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1. Introduction 

It is well known that blood testosterone level declines during the course of male aging 
(Feldman et al., 2002; Harman et al., 2001), a phenomena that is associated with the 
decreases in bone density, muscle mass and strength, sexual function and other 
physiological parameters (Kaufman & Vermeulen, 2005; Matsumoto, 2002; Vermeulen, 2000). 
Previous studies reported that serum testosterone concentrations were lower in the male 
patients with Alzheimer’s disease in comparison to non-demented and age-matched men 
(Hogervorst et al., 2001; Moffat et al., 2004). Further studies observed that supplementation 
with testosterone in rats reduced ǃ-amyloid peptide and hyperphosphorylation of τ-protein, 
two biomarkers of the disease (Gouras et al., 2000; Papasozomenos & Shanavas, 2002; 
Ramsden et al., 2003). The studies suggest that low blood testosterone is a possible risk factor 
for the development of Alzheimer’s disease (Rosario & Pike, 2008). The decline in blood 
testosterone is a progressive process in male aging. Several longitudinal studies on the blood 
testosterone of aging males indicated that the incidence of hypogonadism increased with 
age (Feldman et al., 2002; Harman et al., 2001). In addition, many pathological and stress-
related factors may accelerate this process. Therefore, delaying the decline in blood 
testosterone is clinically significant for the health of aging males suffering from 
hypogonadism.  
For delaying the decline in testosterone, understanding the mechanisms responsible for the 
decline is important. The studies in the last decades reported multiple factors and alterations 
in aging process that affect the levels of blood testosterone (Wang & Stocco, 2005). The 
studies further indicated that the primary reason for the decline is the decrease in 
testosterone biosynthesis during male aging (Chen et al., 1994). Testosterone is principally 
synthesized in testicular Leydig cells from the substrate cholesterol and released into the 
blood circulation (Miller, 1988). The rate-limiting step in testosterone biosynthesis is the 
transfer of cholesterol to the mitochondrial inner membrane to initiate the steroidogenic 
process in Leydig cells (Stocco & Clark, 1996). This step is regulated by the steroidogenic 
acute regulatory (StAR) protein, a critical factor in steroid hormone biosynthesis that 
controls the cholesterol transfer to the mitochondrial inner membrane (Clark et al., 1994; Lin 
et al., 1995; Wang et al., 1998). However, StAR protein also declines in Leydig cell aging and 
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the mitochondrial cholesterol transfer is defective in aged Leydig cells (Culty et al., 2002; 
Leers-Sucheta et al., 1999; Luo et al., 2001). Therefore, understanding the mechanism for the 
decline in StAR gene expression becomes an important consideration in the research on the 
age-related decline in testosterone biosynthesis.  
Further studies observed that cyclooxygenase-2 (COX2) in Leydig cells increased in male 
aging, and the increase in COX2 depressed StAR gene expression and testosterone 
production. Inhibition of COX2 activity in aged Leydig cells reversed the declines in StAR 
protein and testosterone production. In addition, feeding aged rats with a COX2 inhibitor 
reversed the decreased StAR protein and blood testosterone concentrations (Wang et al., 
2005). These observations suggest a novel mechanism involving COX2 in the age-related 
decline in testosterone biosynthesis. The results from the studies indicate that it is possible 
to delay the decline using COX2 inhibitors. However, aging is a long process and long-term 
application of pharmacological levels of COX2 inhibitors is limited by their potential side 
effects. In search for safe and practical approaches, a group of natural flavonoids in food and 
food supplements has been identified being able to block the COX2-dependent signaling. 
These flavonoids acted at the different steps of the COX2 signaling pathway and 
significantly enhanced StAR gene expression and testosterone biosynthesis in Leydig cells. 
This chapter will describe the mechanism involving COX2 in the declines in StAR gene 
expression and testosterone biosynthesis in Leydig cell aging. The effects of the flavonoids 
on this mechanism will be reviewed. The potential application of the natural flavonoids in 
delaying the declines in StAR gene expression and testosterone biosynthesis will be 
discussed.  

2. Luteinizing hormone-induced signaling in StAR gene expression and 
testosterone biosynthesis in Leydig cell aging 

StAR gene expression and testosterone biosynthesis in testicular Leydig cells are mainly 
regulated by luteinizing hormone (LH) secreted from pituitary gland. LH stimulation of 
Leydig cells induces two messengers: cyclic AMP (cAMP) and arachidonic acid (AA). These 
two messengers transduce signals to the nucleus through two separated pathways to co-
regulate StAR gene expression. Both pathways are required with neither one alone being 
sufficient for LH-induced StAR gene expression and testosterone production (Wang & 
Stocco, 1999). In addition, these two pathways transduce both positive and negative signals 
to regulate StAR gene expression. The negative signals increase in Leydig cell aging, 
resulting in decreases in StAR gene expression and testosterone biosynthesis.  

2.1 LH-induced positive signaling through cAMP-protein kinase A pathway 

It is documented that LH-induced signaling through cAMP-protein kinase A (PKA) 
pathway phosphorylates the transcription factors regulating StAR gene expression (Reinhart 
et al., 1999b). PKA-phosphorylation is important for the activities of several groups of 
transcription factors, including cAMP-responsive element binding (CREB) protein, 
steroidogenic factor-1 (SF-1) and GATA-4, which bind on StAR promoter to induce StAR 
gene transcription. The cAMP-responsive element (CRE)-like sites were found in StAR 
promoter DNA sequences. The results from electrophoretic mobility shift assays (EMSA) 
demonstrated the binding of CREB to StAR promoter (Manna et al., 2002; Manna et al., 
2003). PKA-phosphorylation is critical for the activity of CREB (Meyer & Habener, 1993; 
Montminy et al., 1986), because the phosphorylation of CREB is needed for the recruitment 
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of its cofactor CBP (CREB binding protein) that is involved in the transcriptional activity of 
CREB (Chrivia et al., 1993; Mayr & Montminy, 2001; Mayr et al., 2001). SF-1 binding sites 
were also located on StAR promoter (Sandhoff et al., 1998). Binding of SF-1 to these binding 
sites is crucial for StAR gene transcription (Caron et al., 1997a; Caron et al., 1997b; Sandhoff 
et al., 1998; Sugawara et al., 1997). PKA-phosphorylation of SF-1 protein was detected at 
serine and threonine residues (Zhang & Mellon, 1996), which was further confirmed by the 
study with R2C rat Leydig cells (Carlone & Richards, 1997). It appears that PKA-
phosphorylation is needed for the maximal activity of SF-1 in the regulation of StAR gene 
transcription (Lopez et al., 2001; Sugawara et al., 1996). GATA-4 is another transcription 
factor binding on StAR promoter to regulate StAR gene expression. A GATA-4 binding site 
was found at -61 to -66 in StAR promoter sequences (Silverman et al., 1999; Silverman et al., 
2006). Stimulation of MA-10 mouse Leydig cells with cAMP dramatically increased 
phosphorylated GATA-4 protein (Tremblay et al., 2002), resulting in the increase in StAR 
promoter activity. The essential role of PKA-phosphorylation in the activity of GATA-4 was 
further confirmed by over-expression of PKA catalytic subunit. While expression of PKA 
catalytic subunit significantly increased GATA-4-supported StAR promoter activity, the 
increased promoter activity was reversed by co-expression of the protein kinase inhibitor 
(Tremblay et al., 2002).  
The signaling through cAMP-PKA pathway is able to increase the activities of a group of 
transcription factors that bind on StAR promoter and regulate StAR gene transcription, 
including C/EBPǃ (Christenson et al., 1999), Sp-1 (Sugawara et al., 2000), activator protein-1 
(AP-1) (Manna et al., 2004), and sterol regulatory element binding protein (SREBP) (Shea-
Eaton et al., 2001), by inducing the interaction and cooperation among them. The cAMP or 
PKA-induced interactions among these transcription factors generated synergistic effects 
that increased the cAMP-induced StAR gene transcription and steroid hormone production 
in Leydig cells (Reinhart et al., 1999a; Silverman et al., 1999; Silverman et al., 2006; Sugawara 
et al., 2000; Tremblay et al., 2002). 
In addition, it was observed that cAMP stimulation of Leydig cells reduced DAX-1 (dosage-
sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1) protein. 
DAX-1 is a strong transcriptional repressor that binds to a hairpin structure of StAR 
promoter between -20 to -61 and depresses StAR gene expression (Zazopoulos et al., 1997). 
The reduction of DAX-1 by cAMP stimulation results in dramatic increases in StAR gene 
expression and steroid hormone production in Leydig cells (Jo & Stocco, 2004). Although it 
is still not clear how the signaling through cAMP-PKA pathway reduces DAX-1 protein, the 
observations indicate that this signaling pathway generates positive signals to increase StAR 
gene transcription by reduction of the transcriptional repressor.   

