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1. Introduction  

Biodiversity patterns vary across space and time, and this variation is thought to be driven by 

several ecological/biogeographical processes that act upon species distributions and leave 

their imprint at various spatial and temporal scales (Huston, 1994; Ricklefs, 2004). The regional 

or geographical (gamma diversity) diversity patterns, in addition to local diversity (alpha 

diversity), are consequent upon the extent of “spatial” variation in species composition among 

sites (beta diversity) (Whittaker, 1960; 1972). Arrays of ecological hypotheses have been 

proposed as determinants of beta diversity patterns. It can arise from variation in 

environmental/habitat heterogeneity among sites, spatial constraints, disturbance regimes, 

and corresponding species-level variations in life history traits (e.g., dispersal, niche-breadth) 

(Harrison et al., 1992; Nekola & White, 1999; Chase, 2007; Veech & Crist, 2007; Baselga, 2008) as 

well as neutral and/or stochastic processes (Hubbell, 2001; Chase, 2010). Nevertheless, beta 

diversity patterns and the mechanisms by which ensembles of local communities maintain 

their variations and, consequently, influence diversity at regional scale remains a central 

challenge in ecological and conservation studies (Wilson & Shmida, 1984; Veech & Crist, 2007; 

Baselga, 2010; Chase, 2010; Tuomisto, 2010; Anderson et al., 2011).  

Despite its apparent conceptual simplicity, the empirical assessment of beta diversity has been 

mired with extensive debates over a perplexing array of indices, analytical approaches, or 

scales of analysis (Wilson & Shmida, 1984; Lande, 1996; Loreau, 2000; Koleff et al., 2003; 

Tuomisto & Ruokolainen, 2006; Legendre et al., 2008; Veech & Crist, 2010; for a detailed outline 

of the issues, see recent review by Anderson et al., 2011). One of the most fundamental and 

recurrent challenges in beta diversity studies has been distinguishing and quantifying the pure 

“spatial” turnover component of beta diversity from that caused by variation in species 

richness between local communities (Wilson & Shmida, 1984; Koleff et al., 2003; Veech & Crist, 
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2010; Chase et al., 2011). Various indices and frameworks have been proposed to estimate beta 

diversity patterns independent of richness gradients (Wilson & Shmida, 1984; Koleff et al., 

2003). In this context, the recently proposed framework by Baselga (2010) appears to provide 

an improved means to systematically distinguish between the two independent components 

of beta diversity - the pure “spatial” turnover of species (due to species replacement) from the 

nestedness-driven pattern due to “species loss or gain” associated to variation in species 

richness. These two distinct patterns might also have different underlying causes.  

The nestedness component of beta diversity essentially reflects differences in the 
composition of nested assemblages, i.e., when communities in species-poor sites are subsets 
of those found in species-rich sites (Patterson & Atmar, 1986). In other words, the difference 
in composition between species-poor and species-rich sites arises because the latter contains 
species not present in species-poor sites and not the converse. Nestedness patterns can result 
from mechanisms/factors that sort species hierarchically such as differential extinction or 
colonization rates, nested distributions or suitability of habitat gradients (Atmar & 
Patterson, 1993; Hylander et al., 2005; Azeria et al., 2006; Ulrich & Gotelli, 2007; Azeria & 
Kolasa, 2008). It should be emphasized that the nestedness component of beta diversity is 
the dissimilarity due to a nestedness effect or richness difference and not a measure of 
nestedness itself (Baselga, 2010).  
The “spatial” turnover component of beta diversity, on the other hand, reflects distinct 
community ensembles and their corresponding underlying causal factors or processes , which 
depart notably from hierarchical effects underlying nestedness (idiosyncartic communities; 
Atmar & Patterson, 1993; Azeria et al., 2006; 2009b). Potential causes include distinct habitats 
sustaining distinct communities or spatial segregations due to interspecific interactions (within 
same habitat template) (Loreau, 2000; Baselga, 2010; Chase et al., 2011). It is clear that 
distinguishing between the two components is important for our understanding of 
biodiversity patterns. For instance, a recent study by Baselga (2010) has demonstrated that beta 
diversity of longhorn beetles in southern Europe was primarily caused by spatial turnover 
(and associated endemics due to historical effects) while in the northern Europe it was caused 
by spatial turnover but also by nestedness (ordered loss of species towards the north) (Baselga, 
2008; Baselga, 2010). This crucial information was not evident in the un-partitioned beta 
diversity, which indicated a similar pattern in northern and southern Europe.  
Another promising approach to decipher beta diversity patterns beyond richness gradient 

