotic response and lengthened either G1 or S phases of 
the cell cycle. Furthermore, this class of compounds synergized with cisplatin following 
combination treatment and a sequential dosing schedule in which cisplatin was the first 
drug employed. Taken together, this data suggests that this class of isoborneol compounds 
may be employed as effective single agent chemotherapeutics or in combination with 
current chemotherapy drugs such as cisplatin. However, the MCI SMIs have potential off-
target cellular effects, which render the compounds more effective, further analyses 
studying the direct in vivo targets of the MCI SMIs is necessary to form solid conclusions as 
to the exact mechanisms of the inhibitors.  
More recently, novel SMIs of the N-terminal domain of RPA70, which is responsible for 
numerous protein-protein interactions important for DNA damage signaling and damage 
response, were identified using in silico and in vitro methodologies (Glanzer et al., 2011). 
One specific SMI, NSC15520, disrupted the RPA-p53 and RPA-Rad9 interactions but did  
not affect RPAs ability to bind to ssDNA. Although this SMI needs to be further 
characterized, this data demonstrates the feasibility of targeting protein-DNA interactions 
for therapeutic benefit.  

2.3 XPA inhibitors – targeting nucleotide excision repair 

XPA’s only known role is in the NER pathway and this protein is essential for the formation 
of the preincision complex following damage recognition. Previous studies have 
demonstrated that a decrease in XPA expression in testicular cancer cell lines leads to a 
decrease in NER capacity and an increase in cisplatin efficacy (Koberle et al., 2006; Welsh et 
al., 2004; Koberle et al., 1999). Small molecules docked against XPA’s minimal DNA binding 
domain (MBD), via in silico screening, led to the identification of a number of compounds 
with the potential to disrupt XPA’s DNA binding activity (Neher et al., 2010). Primary 
screening, consisting of fluorescence polarization using a single stranded oligonucleotide 
containing a fluorescein label, identified 1 compound TDRL-X80, which disrupted the 
formation of the XPA-DNA complex (Neher et al., 2010).  
TDRL-X80 - Fluorescence polarization and ELISA based assays were used to study the 
disruption of the XPA-DNA interaction in the presence of TDRL-X80. The assays were 
performed using single-, double-strand, and double-strand cisplatin-damaged DNA; and 
with all three substrates the XPA-DNA interaction was reduced with an IC50 value near 30 
µM. Modeling of TDRL-X80 with XPA’s MBD demonstrated that TDRL-X80 was in 
proximity to interact with Lysine 137 possibly disrupting XPA’s DNA binding ability 
(Figure 3). These data provide support for the accuracy of the novel in silico screen in 
addition to providing a SMI of XPA’s DNA binding activity. In addition, the data suggest 
the importance of Lys 137 in XPA’s DNA binding activity rendering this amino acid 
potentially important for XPA’s DNA binding function; however further analyses are 
necessary before this conclusion can be made. The possibility remains that in vivo TDRL-X80 
may reduce the formation of a stable preincision complex, involving XPA and therefore 
reduce the NER capacity. If this occurs, as seen with the testicular data provided above, 
combination treatment with TDRL-X80 and cisplatin should increase the efficacy of drug 
treatment reducing cell division and increasing apoptosis.  
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Fig. 3. Putative Interactions between TDRL-X80 and Amino Acids Localized in XPA’s 
Minimal DNA Binding Domain.  TDRL-X80 was modeled in silico in XPA’s minimal DNA 
binding domain and amino acids within proximity are highlighted and may be potentially 
important for the XPA-X80 interaction. 