2.2 LH-induced positive signaling through AA pathway  

In addition to the cAMP-PKA signaling pathway, LH induces positive signaling through 
AA pathway. Stimulation of Leydig cells with LH induced AA release in one minute (Cooke 
et al., 1991). Previous studies have described three mechanisms for the AA release by LH or 
hCG: 1) Binding of the trophic hormones to their receptors activates G protein. G protein 
directly activates phospholipase A2 (PLA2) that catalyzes AA release from phospholipids 
(Axelrod et al., 1988; Ronco et al., 2002); 2) G protein increases cAMP formation that induces 
AA release, possibly through the activation of PLA2 by PKA-phosphorylation (Piomelli & 
Greengard, 1991; Wang et al., 2002); 3) AA is released by the co-regulation of acyl-CoA 
synthetase 4 (ACS-4) and acyl-CoA thioesterase (Acot2). Trophic hormone stimulation 

www.intechopen.com



 
Basic and Clinical Endocrinology Up-to-Date 

 

182 

induces ACS-4, and activates Acot2 by cAMP-PKA-phosphorylation. Co-action of these two 
enzymes catalyzes AA release from arachidonyl CoA (Cano et al., 2006; Cornejo Maciel et 
al., 2005; Finkielstein et al., 1998; Maloberti et al., 2005; Maloberti et al., 2007; Paz et al., 1994). 
The LH-induced AA release is required for testosterone biosynthesis. It was observed that 
incubation of Leydig cells with AA significantly increased testosterone production 
(Didolkar & Sundaram, 1987, 1989). When the AA release was blocked using PLA2 
inhibitors, the LH-induced testosterone production was significantly reduced although the 
inhibitors did not affect the cAMP formation (Abayasekara et al., 1990). Inhibiting AA 
metabolism in rat Leydig cells produce similar results (Cooke et al., 1984; Dix et al., 1984; 
Mele et al., 1997; Sullivan & Cooke, 1985). In addition, blocking AA release by knockdown 
of the gene expressions of ACS-4 and Acot2 significantly reduced steroidogenesis (Maloberti 
et al., 2005). The studies indicated that LH induces positive signaling through AA pathway 
to regulate testosterone biosynthesis in Leydig cells. 
To understand how the released AA plays such an important role in LH-induced 
steroidogenesis in Leydig cells, its effect on mitochondrial cholesterol transfer was 
investigated. It was found that blocking AA release failed to affect steroidogenesis when 
Leydig cells were incubated with 22(R)hydroxycholesterol (Abayasekara et al., 1990; Dix et 
al., 1984; Mele et al., 1997), a water soluble substrate that is able to diffuse to the 
mitochondrial inner membrane. The studies suggest that AA enhance testosterone 
biosynthesis by increasing the mitochondrial cholesterol transfer. The observations were 
corroborated by the increases in StAR protein and steroidogenesis in the Leydig cells 
incubated with AA. In addition, blocking AA release using PLA2 inhibitors dramatically 
reduced LH- or cAMP-induced StAR promoter activity, StAR mRNA, StAR protein and 
steroidogenesis in Leydig cells. Importantly, the reduced StAR gene expression and 
steroidogenesis by PLA2 inhibitor were reversed by addition of AA in the cell cultures 
(Wang et al., 2000; Wang et al., 1999). It is clear that AA increases testosterone biosynthesis 
by enhancing StAR gene expression. Moreover, the results from EMSA show that AA 
enhanced the binding of nuclear protein(s) to the StAR promoter DNA sequences between -
67 and -96 (Wang et al., 2003a). The observation indicates that AA acts on StAR promoter 
and regulates StAR gene transcription.  
AA is metabolized mainly through three metabolic pathways, the lipoxygenase, 
epoxygenase and cyclooxygenase pathways, generating various metabolites. To determine 
which pathways are involved in the LH-induced StAR gene expression and steroidogenesis, 
MA-10 Leydig cells pre-loaded with 3H-AA were used to study the effects of cAMP on AA 
metabolism. The results from HPLC analysis of the cell extract showed that cAMP 
stimulation significantly increased two groups of AA metabolites: the lipoxygenase-
generated metabolites, 5-hydroxyeicosatetraenoic acid (5-HETE) and 5-
hydroperoxyeicosatetraenoic acid (5-HPETE) (Wang et al., 2003a); and the epoxygenase-
generated metabolites, 5,6-epoxyeicosatrienoic acid (5,6-EET), 8,9-epoxyeicosatrienoic acid 
(8,9-EET), and 11,12-epoxyeicosatrienoic acid (11,12-EET) (Wang et al., 2006). The roles of 
these AA metabolites in StAR gene expression were investigated with Leydig cells. It was 
observed that addition of each of these metabolites into the cultures of Leydig cells 
significantly increased cAMP-induced StAR promoter activity, StAR mRNA, StAR protein 
and steroidogenesis. In addition, when activity of lipoxygenase or epoxygenase was 
inhibited, the cAMP-induced StAR gene expression and steroidogenesis were significantly 
reduced (Wang et al., 2000). The observations indicated that each of the metabolites 
enhanced StAR gene expression at the level of transcription. Although how these AA 
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metabolites act on StAR promoter is not clear, the studies showed that LH- or cAMP-
released AA is converted to positive signals, 5-HPETE, 5-HETE, 5,6-EET, 8,9-EET and 11,12-
EET through lipoxygenase and epoxygenase pathways, which enhance StAR gene 
expression and testosterone biosynthesis in Leydig cells.                 