effects is by using null model analysis (Chase, 2007; Vellend et al., 2007; Anderson et al., 

2011; Chase et al., 2011). Null model tests have, however, been remarkably neglected in beta 

diversity studies (but see Chase, 2007; Chase et al., 2011) despite their wide applicability in 

many areas of ecology and biogeography (Connor & Simberloff, 1983; Gotelli & Graves, 

1996; Gotelli, 2001). Null models quantify and assess whether observed patterns depart from 

random expectations by comparing them against patterns emerging by randomization of 

observation data. This approach has been helpful in establishing non-random species co-

occurrence patterns beyond random expectations (Connor & Simberloff, 1983; Gotelli & 

Graves, 1996; Azeria et al., 2009a) and has recently been extended in “biodiversity 

deconstruction” for identifying species groups that are distinct in some ecological sense 

(Azeria et al., 2009a; 2011). Similarly, null models can be useful in deciphering beta diversity 

patterns that are beyond (higher or lower) random chance expectations (given variation in 

species richness). Such beyond chance patterns may imply a deterministic causal processes; 

for example, Chase (2007) demonstrated that communities in drought ponds were more 
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similar than expected by random chance, probably due to a deterministic filtering effect 

caused by a harsh environment (also see Chase et al., 2011). 

Clearly, a common ground between the partitioning framework and null model analysis of 
beta diversity needs to be established in order to promote the state of the art and practical 
understanding of beta diversity patterns. The idea behind null model analysis is to 
disentangle beta diversity patterns beyond richness gradients, which should be reflected in 
the turnover component of beta diversity. The nestedness component of beta diversity, on 
the other hand, is primarily driven by richness differences, which may be related to beta 
diversity expected under null distribution given richness gradients.   
The present study examines the overall beta diversity components as well as the turnover 
and nestedness-driven components of beta diversity of saproxylic beetles emerging from 
tree boles following forest fire. In the present study, we have two major goals. First, we will 
establish the relationship of the overall beta diversity as well as its two components, 
turnover and nestedness, with beta diversity expected under and beyond random assembly 
of communities. We partition or deconstruct the overall beta diversity pattern following the 
partitioning framework of Baselga (2010). We perform null model analyses for beta diversity 
with a similar methodological basis as in Chase et al. (2011) to estimate the extent of beta 
diversity expected under and beyond random assembly, given variations in species richness 
among sites and the regional frequency of species. Second, we will demonstrate if the two 
components of beta diversity have different underlying causes, here habitat attributes 
defined primarily by tree-species, burn-severity, and tree-size classes. 
Our study system is located in the western spruce–moss bioclimatic subdomain 
(northwestern Quebec, Canada) where fire is an important natural disturbance generating 
mosaics of stands with high structural and compositional heterogeneity in the forest 
landscape (Bergeron et al., 2004). The post-fire environment is characterised by huge 
amounts of freshly killed and stressed trees, which are very important habitat attributes that 
sustain saproxylic beetles that feed directly on the bark/wood of dead and dying trees, 
saprophagous, mycophagous and their predators (McCullough et al., 1998; Grove, 2002; Saint-
Germain et al., 2004; Boulanger et al., 2010). The early post-fire environments are characterised 
by a diversity/abundance of saproxylic beetles that rapidly attack or colonize burned forests. 
Yet, the influence of the more-local, post-fire habitat legacies such as host-tree species, tree-
size, and burn-severity gradients on beta diversity patterns of saproxylic beetles is poorly 
known. In this study, we examine their effect on the overall, turnover and nestedness 
components of beta diversity by using distribution data of saproxylic beetles that actually 
breed in the burned forest, i.e., beetles that develop in, and emerge from, naturally fire-killed 
tree boles. Understanding the importance of local factors is undoubtedly crucial in conserving 
these essential groups, whose feeding activity may facilitate the decay of dead trees and, 
consequently, could have a substantial role in nutrient cycling of disturbed forests (Grove, 
2002; Cobb et al., 2010). On the other hand, post-fire salvage logging is currently increasing to 
maintain timber supply and the negative ecological consequences of this practice has become 
an emerging ecological issue in forest management (Lindenmayer et al., 2008).  