2.4 DNA-PK inhibitors – targeting non-homologous end joining double strand break 
repair via ATP competitive inhibitors 

DNA-PK, a heterotrimeric protein complex consisting of Ku70/80 and DNA-PKcs, plays an 
important role in the NHEJ pathway and the repair of double strand breaks (DSBs) by 
interacting with the free ends of genomic DNA and recruiting downstream end processing 
proteins such as artemis and fill-in/ligation proteins such as the XRCC4/Ligase IV complex 
(Pawelczak et al., 2010). Inhibiting proteins involved in the NHEJ pathway would result in a 
decrease in the repair of DNA DSBs and an accumulation of DNA damage, resulting in 
cellular death or apoptosis. DNA DSBs can be caused by a number of agents, including 
ionizing radiation (IR), which is commonly used for cancer therapy. IR treatment not only 
directly causes DSBs but also induces free radicals and reactive oxygen species which in 
turn may damage the DNA, creating abasic sites. IR, therefore, results in DNA ends which 
are difficult to ligate and require significant processing, which is the function of the NHEJ 
pathway. Thus, by decreasing the efficiency of the NHEJ pathway an increase in the 
effectiveness of IR may be possible. A number of SMIs of DNA-PK have been identified and 
extensively characterized in vitro and in vivo, although none target the DNA-PK-DNA 
interaction. Most of the inhibitors identified to date are competitive with the ATP substrate 
and do not appear to impact the necessary interaction of DNA-PK with DNA.  
Wortmannin, one of the first identified DNA-PK inhibitors is an irreversible inhibitor that 
displays non-competitive kinetics, while competing with ATP (Izzard et al., 1999). The lack 
of specificity while limiting the utility of this agent as a chemical genetic probe, did provide 
key structural information used for the synthesis of analogs. Similarly other early PI-3K 
inhibitors, OK1035 and LY249002 were useful structurally but had limited utility to probe 
DNA DSB repair (Take et al., 1995, Hollick et al., 2003). Second generation ATP competitive 
inhibitor NU-7026 ((2-(morpholin-4-yl)-benzo[h]chromen-4-one) was shown to be more 
selective and more potent (Hollick et al., 2003). 2-N-morpholino-8-dibenzothiophenyl-
chromen-4-one (NU7441) also based on LY294002 (Hardcastle et al., 2005), was shown to be 
more potent and more specific for DNA-PK with an IC50 value of 14 nM as demonstrated in 
an ELISA-based assay (Leahy et al., 2004). With low nM activity and increased specificity 
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these agents were active as  radiosensitizers and sensitized cells to etoposide, a common 
chemotherapeutic that indirectly induces DNA DSBs (Zhao et al., 2006). These data support 
the possibility that NU7441 is an effective SMI of DNA-PK and in combination treatment 
with current chemotherapeutic regimens, such as IR or etoposide treatment, a decrease in 
repair would result in an increase in treatment efficacy. Continued development of both 
classes of inhibitors including NU7613 continue to target the ATP binding pocket of DNA-
PK and result in increased potency and selectivity while also increasing cellular activity 
(Clapham et al., 2011; Cano et al., 2010; sage-El et al., 2008; Hollick et al., 2007; Griffin et al., 
2005), however, their true utility as therapeutic agents awaits clinical assessment.  