2.3 LH-induced negative signaling in StAR gene expression  

Whereas LH-released AA is metabolized to the positive signals by lipoxygenase and 
epoxygenase, it is converted to negative signals by cyclooxygenase (COX). It was found that 
inhibition of COX activity using an inhibitor significantly increased cAMP-induced StAR 
protein and steroid hormone production in MA-10 mouse Leydig cells. Similar increases were 
observed in StAR promoter activity and StAR mRNA levels. Although inhibition of COX 
activity significantly increased the cAMP-induced StAR gene expression, in the absence of 
cAMP the inhibitor alone did not increase StAR protein expression and steroid hormone 
production. The studies suggest that the COX inhibitor itself is not able to induce StAR gene 
expression, but rather reduce the negative signals, resulting in significant increases in the 
cAMP-induced StAR gene expression and steroidogenesis. There are two isoforms of COX 
enzymes, COX1 and COX2, in Leydig cells. To determine which isoform is responsible for the 
inhibitory effect on StAR gene expression, Leydig cells were treated with the selective COX1 
inhibitor SC560 or COX2 inhibitor NS398, respectively. Whereas inhibition of COX1 activity 
did not change StAR protein level, inhibition of COX2 activity dramatically enhanced cAMP-
induced StAR protein expression and steroid hormone production. Further studies observed 
that while COX2 inhibitor significantly increased StAR protein, it did not affect PKA activity. 
In addition, over-expression of COX2 reduced StAR promoter activity. The observations 
indicate that COX2, not COX1, converts the LH- or cAMP-released AA to negative signals that 
depress StAR gene transcription in Leydig cells (Wang et al., 2003b).  
The signaling through cAMP-PKA pathway also generates negative signals to inhibit StAR 
gene expression and steroidogenesis in Leydig cells by increasing COX2 expression. The 
mechanism responsible for the cAMP-increased COX2 may involve the signaling through 
cAMP-PKA pathway in the activation of several transcription factors that regulate COX2 
promoter activity. One is CREB that binds on the CRE site at -53 to -59 of human COX2 
promoter sequences (Schroer et al., 2002). CREB activation by PKA increased its binding to 
the CRE site and induced COX2 gene transcription. While forskolin or cAMP activated PKA 
and increased COX2 promoter activity, inhibition of PKA activity reversed the increase in 
the promoter activity. Another transcription factor NF-κB plays an essential role in 
regulating COX2 gene expression (Arun et al., 2009). This transcription factor was activated 
by PKA-phosphorylation of NF-κB p65 sub-unit. Inhibition of its phosphorylation using 
H89 reduced COX2 gene transcription. The involvement of cAMP-PKA signaling pathway 
in the LH-induced COX2 expression was supported by the studies with Leydig cells. An 
earlier study reported that hCG stimulation of Leydig cells increased COX2 expression 
(Frungieri et al., 2006). This observation was corroborated by a latter study that reported a 
LH-increased COX2 protein in rat Leydig cells. The increase in COX2 was almost 
abolished by inhibition of PKA activity with its inhibitor H89, indicating that cAMP-PKA-
phosphorylation is required for the LH-induced COX2 expression in Leydig cells (Chen et 
al., 2007b).  
As LH stimulates testosterone biosynthesis, the increase in testosterone may feed back to 
induce COX2 expression in Leydig cells. A recent study reported that testosterone induced 
COX2 expression and prostaglandin F2a production in hamster Leydig cells (Matzkin et al., 
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2009). These effects of testosterone were abolished by the anti-androgen bicalutamide. A 
testosterone-stimulated phosphorylation of the mitogen-activated protein kinase (MAPK) 
was also observed in the study. It is known that the activity of MAPK is important in COX2 
gene expression (Chun & Surh, 2004), because MAPK is able to activate the transcription 
factors that regulate COX2 gene transcription.  
The studies described above indicate that when LH stimulates positive signals through 
cAMP-PKA pathway and AA pathway, it also induces negative signals through these two 
pathways. Therefore, the total effect of LH on StAR gene expression and testosterone 
biosynthesis depends on the ratio and levels of the positive and negative signals. The 
alterations of the signals in Leydig cell aging affect StAR gene expression and testosterone 
biosynthesis.   

2.4 The age-related alterations of the positive and negative signals in StAR gene 
expression  

Previous studies have reported the multiple alterations or defects during male aging that are 
involved in the decline in testosterone biosynthesis (Wang & Stocco, 2005). Many of these 
alterations or defects in the aging process increase the negative signals and reduce the 
positive signals in StAR gene expression. These changes reduce the sensitivity of Leydig 
cells to trophic hormone stimulation and result in the declines in StAR gene expression and 
testosterone biosynthesis. 
It was observed that the age-related alteration in hypothalamic-pituitary-adrenal axis 
attenuates the sensitivity of the feedback control of adrenal steroidogenesis, resulting in the 
increases in basal and stress-induced glucocorticoid levels (Hardy & Cooper, 2010). The 
inhibitory effect of glucocorticoid on testosterone biosynthesis was reported by previous 
studies with rat Leydig cells. This steroid hormone was shown being able to inhibit PLA2 
activity and block LH-induced AA release (Abayasekara et al., 1990). Further studies 
observed that blocking AA release using dexamethasone dramatically reduced StAR protein 
and steroidogenesis in MA-10 mouse Leydig cells. Similar results were obtained in the 
analyses of StAR promoter activity and StAR mRNA levels. The reduced StAR gene 
expression and steroidogenesis were reversed by addition of AA to the cell cultures (Wang 
et al., 2000). The studies suggest that the age-related defect in hypothalamic-pituitary-
adrenal axis result in reduction in the LH-induced positive signals through AA pathway. 
The positive signaling through cAMP-PKA pathway is also reduced in Leydig cell aging. 
The previous studies with aged Leydig cells reported a defect in this signaling pathway that 
caused the decreases in LH-induced cAMP formation and PKA activity (Lin et al., 1980; Luo 
et al., 2005). The decrease in LH-induced cAMP formation may significantly contribute to 
the reduced sensitivity of aged Leydig cells to LH stimulation. The mechanism for this 
defect in aged Leydig cells has not been completely understood. It was observed that the 
number of the LH-binding sites and their binding affinity decreased in aged Leydig cells, 
but how the reduced LH-binding capacity affected the cAMP formation remains to be 
elucidated (Chen et al., 2002). In addition, defect of G protein was investigated. It is possible 
that inefficiency of G protein or defect in coupling among the signal cascades affects the LH-
induced cAMP formation (Chen et al., 2004). 
In the aging process, the levels of many biological factors in blood or testis are altered. These 
alterations may reduce the positive signaling through cAMP-PKA pathway and enhance the 
negative signaling through COX2 pathway. One group of the biological factors that increase in 
aging is the inflammatory cytokines, such as Interlukin-1 (IL-1), Transforming growth factor 
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(TGF)-ǃ and tumor necrosis factor (TNF) (Chung et al., 2001; Morley & Baumgartner, 2004). IL-
1ǃ was reported to be inhibitory in hCG-, cAMP-, and forskolin-induced testosterone 
production (Calkins et al., 1990). While it is able to reduce activities of steroidogenic enzymes 
(Hales, 1992; Lin et al., 1991), IL-1ǃ induced COX2 expression (Chen et al., 2007b; Walch & 
Morris, 2002) and reduced StAR protein expression (Ogilvie et al., 1999). TGF-ǃ in testis 
increases with age (Jung et al., 2004). The increase in TGF-ǃ may significantly reduce trophic 
hormone-induced cAMP formation and testosterone production in Leydig cells (Avallet et al., 
1987). TNF-ǂ reduced hCG-stimulated cAMP formation in a concentration-dependent manner 
in MA-10 mouse Leydig cells (Budnik et al., 1999), which was associated with a reduction in 
StAR protein. In addition, it was reported that the transcription factor NF-kB increases in the 
aging process (Chung et al., 2009; Chung et al., 2006). This increase would contribute to the 
increase in COX2, because NF-kB plays an essential role in COX2 gene transcription. Another 
group of the biological factors is reactive oxidative species (ROS). An age-related increase in 
ROS was previously described (Chen et al., 2001b). While ROS may inhibit testosterone 
through different mechanisms, it is able to activate NF-kB, resulting in the increases in COX2 
and various inflammatory factors (Chung et al., 2006).  
The age-related increases in the biological factors, such as IL-1ǃ, NF-kB and ROS, suggest an 
increase in COX2 expression in Leydig cell aging, because these factors induce COX2 as 
mentioned above. This was supported by the increase in COX2 mRNA level detected in 
aged Leydig cells of rats (Syntin et al., 2001). It is known that COX2 produces an inhibitory 
effect on StAR gene expression and steroidogenesis (Wang et al., 2003b). These observations 
suggest a possibility of involving an age-related increase of COX2 in the declines in StAR 
gene expression and testosterone production. This possibility was demonstrated by the 
studies with aged rats (Wang et al., 2005). It was found that from 3 to 30 months of age, the 
levels of COX2 protein in aged rat Leydig cells increased by 346% over that of young Leydig 
cells. The increase in COX2 was associated with the decreases in StAR protein, testosterone 
biosynthesis, and blood testosterone concentration in aged rats. Inhibition of COX2 activity 
with the selective COX2 inhibitor NS398 reversed the decreases in StAR protein and 
testosterone production in aged Leydig cells. In addition, while over-expression of COX2 
reduced cAMP-stimulated StAR protein and steroidogenesis, co-incubation with NS398 
reversed the reduced StAR protein and steroid hormone. These findings reveal a novel 
mechanism in the age-related declines in testosterone biosynthesis.        