2. Material and methods 

2.1 Study area and bole sampling 

The study was conducted in 72 sites within four forest burns (burned in 2005) within the 
western spruce–moss bioclimatic subdomain of northwestern Quebec, Canada (49o15’-50 o 
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40’N and 75 o 00’W-73 o 45’W). This forest subdomain is typically dominated by black spruce 
(Picea mariana) and, to a lesser extent, jack pine (Pinus banksiana). The forest landscape also 
contains various combinations of Balsam fir (Abies balsamea), trembling aspen (Populus 
tremuloides) and paper birch (Betula papyrifera). In this forest subdomain, forest fire is an 
important disturbance agent and occurs in a relatively short cycle (120-180 years) and, as 
consequence, the landscape is dominated by even-aged forest stands (Bergeron et al., 2004). 
We sampled sites using a systematic factorial design: 2 tree species X 3 burn levels X 4 tree size 
categories X 3 replicates  (Total = 72 forest sites). Our focus was to examine saproxylic beetles 
that actually develop in, and emerge from, fire-killed trees following forest fire. Therefore, 
from each sampling site, we retrieved a 50-cm bole section from five fire-killed trees that we 
felled (Total 360 trees). This was carried in early June 2006, one year after fire, and when initial 
colonization or attack by saproxylic beetles was achieved naturally (Boulanger and Sirois 
2007). The retrieved bole sections were then enclosed in rearing (emergence) cages placed in a 
field insectarium, where they were suspended while respecting their natural vertical 
orientation. The offspring were bred out, and the emerging adults/larvae were collected 
monthly from June to November in 2006 and 2007 in a vial (with preservative) placed under 
the bole section. Vouchers are conserved in the insect collection of the Laurentian Forestry 
Centre. All collected specimens were identified to the lowest taxonomic level (species or genus 
level) whenever possible, otherwise they were identified only to the family level. The “species” 
lists of boles were pooled per-site in subsequent beta diversity analysis. 
Our sampling protocol thus enabled us to investigate simultaneously the effects of variation in 
tree species (black spruce and jack pine), burn severity (low, moderate and high) and tree size 
(db1=8-12 cm; db2=12-16cm; db3=16-20 cm; db4=20-24 cm) for beta diversity of these 
saproxylic beetles. The tree size classes were based on diameter at breast height (dbh); and 
burn severity classes were visually defined following criteria adopted by Ministère des 
Ressources naturelles de la Faune du Québec (MRNF) but with modifications of the classes. These 
habitat variables have been shown to differentially influence the distribution of saproxylic 
beetles in burned forests (Saint-Germain et al., 2004; Boulanger et al., 2010); and we expect them 
to also differentially contribute to the turnover and nestedness component of beta diversity. 
For example, different tree species might attract or host different beetle species and, 
consequently, might contribute more to the turnover than nestedness component of beta 
diversity. The effects of burn severity and tree size class is to generally create a gradient of 
habitat suitability, the lowest suitability being in small trees and/or severe-burns and highest 
suitability being in large trees of low severity classes (Boulanger et al., 2010). Such a 
hierarchical suitability gradient would potentially contribute to the nestedness component of 
beta diversity. On the other hand, the within habitat class contribution for beta diversity 
components might differ; for example, there could be more dispersion or turnover within-
small than within-large tree size classes due to intensive competition in smaller trees that cause 
segregated species co-occurrences, or some species being biased towards species-poor sites, 
termed as idiosyncratic species (Azeria et al., 2006; 2009b).  