2.5 ATM inhibitors – targeting the DSB DNA damage response  

The role of Ataxia telangiectasia mutated (ATM) in DSB repair has been studied in detail. 
This protein kinase plays an important role in the signaling cascade initiated in response to 
DNA DSBs. As mutation in ATM results in hypersensitivity to IR, similar to DNA-PK, 
chemical inhibition is a means of radiosensitizing cells to radiation treatment. Initial work  
also focused on non-specific inhibitors including wortmannin and caffeine. More recently a 
small molecule, KU-55933 (2-morpholin-4-yl-6-thianthren-1-yl-pyran-4-one), was identified 
and from a screen of a combinatorial library and characterization revealed potent  and 
specific inhibition of ATM (Hickson et al., 2004). Specificity for ATM was 100x greater than 
that for any other tested proteins in the PIKK family and demonstrated an IC50 value of 
~12.9 nM. Cells treated with KU-55933 after IR demonstrated a significant downregulation 
of the IR-induced phosphorylation of p53. Furthermore, UV-induced phosphorylation 
events were not altered by the addition of KU-55933 following UV damage, suggesting that 
KU-55933 is a specific inhibitor of ATM and not interacting indirectly with proteins in the 
NER pathway, which is used to repair UV-damaged DNA. Additional cell cycle analysis 
demonstrated that KU-55933 alone had no effect on the cell cycle; however, KU-55933 
treatment following IR results in a shift to the G2/M phase in contrast to the G2/S or G2/M 
phase with IR treatment alone and KU-55933 did not alter the cell cycle for fibroblast cells 
even after IR treatment, again suggesting specificity and direct target effects by this ATM 
inhibitor. More recently, KU-55933 was observed to induce apoptosis as a single agent and 
ATM regulation of AKT was suggested to mediate this effect (Li and Yang, 2010). A similar 
effect was also observed with KU-60019, an improved more potent inhibitor (Golding et al., 
2009). The mechanism of these inhibitors has not been described in detail however, these 
SMIs are based on the LY294002 compound (see section 2.4) and therefore one would expect 
both KU-55933 and KU-60019 to be competitive inhibitors with respect to ATP. Very similar 
results were also observed with another ATM inhibitor identified by screening a focused 
library (Rainey et al., 2008). Similar to DNA-PK inhibitors the utility of these as 
radiosensitizing agents for cancer therapy remains to be determined.  

2.6 Indirect targeting of Rad51 via receptor tyrosine kinase inhibitors  

Rad51 is a critical protein in homologous recombination (HR) and homology directed repair. 

RAD51 binds RPA coated single stranded DNA and mediates the search for homology. 

Rad51 is overexpressed in a variety of cancers and has been proposed to be a target for 

cancer therapy. Despite these intriguing data, no direct Rad51 inhibitors have been 

described to date. Rad51 however has been found to be down regulated in cells treated with 

an inhibitor of the c-Met Receptor tyrosine kinase (RTK). RTKs are involved in the 
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regulation of numerous cellular processes such as cell growth, differentiation and repair of 

damaged DNA. Additionally, overexpression and mutation of tyrosine kinases have been 

shown to be involved in the progression of many cancers. c-Met, one such RTK has been 

implicated in tumorigenesis and has recently become a target for SMIs (Eder et al., 2009; 

Welsh et al., 2009). The SMI, MP470 was designed as a general RTK inhibitor and was 

initially shown to inhibit c-Met in addition to other RTKs (Qi et al., 2009). More specifically, 

MP470 inhibits c-Met tyrosine kinase phosphorylation and has been shown to sensitize cells 

to IR and platinum-based therapies in addition to inducing apoptosis (Qi et al., 2009). Cells 

treated with MP470 were not only shown to have a reduction in c-Met but also a slight 

reduction in Akt- and IR-induced Rad51 expression, which is involved in the repair of DSB. 

Literature suggests that MP470 may impart its function by modulating Rad51 expression in 

a dose dependent manner; however, data supporting this statement remain sparse at best. 

Although MP470 has advanced to clinical trials, the plethora of indirect effects make 

determination of the contribution of HR repair to any observed activity nearly impossible to 

determine. Thus validation of Rad51 as a clinical target for cancer therapy will likely require 

an agent that directly targets this protein and its role in HR.  

3. Inhibitors of transcription factors  

Myriad of human diseases are associated with irregular transcription factor activity making 

this class of proteins and complexes highly desirable targets for therapy. Many factors 

however, have led some to consider these targets as “undruggable”. The complexity of the 

interactions involving multi-point contact over large surfaces and lack of small pockets and 

crevices in which to design SMI’s are only a few of the issues needed to be addressed. While 

not comprehensive, below we highlight a few of these efforts towards targeting the 

transcription factors and identify those with direct action blocking protein-DNA interactions 

versus indirect action.  