3. Mechanism for COX2-dependent inhibition of StAR gene expression and 
testosterone biosynthesis in Leydig cell aging  

The studies described above indicated an involvement of COX2 in the age-related declines 
in StAR gene expression and testosterone biosynthesis. However, the mechanism for the 
COX2-dependent inhibition of StAR gene expression in Leydig cells needs to be elucidated. 
While further investigations are needed for the elucidation, the studies in the recent years 
have significantly improved the understanding of the mechanism.    

3.1 AA distribution between COX2 and lipoxygenase metabolic pathways  

It is known that the LH-released AA is converted to positive signals through lipoxygenase 
and epoxygenase pathways (Wang et al., 2006; Wang et al., 2003a), and also negative signals 
through COX2 pathway (Wang et al., 2003b). This suggests that StAR gene expression and 
testosterone biosynthesis in Leydig cell aging are regulated by the activities of these AA 
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metabolic enzymes, because they control the ratio of the positive and negative signals. To 
prove this hypothesis, MA-10 mouse Leydig cells pre-loaded with 3H-AA were incubated 
with NS398 to inhibit their COX2 activities. AA metabolites were extracted from the cells 
and analyzed by HPLC. The HPLC profile of AA metabolites indicated that inhibition of 
COX2 activity increased AA metabolites produced through lipoxygenase pathway, with the 
levels of 5-HETE and 5-HPETE being significantly increased by the treatment. Incubation of 
rat Leydig cells with 5-HETE significantly increased testosterone production (Wang et al., 
2005). It was previously reported that 5-HETE and 5-HPETE transduce positive signals to 
enhance StAR gene expression and steroidogenesis in Leydig cells (Wang et al., 2003a). The 
observations indicated that the distribution of AA between these two metabolic pathways is 
regulated by their enzyme activities. Thus, inhibition of COX2 activity changed the AA 
distribution, resulting in the increases in 5-HETE and 5-HPETE that enhanced StAR gene 
expression. It is possible that as COX2 expression increases in aged Leydig cells, more AA is 
metabolized through COX2 pathway to produce inhibitory metabolites that depress StAR 
gene expression and testosterone biosynthesis.    

3.2 The signaling through COX2-prostaglandin F2α-receptor pathway in StAR gene 
expression 

In the COX2 metabolic pathway, COX2 catalyzes AA to prostsglandin(PG)H2 that is further 
metabolized to PGD2, PGE2, PGF2ǂ, PGI2 and thromboxane A2 (TBX A2) by different 
prostaglandin synthases and thromboxane A synthase (TBXAS). Among these metabolites, 
PGF2ǂ is involved in the COX2-dependent inhibition of testosterone biosynthesis.  Previous 
studies reported the hCG-induced production of PGF2ǂ (Haour et al., 1979), which acted as 
a negative signal to inhibit testosterone production in Leydig cells (Bartke et al., 1973; 
Saksena et al., 1973). The inhibitory effect of PGF2ǂ was verified by several studies. In an in 
vivo study, the infusion of PGF2ǂ to rats (250μg/rat) for 4 hours reduced blood testosterone 
to 50%, whereas the inhibition of PGF2ǂ production with indomethacin increased blood 
testosterone concentrations. When the decapsulated testis preparation was incubated with 
PGF2ǂ, LH-induced testosterone production was reduced in a dose-dependent manner 
(Fuchs & Chantharaksri, 1981). The observations were corroborated by the additional 
studies on the inhibitory effects of PGF2ǂ on Leydig cell steroidogenesis (Romanelli et al., 
1995; Sawada et al., 1994). To find how PGF2ǂ inhibits testosterone biosynthesis, the PGF2ǂ 
receptors were located on hamster Leydig cells. Further investigation observed that 
incubation of the Leydig cells with 1 μM of PGF2ǂ for 10 to 60 minutes significantly reduced 
StAR protein. The study described a COX-2-depenednt signaling pathway via COX2, PGF2ǂ 
production, PGF2ǂ receptors, and StAR protein in the regulation of hCG-induced 
testosterone biosynthesis (Frungieri et al., 2006). How this signaling pathway regulates StAR 
protein expression is not clear. To understand the mechanism, several regions in rat StAR 
promoter DNA sequences were detected to be responsive to PGF2ǂ, including the bind sites 
of DAX-1, c-Fos and YY1. DAX-1 is described above as a transcriptional repressor. Injection 
of PGF2ǂ for 2 hours resulted in the increase in ovarian DAX-1 protein. The increase in 
DAX-1 protein was associated with the 50% reduction in StAR mRNA (Sandhoff & McLean, 
1999). The c-Fos binding sites were located at -85, -187 and -1561 of StAR promoter 
sequences. Administration of PGF2ǂ increased c-Fos expression and reduced StAR gene 
transcription (Shea-Eaton et al., 2002). The YY1 binding sites were found in StAR promoter 
sequences at -1230/-1238, -1550/-1559 and -1651/-1660. PGF2ǂ enhanced ovarian YY1 
expression, resulting in a decrease in StAR gene expression (Liu et al., 2007; Nackley et al., 
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2002). However, whether PGF2ǂ increases the expressions of these transcriptional 
repressors in Leydig cells remains to be clarified.       