2.2 Saproxylic beetle (emerging) distribution data  

We compiled a presence–absence matrix (sites x species) of all saproxylic beetles in each 
sampling site by pooling the respective data from five fire-killed tree boles. The total 
number of “species” recorded was 62 species. Nearly half of these species (30 species) were 
very rare recorded from only one or two sites, and many were primarily common in dead 
trees in unburnt forest such as those generated by gap dynamics (Boucher, 2011). We 
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omitted them as such species often tend to have an unduly large influence in multivariate 
analysis and, consequently, distort the overall pattern (e.g. in ordinations). In addition, it is 
advisable that species that are uncharacteristic of the species pool (here the species might be 
unlikely to colonize fire-killed tress in burned forests) are omitted to minimize their effect in 
null model  analysis of beta diversity (see Chase et al 2011 for discussion related to the latter 
issue). We thus restrict our analysis to 32 species that occurred in more than two sites. These 
species accounted for 94% of the presence–absence matrix and for 97% of the total 
abundance (1639 individuals). We also omitted one site that only had a single species, which 
was recorded in nearly all sites (71 of 72 sites, thus its composition dissimilarity was always 
zero with respect to this site) as it was not possible to generate a “null community” and 
consequently “null” beta diversity values for the site given the constraints imposed in the 
null model.   

3. Statistical analysis 

3.1 Deconstruction or partitioning of beta diversity 

Our first goal was to partition the overall beta diversity pattern of the saproxylic beetles into 
two components: the “spatial” turnover and nestedness component. We also wanted to 
examine their relationship to beta diversity values expected under and beyond random 
community assembly given a null model. We emphasize that throughout the paper, beta 
diversity refers to site-to-site composition dissimilarity. We partitioned beta diversity of 
saproxylic beetles following the framework of Baselga (2010) as: ┚sor = ┚sim + ┚nes; where ┚sor 
(Sorensen dissimilarity) represents the total difference in species composition between two 
sites, and ┚sim (Simpson dissimilarity) and ┚nes (nestedness-driven dissimilarity) are its 
“turnover” and ‘nestedness” components, respectively.  We computed these components 
using the function provided by Baselga (2010), as implemented in R version 2.11 (R-
Development-Team, 2010).  