3.1 Stat3 transcription factor  

Signal transducer and activator of transcription 3 (Stat3) is a member of the Stat protein 
family that acts as a transcription activator. In response to cytokines and growth factors, 
Stat3 is activated by phosphorylation on tyrosine 705, and forms homo- or hetero-dimers via 
reciprocal interaction between its Src homology 2 (SH2) domain and the phosphorylated 
tyrosine residues. Stat3 dimers then translocate into the nucleus, where they bind to specific 
promoter sequences activating transcription. Stat3 target genes have been identified and 
include regulators of crucial steps in proliferation and survival, metastasis and angiogenesis, 
and immune evasion (reviewed in ref (Bowman et al., 2000; Darnell, Jr., 1997; Hsieh et al., 
2005; Ihle, 1996). Constitutive activation of Stat3 has been observed in various human 
cancers such as breast, lung, head and neck, and prostate cancers and correlates with poor 
prognosis of these diseases (Bowman et al., 2000). Subcutaneously-injected cells expressing 
constitutively-activated Stat3 also formed tumors in xenograft animal models (Bromberg et 
al., 1999). Selective inhibition of aberrant Stat3 activity has been reported to inhibit cell 
proliferation and induce apoptosis in a variety of cancer cell lines (Yue and Turkson, 2009). 
Thus, Stat3 is one of the promising targets for antineoplastic drug discovery. Indeed, 
inhibitors directed against the Stat3 pathway have recently entered into clinical trials. For 
example, a phase-1 study of OPB-31121 in patients with advanced solid tumors is currently 
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recruiting participants. OPB-31121 appears to strongly inhibit Interleukin 6 (IL-6)-induced 
phosphorylation of Stat3, thereby inducing tumor cell apoptosis and regression. A variety of 
Stat3 inhibitors have been previously identified, although targeting the upstream kinases for 
Stat3 activation such as Janus kinase inhibitor AG490 (Burke et al., 2001), WP1066 (Iwamaru 
et al., 2007), TG101209 (Ramakrishnan et al., 2010) and AZD1480 (Hedvat et al., 2009) or 
upstream factors for its expression such as antisense oligonucleotides (Kunigal et al., 2009; 
Ling and Arlinghaus, 2005) have been considered and tested (Yue and Turkson, 2009). The 
following discussion focuses on the inhibitors specifically targeting protein-protein and 
protein-DNA interactions (Figure 4). For inhibitors directed against protein-protein 
interactions the first proof-of-concept approach was peptidic and peptidomimetic inhibitors 
mimicking the sequence that binds to the Stat3 SH2 domain disrupting Stat3 dimerization. 
These inhibitors include small peptides PpYLKTK (Turkson et al., 2001), pYLPQTV (Ren et 
al., 2003), certain peptide aptamers (Nagel-Wolfrum et al., 2004) and mimetics ISS610 
(Turkson et al., 2004a). However, these inhibitors face challenges in membrane permeability 
and stability. Although the mimetics such as ISS610 have improved inhibition of Stat3 and 
selectivity over Stat1 and Stat5 in in vitro DNA-binding assays, their intracellular activity 
remains low as it cannot be efficiently taken up by cells (Turkson et al., 2004a). Nevertheless, 
these studies show that targeting the SH2 domain and dimerization of Stat3 is feasible. 
Recently, computational approaches and assay-based screening have been used to identify 
several potential SMIs targeting the SH2 domain. These SMIs include S3I-M2001 (Siddiquee 
et al., 2007b), STA-21 (Song et al., 2005; Chen et al., 2007), S3I-201 (Siddiquee et al., 2007a; 
Fletcher et al., 2009; Lin et al., 2009), Stattic (Schust et al., 2006), and catechol containing 
compounds (Hao et al., 2008). Additionally, these SMIs appear to inhibit Stat3 dimerization 
and have anti-proliferative effects on cancer cells. Although these inhibitors exhibited better 
cell permeability, stability and bioavailability than the peptidic and peptidomimetics, their 
moderate activities at medium to high micromolar levels will likely limit their clinical 
development.  
Although the DNA-binding domain of transcription factors has been long considered 

undrugable, the inhibition of the DNA-binding activity of Stat3 for drug discovery has been 

tested. Galiellalactone (Weidler et al., 2000; Hellsten et al., 2008), flavopiridol (Lee et al., 