3.3 The signaling through COX2-TBXAS-TBX A2-receptor pathway in StAR gene 
expression  

Following the studies on PGF2ǂ, TBXAS activity was inhibited to examine the role of the 
COX2-TBXAS-TBX A2-receptor signaling pathway in Leydig cell steroidogenesis. 
Inhibition of TBXAS activity with the inhibitor furegrelate significantly enhanced the 
cAMP-induced steroidogenesis in MA-10 mouse Leydig cells. However, co-incubation of 
the cells with 22(R)hydroxycholesterol abolished the stimulatory effect of the inhibitor on 
steroidogenesis, suggesting that TBXAS produce an inhibitory effect on the mitochondrial 
cholesterol transfer. The results were confirmed by the increase in StAR protein in the 
cells treated with the TBXAS inhibitor (Wang et al., 2008). Following these observations, 
luciferase assays of StAR promoter activity and reverse transcription-polymerase chain 
reaction (RT-PCR) were performed to determine whether the TBXAS inhibitor acted on 
StAR gene transcription. It was found that inhibition of TBXAS activity significantly 
increased StAR promoter activity and StAR mRNA levels. To confirm the inhibitory effect 
of TBXAS on StAR gene expression, the TBXAS gene was silenced using RNA interference 
(RNAi). As TBXAS gene was silenced by RNAi, StAR mRNA, StAR protein and steroid 
hormone production in the cells were significantly increased. It is clear that the signaling 
through COX2 and TBXAS acts on StAR promoter and depresses StAR gene transcription. 
The study was continued to identify the transcription factor(s) that is affected by the 
activity of TBXAS. The results from the study reveal that inhibition of TBXAS activity 
reduced DAX-1 protein. When DAX-1 protein was reduced by inhibiting TBXAS activity, 
StAR gene transcription was significantly enhanced, suggesting that co-action of COX2 
and TBXAS convert AA to inhibitory metabolite(s) that inhibits StAR gene transcription 
by regulating DAX-1 expression (Wang et al., 2008). 
The first AA metabolite in the COX2-TBXAS pathway is TBX A2. The TBX A2 receptors 
were detected in several mouse Leydig cell lines and identified on the cell surface (Pandey 
et al., 2009). The specific binding of the receptor antagonist SQ29548 to the receptors on MA-
10 mouse Leydig cells was demonstrated by binding assay and the binding competition 
between 3H-SQ29548 and another receptor antagonist BM567. When the concentrations of 
BM567 increased from 0 to 10 µM, the 3H-SQ29548 bound to the cells was reduced to 3%. 
The receptor antagonist SQ29548 was used to block the binding of TBX A2 to the receptors 
and to determine its effect on the Leydig cell steroidogenesis. It was observed that blocking 
the TBX A2 receptors on the Leydig cells incubated with 0.1 mM cAMP dramatically 
increased StAR protein in a concentration-dependent manner. The increase in StAR protein 
was paralleled with the increase in steroid hormone production, with progesterone 
production being increased from 35 to 208 pg/µg cellular protein as the concentrations of 
SQ29548 were increased from 0 to 25 μM. The results were verified using another receptor 
antagonist BM567 (Pandey et al., 2009). Since the COX2-dependent signaling is involved in 
the age-related declines in StAR gene expression and testosterone biosynthesis (Wang et al., 
2005), aged Leydig cells were used to determine whether blocking the TBX A2 receptors is 
able to reversed the declines. When the TBX A2 receptors were blocked with SQ29548, StAR 
protein in the aged Leydig cells increased significantly. In concomitant with the increase in 
StAR protein, testosterone production by the aged Leydig cells also significantly increased 
from 86 to 146 pg/µg cellular protein (Pandey et al., 2009). 
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To understand how the receptor antagonists enhanced StAR protein expression and 
steroidogenesis, their effects on StAR gene transcription were investigated. Luciferase 
assays of StAR promoter activity indicated that blocking the TBX A2 receptors with the 
antagonists enhanced StAR promoter activity in a concentration-dependent manner in the 
MA-10 cells incubated with 0.1 mM cAMP. The increase in the promoter activity was 
associated with a similar increase in StAR mRNA level (Pandey et al., 2009). The 
observations indicated that blocking the TBX A2 receptor enhanced StAR gene transcription, 
similar to the observations on the cells treated with TBXAS inhibitor (Wang et al., 2008). 
Further study showed that blocking the TBX A2 receptors significantly reduced DAX-1 
protein and increased StAR protein in MA-10 mouse Leydig cells. The results were 
confirmed with the Leydig cells isolated from aged rats. The aged Leydig cells expressed 
high levels of DAX-1 protein, but blocking the TBX A2 receptors dramatically reduced the 
DAX-1 protein, which was associated with the increases in StAR protein and testosterone 
production (Pandey et al., 2009). These observations indicated that the signaling through 
COX2-TBXAS-TBX A2-receptor inhibits StAR gene expression and testosterone biosynthesis 
by regulation of DAX-1 expression. 
In addition, while sub-threshold levels of cAMP were unable to stimulate significant 
increases in StAR gene expression, interrupting the signaling through this pathway at any 
step, by inhibiting COX2 activity (Wang et al., 2005; Wang et al., 2003b) or TBXAS activity 
(Wang et al., 2008) or blocking the TBX A2 receptors (Pandey et al., 2009), reduced the 
threshold, with sub-threshold levels of cAMP being able to induce maximal levels of StAR 
protein and steroidogenesis. These studies indicated that the signaling through COX2-
TBXAS-TBX A2-receptor pathway plays an important role in regulating sensitivity of Leydig 
cells to LH or cAMP stimulation. Therefore, when COX2 increases in Leydig cell aging, the 
increase in COX2 enhances the negative signaling through this pathway, which in turn 
reduces the sensitivity of Leydig cells and inhibits the LH-induced StAR gene expression 
and testosterone biosynthesis.    