3.2 Null model analysis of beta diversity  

We used null models to disentangle beta diversity values expected under null distributions 
and beyond random assembly given constraints set by null models (“delta” beta diversity; 
also see Chase et al 2011). In principle, the null model analysis for site-to-site beta diversity 
is methodologically the same as that used for species-to-species co-occurrence patterns in 
the context of a “biodiversity deconstruction” framework (Azeria et al., 2009a).  
First, we computed the beta diversity for the observed data using the Sorensen dissimilarity 
index (┚sor), consistent with beta diversity partitioning framework. Second, null models are 
applied to randomize the observation data to generate “null” communities (n=1000) for which 
beta diversity will be calculated. We used two null models: the Fixed-Fixed (FF) and Fixed-
Equiprobable (FE) null models. Both null models maintain species richness of sites from the 
observation matrix. The FF null model also maintains species frequency as in the observation 
data, while FE null model sample species from the regional species pool equiprobably. We 
used the function permatfull, a wrapper for commsimulator, in the R-package Vegan (Oksanen et 
al., 2010) to generate 1000 null matrices according each null model. For the FF null model, we 
used the quasi swap algorithm (Miklós & Podani, 2004), which generates matrices that are 
independent of each other and different from the original matrix.  
We computed beta diversity (using the Sorensen dissimilarity index) for each of the 1000 
null matrices (┚sor-null.mat), from which the beta diversity expected by “random” chance was 
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estimated by computing their mean (┚sor-null) and standard deviation (┚sor-null.sd). These 
values effectively represent the beta diversity expected by random chance, given differences 
in richness among sites (and species frequencies for FF null model). Third, we estimated 
beta diversity independent of and beyond random chance (┚sor-diff) by computing the 
difference in beta diversity values between the observation data (┚sor) and null communities 
(┚sor-null), i.e. ┚sor-diff = ┚sor - ┚sor-null. The difference could also be expressed by effect sizes (or 
standard deviation units) as ┚sor-SES = ┚sor-diff /┚sor-null.sd. The ┚sor-SES measures the number of 
standard deviations that the observed dissimilarity ┚sor is above or below the mean index of 
the dissimilarity obtained in the null distribution (┚sor-null). The value of ┚sor-diff (and ┚sor-SES) 
will be positive for sites pairs that are more dissimilar than expected and negative for those 
less dissimilar (more similar) than expected. For ordinations or other graphical 
representations, the ┚sor-SES can be rescaled using the ranging formula as (┚sor-SES - ┚sor-SES.min)/ 
(┚sor-SES.max - ┚sor-SES.min), where ┚sor-SES.min and ┚sor-SES.max are the minimum and maximum ┚sor-

SES values. This will rescale the ┚sor-SES between 0 (for sites that are more similar) and 1 (for 
sites that are more dissimilar) in the same manner as applied for species-pairs in Azeria et 
al. (2009a; 2011).   
Our main goal was to link the beta diversity components with that expected under null 
models. It is important that all the terms are expressed in the same units; therefore we 
examined how the overall (┚sor), and its partition to “spatial” turnover (┚sim) and nestedness 
(┚nes) components were related to that expected under the null model (┚sor-null) and beyond 
(┚sor-diff).  
We also applied the null model recently proposed by Chase et al (2011; also see Chase, 2007) 
which is a modification of the Raup-Crick metric (┚RC) (Raup & Crick, 1979). The null model 
for computing ┚RC maintains species richness of site pairs as in the observation data, and 
species are sampled proportional to their frequency, rarity and commonness. The original 
implementation of the metric (Raup & Crick, 1979) also maintains for species richness, but it 
does not constrain for species incidence, i.e., it assumes species would be sampled 
equiprobably. The latter option is also available if desired. We computed ┚RC using the R-
function provided by Chase et al (2011). The program computes a ┚RC that shows the 
probability that the observed site-to-site dissimilarity is by chance by counting the number 
of null matrices where observed shared species is less than simulated. The computed 
probabilities (between 0 and 1) are rescaled by subtracting -0.5 and multiplying by 2 into 
values between -1 (less dissimilar) and 1 (more dissimilar). Values around 0 are not different 
from expected by chance (for other details see Chase et al., 2011). 
It is worth mentioning the similarities and differences in our implementation of the null 
model from that of Chase et al. (2011). Our implementation of the FF null model maintains 
the species frequency exactly as in the observed data, while the null model associated for ┚RC 
samples species proportional to their incidence in the data set. On the other hand, our 
implementation of the FE null model will be effectively similar to that of ┚RC when species 
are sampled equiprobably, as in the original formulation of Raup-Crick metric (Raup & 
Crick, 1979). The other difference is, the ┚sor-diff indicates actual differences in dissimilarity 
values between observed and null communities in beta diversity-units, while ┚RC expresses 
the difference (for the corresponding null model) in terms of a probability index. The 
probability associated with ┚sor-diff can be estimated by applying inverse-logit (R function 
plogis) or normal (R function pnorm ) transformations on its standardized form, the ┚sor-SES. 
Transformed values will be closer to zero (negative ┚sor-SES) for site pairs that are less 
dissimilar (more similar) than expected by random chance (one tail), and the converse is 
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true for more dissimilar site pairs. Note that the index is based on dissimilarity; the tests for 
statistical significance of “more dissimilar than expected” are made by taking the 
complement of the transformed values (for index values 0.5 to 1, subtract them from 1). 
Alternatively, to test statistical significance, one may use the proportion of null matrices in 
which ┚sor-null.mat is the same or larger (or lower) ┚sor for obtaining higher (lower) 
dissimilarity between sites. In the latter case, a comparable index with high ┚RC values 
(closer to 1, which was based on shared species) will be the number of matrices for which 
┚sor was higher than ┚sor-null.mat.  
To assess the relationships between the different algorithms, we examined the probability 
computed for ┚sor-SES (based on the FF and FE null models) and that of ┚RC metric.  