2006) and a class of platinum (IV) compounds including IS3295 (Turkson et al., 2005), CPA-

1, CPA-7 and platinum (V) tetrachloride (Turkson et al., 2004b), and decoy 

oligodeoxynucleotides (Xi et al., 2005; Zhang et al., 2007; Gu et al., 2008; Sun et al., 2008; 

Zhang et al., 2010; Barton et al., 2004) were found to interfere with Stat3 binding to DNA as 

well as induce cell growth inhibition and apoptosis of human breast, lung and prostate 

cancer cells (Hellsten et al., 2008; Barton et al., 2004; Zhang et al., 2010; Zhang et al., 2007; Xi 

et al., 2005; Sun et al., 2008; Gu et al., 2008; Turkson et al., 2004b; Turkson et al., 2005; Lee et 

al., 2006). Some of these inhibitors have been tested in animal models and they appear to 

cause regression of xenograft tumors. These findings suggest that the DNA-binding domain 

of Stat3 is likely drugable. Recently, using computation-based drug screening, targeting the 

DNA-binding site of Stat3, we identified Stat3-specific SMIs that were able to inhibit cell 

proliferation and induce cellular apoptosis of human breast and lung cancer cells at sub-

micromolar concentrations (un-published data). Further investigation of these DNA-binding 

inhibitors of Stat3 will likely result in promising candidates for therapeutic development. 

However, more studies are clearly needed to assess further the therapeutic suitability of 

these agents and establish a pharmacologic and toxicity profile. 
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Fig. 4. Inhibitors of Transcription Factor Stat3.  SMIs have been developed against Stat3’s 
protein-protein and more recently protein-DNA interactions.  Recently identified Stat3 
inhibitors have demonstrated a decrease in the Stat3-DNA interaction and are being further 
characterized.  

3.2 Direct inhibition of HOXA13-DNA interaction  

HOXA13 is a member of the homeobox family of transcription factors involved in the 

regulation of development and has been found to play a role in the progression of a number 

of cancers (bate-Shen, 2002). These characteristics, like those of many transcription factors, 

make HOXA13 a viable target for inhibition towards therapeutic treatment of human cancer. 

As mentioned above, targeting the transcription factor-DNA interaction remains difficult 

but of high importance; therefore, a number of molecules with high complexity were 

designed to inhibit general transcription factors. An inhibitor of the  HOXA13-DNA 

interaction was identified via a high-throughput screen of a library of lactam carboxamides 

(Ng et al., 2007). Researchers utilized a fluorescence polarization assay to screen the 

compounds and identified two lactam carboxamides which disrupted the HOXA13-DNA 

interaction. One identified inhibitor was further analyzed and demonstrated an IC50 value of 

~6.5 µM. In addition, using a gene reporter assay, which places the HOXA13 transcription 

factor in control of the expression of luciferase, researchers demonstrated an increase in 

luciferase experssion following the addition of the HOXA13 inhibitor (Ng et al., 2007). 

Although the data presented suggest the disruption of the HOXA13-DNA interaction, there 

is very little additional information regarding this inhibitor. Although further biochemical 

studies need to be performed to confirm the inhibitor activity of this lactam carboxamide on 

HOXA13, these data provide support for the utility of high-throughput screens and the 

importance of inhibition of transcription factor-DNA interactions.  