4. Flavonoid intervention in the COX2-dependent inhibition of StAR gene 
expression and testosterone biosynthesis      

To study the possibility of delaying the decline in blood testosterone by intervention in the 
mechanism, aged rats were fed with increasing concentrations of a selective COX2 inhibitor 
mixed in their diet. After 30 days, StAR protein in their Leydig cells increased in a 
concentration-dependent manner. The blood testosterone concentrations increased up to 
120% over control (Wang et al., 2005). The studies suggest a possibility of delaying the age-
related declines in StAR protein and testosterone using COX2 inhibitors. However, long-
term application of the COX2 inhibitors currently used in the clinical practice is limited by 
their side effects. Therefore, alternative approaches are needed for the health of aging males. 
In the recent years, steroidogenic effects of natural flavonoids have been studied with 
Leydig cells. Flavonoids are a group of the polyphenolic compounds that are widely 
distributed in various food and food supplements, especially in fruits and vegetables. 
Previous studies have reported the activities of flavonoids in anti-inflammation, anti-cancer, 
and anti-oxidation (Cardenas et al., 2006; Chen et al., 1990; Ferrandiz & Alcaraz, 1991). One 
of the important mechanisms for these activities is the inhibition of COX2 expression and 
blocking the COX2-dependent signaling by flavonoids, which enables flavonoids to enhance 
StAR gene expression and testosterone biosynthesis in Leydig cells. A group of flavonoids 
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has been identified, including chrysin, apigenin, luteolin, and quercetin (Fig. 1), to be able to 
enhance StAR gene expression and steroidogenesis in Leydig cells by blocking the COX2-
dependent signaling.   
 

 

Fig. 1. Chemical structures of the flavonoids used in the experiments to enhance StAR gene 
expression and steroidogenesis in Leydig cells 

4.1 Chrysin  

Chrysin is present in plants (Williams et al., 1997), honey and propolis (Gambelunghe et al., 
2003; Jiang et al., 2008; Kassim et al., 2010). It blocks the COX2-dependent signaling 
principally by inhibition of COX2 expression. The reduction of COX2 by chrysin is due to its 
inhibitory effects on the activities of several transcription factors that regulate COX2 gene 
transcription in different tissues. Chrysin is able to inhibit the activity of NF-kB and reduce 
COX2 promoter activity (Ha et al., 2010; Li et al., 2010). In macrophages, chrysin suppressed 
lipopolysaccharide (LPS)-induced COX2 expression by inhibiting activity of nuclear factor 
for IL-6 (NF-IL6) (Woo et al., 2005). NF-IL6 is a member of the C/EBP family that binds to 
human COX2 promoter region at -124/-132 and induces COX-2 expression. Another 
member of C/EBP family is C/EBPǃ that is activated by c-Jun N terminal kinase (JNK) (Cho 
et al., 2003). Chrysin inhibited JNK activation and reduced LPS-induced COX2 expression 
(Ha et al., 2010). In addition, the cytokines, such as IL-1ǃ and TNF-ǂ, are able to induce 
COX2 expression (Chen et al., 2001a; Ishikawa et al., 2005). It was observed that chrysin 
significantly reduced the LPS-released IL-1ǃ and TNF-ǂ (Ha et al., 2010; Romier et al., 2008). 
In addition to the inhibition of COX2 gene expression, chrysin and its derivatives are able to 
inhibit COX2 activity. A group of chrysin derivatives was synthesized by modification of its 
molecular structure. The modification significantly improves the activities of the derivatives 
in inhibiting COX2. Some of the chrysin derivatives are able to bind to COX2 molecule and 
selectively inhibit COX2 activity (Cho et al., 2004; Dao et al., 2004). 
Chrysin has been described as a testosterone-increasing agent that blocks further 
testosterone metabolism by inhibiting aromatase activity (Dhawan et al., 2002; Kellis & 
Vickery, 1984). This testosterone-increasing activity of chrysin was confirmed in the recent 
studies with Leydig cells isolated from mouse and MA-10 mouse Leydig cell line, with the 
steroid hormone productions of the Leydig cells being significantly enhanced by chrysin 
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(Jana et al., 2008). However, it failed to induce the significant increase in steroid hormone 
when MA-10 Leydig cells were co-incubated with 22(R)hydroxycholesterol, suggesting that 
this flavonoid increase steroidogenesis mainly by improving the cholesterol transfer to the 
mitochondrial inner membrane. This was proved by the results from Western blot analyses 
that showed a significant increase in StAR protein in the Leydig cells treated with chrysin. 
The observations were corroborated by the significant increases in StAR promoter activity 
and StAR mRNA levels in the cells, indicating that chrysin acted on StAR promoter and 
enhanced StAR gene transcription. The transcription factors that act on StAR promoter were 
examined in the Leydig cells incubated with chrysin. It was found that this flavonoid 
significantly reduced the transcriptional repressor, DAX-1 protein (Jana et al., 2008). As 
DAX-1 protein and DAX-1 mRNA were reduced, StAR protein and steroid hormone 
production dramatically increased. Similar to the effect of COX2 inhibitors, chrysin did not 
affect PKA activity. In the absence of cAMP, this flavonoid alone was not able to increase 
StAR protein and steroidogenesis. However, in the presence of 10 µm chrysin, sensitivity of 
Leydig cells dramatically increased, with sub-threshold levels of cAMP being able to induce 
maximal levels of StAR protein and steroidogenesis. The studies indicated that chrysin 
enhanced steroidogenesis in Leydig cells mainly by enhancing cAMP-induced StAR gene 
expression.        

4.2 Apigenin  

Apigenin is present in various plants at different concentrations (Miean & Mohamed, 2001). 
It was found in parsley at high level (Nielsen et al., 1999). This flavonoid blocks COX2-
dependent signaling at two separated steps, by inhibiting COX2 expression and blocking the 
TBX A2 receptors. It inhibits COX2 expression at the levels of transcription and translation. 
At the transcriptional level, apigenin inhibits activities of the transcription factors that are 
important for COX2 gene expression. Previous studies reported that incubation of mouse 
macrophages with apigenin reduced COX2 expression by inhibition of NF-kB activation, 
through a mechanism involving the apigenin-reduced degradation of the inhibitor kB (IkB) 
(Liang et al., 1999). This observation was enhanced by the study on the apigenin-reduced 
COX2 expression, in which apigenin-inhibited IkBǂ degradation resulted in reductions in 
NF-kB-binding to the promoter DNA and the TNF-ǂ-induced COX2 expression (Shukla & 
Gupta, 2004). In addition, apigenin is able to inhibit the activation of MAPK. It is known that 
MAPK activation is essential for the activities of several transcription factors, such as CREB, 
NF-kB, and C/EBP, that induce COX2 expression in various tissues (Chun & Surh, 2004; 
Tsatsanis et al., 2006). The inhibitory effects of apigenin on MAPK activation significantly 
reduced COX2 gene transcription (Ha et al., 2008; Yi Lau & Leung, 2010). At the 
translational level, apigenin increased the localization to cytoplasm of two proteins, HuR 
and T-cell-restricted intracellular antigen 1-related protein (TIAR). HuR and TIAR then 
bound to the AU-rich elements in the 3’-untranslated region of COX2 mRNA and inhibited 
COX2 translation (Tong et al., 2007). In addition to its inhibitory effects on COX2 expression, 
apigenin acts as a natural antagonist of the TBX A2 receptors. Binding of apigenin to the 
receptors blocked the signaling through COX2-TBXAS-TBX A2-receptors pathway 
(Guerrero et al., 2007; Navarro-Nunez et al., 2008). 
It was reported that blocking the signaling at any step of the COX2-TBXAS-TBX A2-
receptors pathway significantly increased StAR gene expression and testosterone 
biosynthesis in Leydig cells (Pandey et al., 2009). Therefore, the effects of apigenin on 
steroidogenesis were studied using MA-10 mouse Leydig cell line and Leydig cells isolated 
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from mouse. The binding of apigenin to the TBX A2 receptors was examined. The binding 
competition between apigenin and the selective receptor antagonist 3H-SQ29548 indicated 
that this flavonoid specifically blocked the TBX A2 receptors on MA-10 mouse Leydig cells. 
Blocking the receptors with apigenin significantly increased StAR protein and testosterone 
production in mouse Leydig cells (Li et al., 2011). In MA-10 Leydig cells, apigenin induced 
concentration-dependent increases in StAR promoter activity, StAR mRNA, StAR protein 
and steroid hormone production. Further study indicated that this flavonoid enhanced StAR 
gene transcription by reduction of the transcriptional repressor, DAX-1 protein. While the 
mechanism for the reduction of DAX-1 protein in apigenin-treated cells is unknown, the 
results from the study suggest that minimal levels of PKA and protein kinase C (PKC) 
activities are essential for the effects of apigenin on DAX-1, StAR and steroidogenesis in 
Leydig cells (Li et al., 2011).    

4.3 Luteolin  

Luteolin is found in fruits and vegetables (Harnly et al., 2006). It was detected in bird chili 
(1035.0 mg/kg, in dry weight), belimbi leaves (464.5 mg/kg), onion leaves (391.0 mg/kg), 
belimbi fruit (202.0 mg/kg), dried asam gelugur (107.5 mg/kg), local celery (80.5 mg/kg), 
broccoli (74.5 mg/kg), carrot (37.5 mg/kg), limau purut leaves (30.5 mg/kg), French bean 
(11.0 mg/kg), and white radish (9.0 mg/kg) (Miean & Mohamed, 2001). Similar to the effects 
of apigenin, luteolin is able to inhibit COX2 expression and block the TBX A2 receptors. It 
was reported that luteolin reduced COX2 expression by inhibiting NF-kB activity (Chen et 
al., 2007a; Gutierrez-Venegas et al., 2006; Kim & Jobin, 2005), through the mechanism 
involving the luteolin-reduced IkB kinase (IKK) activity, IkB degradation, nuclear 
translocation of NF-kB p65 subunit, and NF-kB-binding to the promoter DNA. Luteolin may 
reduce COX2 expression by inhibiting activity of MAPK and subsequently reducing the 
activities of the transcription factors that are essential for COX2 transcription (Choi & Lee, 
2010; Gutierrez-Venegas et al., 2006). It is known that COX2 expression is up-regulated by 
inflammatory cytokines, such as IL-1ǃ and TNF-ǂ. Luteolin was reported being able to 
reduce these cytokines, which may contribute to its inhibitory effect on COX2 expression 
(Wu et al., 2009). In addition, luteolin is also a natural antagonist of the TBX A2 receptors. It 
blocked the COX2-dependent signaling through COX2-TBXAS-TBX A2-receptor pathway 
by binding to the receptors (Guerrero et al., 2005; Guerrero et al., 2007).  
The inhibitory effect of luteolin on COX2-dependent signaling suggests a possibility of using 
this flavonoid to enhance StAR gene expression and steroidogenesis in Leydig cells. This 
possibility was examined by the experiments with MA-10 mouse Leydig cells cultured for 6 
hours in the medium containing increasing concentrations of luteolin and a cAMP analog 
(dbcAMP). StAR and DAX-1 proteins, steroid production, StAR mRNA and StAR promoter 
activity were analyzed as described in the previous study (Jana et al., 2008). As shown in 
Fig. 2A, the treatments with luteolin induced a concentration-dependent increase in steroid 
hormone production. Progesterone concentrations in culture medium were increased from 
4.9 to 124.7ng/ml, as the levels of luteolin in the culture were increased from 0 to 12 µM. In 
the presence of 22(R)hydroxycholesterol(22R), there was no significant difference in steroid 
production among the treatments, suggesting that luteolin increase steroidogenesis by 
improving mitochondrial cholesterol transfer in Leydig cells. The results were enhanced by 
the luteolin-increased StAR protein expression. Similar increases were observed in the 
analyses of StAR promoter activity and StAR mRNA levels (Fig. 2B), indicating a regulatory 
effect of luteolin on StAR gene transcription. In addition, a synergistic interaction between 
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luteolin and cAMP was observed (Fig. 2C), in which luteolin reduced the threshold of 
cAMP-induced StAR gene expression and increased the sensitivity of Leydig cells to cAMP 
stimulation. Further study indicated that luteolin enhanced StAR gene transcription by 
inhibiting DAX-1 expression (Fig. 2D), similar to the observation with apigenin.  
 

 

Fig. 2. Effect of luteolin on StAR gene expression and steroidogenesis in MA-10 mouse 
Leydig cells. MA-10 cells were incubated with luteolin for 6 hours, and then collected for 
analyses: A, StAR protein and steroidogenesis; B, StAR gene transcription; C, Interaction 
between luteolin and cAMP; D, Reduction in DAX-1 protein.  

4.4 Quercetin  

Quercetin was reported as one of the major flavonoids in the plants (Miean & Mohamed, 
2001), especially in onions (Slimestad et al., 2007). It blocks the COX2-dependent signaling 
by inhibiting COX2 expression and TBX A2 production. Similar to other flavonoids, 
quercetin depresses COX2 expression by inhibiting activities of NF-kB. It was observed that 
this flavonoid reduced the activity of NF-kB by inhibiting IKK/IκB signaling cascade 
(Garcia-Mediavilla et al., 2007), which in turn reduced NF-kB nuclear translocation, its 
binding to promoter, and COX2 expression (Crespo et al., 2008; Puangpraphant & de Mejia, 
2009). Another signaling pathway regulating COX2 expression is PI3K-Akt pathway. This 
signaling pathway may activate CREB (Alique et al., 2011) or NF-kB (Yang et al., 2009), and 
induce COX2 expression. A recent study found that quercetin directly bound with PI3K to 
inhibit PI3K activity and Akt phosphorylation, resulting in a reduction in COX2 expression 
(Lee et al., 2010). In the LPS-induced COX2 expression, the members of MAPK, including 
extracellular signal related kinase (ERK), p38 and JNK, are involved in the LPS-induced 
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signaling. While LPS activates the MAPKs, quercetin inhibited the activation of each of 
them, and subsequently reduced IκB phosphorylation and COX2 expression (Gutierrez-
Venegas et al., 2007). The observations were enhanced by the study on the inhibitory effects 
of quercetin on ROS-induced MAPK activation and COX2 expression (Huang et al., 2006). 
The inhibition of MAPKs by quercetin was associated with the reductions in inflammatory 
cytokines, such as IL-1ǃ and TNF-ǂ (Overman et al., 2011). In addition, quercetin is able to 
block the COX2-TBXAS-TBX A2-receptor signaling pathway by inhibition of TBX A2 
formation (Garcia-Saura et al., 2005; Sheu et al., 2004).  
The steroidogenic effect of quercetin was studied with MA-10 mouse Leydig cells. It was 
reported that quercetin increased StAR mRNA levels, StAR promoter activity and steroid 
hormone production (Chen et al., 2007c). The observations were corroborated by the results 
shown in Fig. 3., which indicated the quercetin-enhanced StAR gene transcription and 
translation in MA-10 cells cultured for 6 hours (Fig. 3 A and B). Following these studies, the 
transcription factors in StAR gene transcription were examined. It was found that the 
incubation of MA-10 Leydig cells with quercetin reduced DAX-1 protein, similar to the 
effects of other flavonoids. The reduction in DAX-1 protein was associated with a dramatic 
increase in StAR protein (Fig. 3C), suggesting that quercetin enhance StAR gene expression 
by reduction of DAX-1 expression.     
 