3.3 Targeting Notch transcription complexes 

Notch proteins are membrane bound receptors, which are expressed during organogenesis 
and throughout adult tissues. Cell communication occurs when a Notch receptor interacts 
with a Notch ligand. Once activated, Notch is cleaved and then able to translocate into the 
nucleus to activate target genes by forming a complex with the DNA-bound transcription 
factor CSL (Schwanbeck et al., 2010). The Notch-CSL-DNA complex then recruits co-
activator proteins to ultimately stimulate transcription. Notch proteins play important roles 
in a number of cellular processes such as cellular differentiation and proliferation, for 
example, increased Notch expression correlates with a predisposition for cancers (Weng et 
al., 2004; O'Neil et al., 2007). Targeting Notch transcription was achieved with an α-helical 
peptide designed to bind the Notch-CSL-DNA complex termed SAHM1. SAHM1 was able 
to compete with the co-activator MAMl1 in vitro and in cellular assays, capable of 
repressing Notch target gene expression (Moellering et al., 2009). Perhaps even more 
impressively, treatment of T-ALL cancer cells resulted in decreased proliferation in cell 
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culture models and also inhibited leukemic progression in an in vivo mouse model 
(Moellering et al., 2009). While this agent does not directly inhibit DNA binding of the 
transcription complex, the ability to target a DNA-bound factor on DNA represents a novel 
and exciting possibility of targeting other DNA bound proteins.  

3.4 NF-kB inhibitor  

Nuclear transcription factor-kappa B (NF-kB) has been shown to be activated in numerous 
tumors found in the breast, colon, prostate and skin (Amiri et al., 2004). This pleotropic 
pathway has been the subject of intense study and inhibitors of NF-kB signaling have been 
reported from numerous laboratories  (Karin et al., 2004). The vast majority of these agents 
have been identified in cell based screening using reporter assays. While inhibition of NF-kB 
DNA binding activity is reported for many of these, there is a scarcity of data supporting a 
direct interaction NF-kB with any of these compounds. Again owing to the complexity of the 
system, there are numerous up-stream cellular events that could lead to reduced NF-kB DNA 
binding activity as measured in cell extracts prepared from treated cells. A number of indirect 
NF-kB inhibitors has been identified such as pristimerin, an inhibitor of NF-kB-1 kinase 
(KINK-1)(Schon et al., 2008; Lu et al., 2010). While, the data demonstrate that cells treated with 
pristimerin had less NF-kB activation, this is an indirect effect, which, while being 
therapeutically useful, is not mediated by a direct interaction with NF-kB. Similarly, research 
has clearly demonstrated that DHMEQ, a derivative of the antibiotic epoxyquinomicin C, 
which was studied as an inhibitor of NF-kB (Matsumoto et al., 2000), does not directly disrupt 
NF-kB interactions, rather it inhibits NF-kB activation by eliminating the nuclear translocation 
of NF-kB via inhibition of the tumor necrosis factor-alpha (Yamamoto et al., 2008; Cardile et 
al., 2010). Recently, screening of a library of FDA approved compounds for their ability to 
inhibit NF-kB signaling was reported and 19 drugs were identified that inhibited NF-kB 
signaling with IC50 values near 20 µM (Miller et al., 2010). Although the 19 drugs identified as 
NF-kB inhibitors are currently approved for clinical use they were not originally identified for 
direct interaction with NF-kB. Therefore, further characterization of each of the drugs is 
necessary to gain insight into their exact biological and molecular mechanisms before any 
cellular or physiologic effects can be attributed to inhibition of NF-kB.  

4. Conclusion   

The molecular interactions between proteins and DNA have been investigated for decades 
in the context of nearly every nuclear DNA metabolic pathway. The results obtained have 
provided significant insight and advances to the scientific community and generated 
considerable biochemical, structural and physiological knowledge. In the last decade a 
researchers began the search for inhibitors of such protein-DNA interactions and have 
found a number of inhibitors, which are able to disrupt these critical interactions. While 
there is a wide range of implications, this review has focused on the potential clinical utility 
associated with the disruption of protein-DNA interactions as a means to treat cancer. 
Cancer associated deaths remain the number one cause of mortality in the US and resistance 
to current chemotherapeutics remains a major clinical hurdle. Sensitizing cancer cells to 
treatment with DNA damaging chemotherapeutics holds great value, and disruption of 
protein-DNA interactions via SMIs is one way to achieve this result. The development of 
small drug-like molecules targeting protein-DNA interactions represent a new paradigm for 
disrupting cellular processes toward clinical utility.  
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