 

Fig. 3. Effect of quercetin on StAR gene expression and steroidogenesis in MA-10 mouse 
Leydig cells. MA-10 cells were incubated with quercetin for 6 hours, and then collected for 
analyses: A, StAR protein and steroidogenesis; B, StAR gene transcription; C, Reduction in 
DAX-1 protein 
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4.5 Potential application of natural flavonoids in delaying the declines in StAR gene 
expression and testosterone biosynthesis      

The studies reviewed above suggest that flavonoids are potential resources for alternative 
medicine to delay the decline in StAR gene expression. Among the various compounds of 
natural flavonoids, many of them are able to reduce COX2 expression, such as Kaempferol 
(Garcia-Mediavilla et al., 2007), tectorigenin, tectoridin (Kim et al., 1999), wogonin (Chen et 
al., 2008) and Silibinin (Kim et al., 2009). Some of the flavonoids reduce the inflammatory 
factors that induce COX2 expression (Garcia-Lafuente et al., 2009; Khanna et al., 2007; Kim 
et al., 2004). Another group of flavonoids was reported as receptor antagonists that inhibit 
the COX2-dependent signaling by blocking the TBX A2-binding to the receptors (Navarro-
Nunez et al., 2009). In addition to the COX2-dependent signaling, StAR gene expression is 
affected by the signaling through different pathways. For example, calcium influx through 
L-type calcium channels regulates the threshold of cAMP-induced StAR gene expression, so 
that blocking the L-type calcium channels reduced the threshold and enhanced StAR gene 
expression in Leydig cells (Pandey et al., 2010). There is a group of natural flavonoids that 
are able to block the L-type calcium channels, such as genistein (Belevych et al., 2002), 
daidzein (Yokoshiki et al., 1996), equol (Liew et al., 2003) and epigallocatechin-3-gallate 
(EGCG) (Kang et al., 2010). The steroidogenic effects of the flavonoids in this group were 
described (Yu et al., 2010). It is possible to identify different flavonoids that might enhance 
StAR gene expression and testosterone biosynthesis through different mechanisms.   
The potential for application of natural flavonoids in delaying the decline in testosterone is 
supported by the animal studies on the flavonoid-enhanced testosterone production and 
reproductive function. A study with 2-year-old male rats reported that supplementation 
with chrysin improved their reproductive functions, with their sperm count, fertilization 
potential and litter size being increased when they were allowed to interact with female rats 
(Dhawan et al., 2002). It was also observed that lifetime exposure to the flavonoids, 
including daidzein, glycitein and genistein, increased serum and testicular testosterone 
concentrations of rats (McVey et al., 2004). The observation was enhanced by the study on 
the effects of catechins on testosterone biosynthesis in rats, in which injection with catechins 
or its derivatives increased testosterone in blood (Yu et al., 2010). A recent study reported 
the beneficial effects of quercetin in diabetic rats, with their sperm viability and motility 
being improved by the flavonoid. These effects of quercetin are associated with an increase 
in serum total testosterone (Khaki et al., 2010). In addition, some flavonoids in herbal 
medicine are able to enhance testosterone production in rats. For example, icariin, a 
flavonoid in the plants in Epimedium family, has been extracted from traditional Chinese 
medicine (Du et al., 2002). It was observed that supplementation of icariin to 15-month-old 
male rats significantly increased their blood testosterone levels (Zhang & Yang, 2006).  
For application of natural flavonoids to improve the health of aging males, further studies, 
especially long-term animal studies and clinical studies, are needed. Two of the important 
considerations in the studies are mechanism and efficacy of the flavonoid-enhanced 
testosterone biosynthesis. The mechanisms reported for the inhibitory effects of flavonoids 
on COX2-dependent signaling are mostly based on the studies with the cells from various 
tissues. These mechanisms need to be verified with Leydig cells. In addition to the COX2-
dependent signaling, other mechanisms might be involved in the flavonoid-enhanced StAR 
gene expression and testosterone production. Further studies on the mechanisms may 
improve the understanding of the steroidogenic effects of flavonoids. Regarding the 
efficacy, bioavailability is an important factor being discussed in the studies on flavonoids 
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(Setchell et al., 2001; Setchell et al., 2002). Specifically in the flavonoid-enhanced StAR gene 
expression and testosterone production, the following factors have been discussed recently: 
1) Biphasic effects of flavonoids on StAR gene expression. As mentioned above, some of the 
flavonoids are able to block L-type calcium channels. It was reported that blocking L-type 
calcium channel produced biphasic effects on StAR gene expression in Leydig cells (Pandey 
et al., 2010). While these flavonoids might enhance StAR gene expression by reducing the 
transcriptional repressor DAX-1 protein, they might inhibit the positive effect of calcium-
dependent signaling on StAR gene expression; 2) Inhibitory effects of flavonoids on 
steroidogenic enzymes. It was reported that some of the flavonoids are able to inhibit 
activities of the enzymes involved in testosterone biosynthesis (Figueiroa et al., 2009; Hu et 
al., 2010). These inhibitory effects may reduce the efficacy of flavonoid-enhanced 
testosterone production; 3) Levels of cAMP in Leydig cells. The levels of cAMP-PKA-
phosphorylation are critical for the flavonoid-enhanced StAR gene expression in Leydig 
cells. As shown in Fig. 2C, in the absence of cAMP, flavonoid alone is not able to induce 
significant increases in StAR protein expression and steroid hormone production (Jana et al., 
2008; Li et al., 2011). In the studies without exogenous cAMP, the endogenous cAMP 
becomes important for the steroidogenic effect of flavonoids. When the levels of endogenous 
cAMP or PKA activity in Leydig cells are not sufficient, flavonoid might not be able to 
induce significant increase in StAR gene expression. Therefore, minimal level of cAMP or 
PKA activity should be considered for the flavonoid-enhanced StAR gene expression and 
testosterone biosynthesis.  

5. Summary 

In summary, LH-stimulation of Leydig cells induces both positive and negative signals in 
the regulation of StAR gene expression and testosterone biosynthesis. In the aging process, 
the increase in COX2 enhances the negative signaling, resulting in the declines in StAR gene 
expression and testosterone biosynthesis in Leydig cells. It was found that some of the 
flavonoids are able to block the COX2-dependent signaling and enhance StAR gene 
expression. While further investigations are needed, the studies suggest a potential for 
application of the natural flavonoids in delaying the age-related declines in StAR gene 
expression and testosterone biosynthesis.                               
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