3.3 Analysis of habitat effects on overall beta diversity and components of beta 
diversity  

Our second goal was to examine the contribution of a set of habitat variables (tree species, 
burn severity classes, tree size classes) as well as their interactions for the overall (┚sor), 
turnover (┚sim) and nestedness-driven (┚nes) beta diversity of saproxylic assemblages. In 
addition, we examined the spatial effect on composition dissimilarity by considering its 
correlation with site-to-site geographical distance, and then by considering the dissimilarity 
between and within the forest burns (four burns).  We used a nonparametric, 
Permutatitional Multivariate Analysis of Variance (PERMANOVA; Anderson, 2001) to test 
whether categories for each habitat factor differed in their variability in species composition 
or beta diversity (based on ┚sor, ┚sim and ┚nes). The method computes a pseudo F-ratio, which 
is the ratio of composition dissimilarity within a treatment (habitat class) to that of between 
treatments, and then tests its significance by permutation (9999 replicates). Accordingly, 
significant results might indicate differences in dissimilarity among the classes (difference 
between treatment’s centroid in multivariate space), due to differences in the within-class 
dispersion (i.e., mean distances of members to their group centroid) or both. The potential 
role of each is distinguished by running a complementary analysis, the Permutational 
Analysis of Multivariate Dispersions (PERMDISP; Anderson et al., 2006), which tests 
whether classes (treatments) differed in their within-treatment dispersion or beta diversity. 
As an example, consider tree species, Black spruce (BSP) and Jack pine (JPI), as sources of 
variability. A significant result by PERMANOVA and a non-significant difference by 
PERMDISP would suggest differences in their across class dissimilarity (BSP ≠ JPI), i.e., the 
treatments differ in their centroid in multivariate space and not in the within-treatment 
dispersion (BSP-BSP = JPI-JPI dispersion). When significant results are also obtained by 
PERMDISP, one may run pairwise tests to examine which of the classes had higher 
dispersion (particularly when dealing with more than two classes). We performed 
PERMANOVA and PERMDISP using the functions adonis and betadisper, respectively,  in the 
R-package Vegan (Oksanen et al., 2010).    
We also applied multivariate regression analysis on distance matrices (MRM) (Zapala & 
Schork, 2006; Lichstein, 2007), which might help model the beta diversity variation of 
within- and between habitat classes, as well as the difference between them, simultaneously. 
MRM is essentially an ANOVA-like analysis performed on the site-to-site dissimilarity 
matrix expanded into a vector and modelled against the corresponding contrast of classes of 
habitat (for each habitat variable) changed into vector. For example, when considering the 
effect of tree species, the contrasts [within black spruce (BSP-BSP), within Jack pine (JPI-JPI) 
and between the two species (BSP-JPI)] are unfolded into vector. Note that according to our 
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construction, the within comparisons (BSP-BSP and JPI-JPI) are regarded as distinct values 
or factors and indexed accordingly in the explanatory variable. This re-indexing of the 
pairwise factors is done for each explanatory variable considered here, i.e., tree species, burn 
severity, tress size classes and forest burns where the sampling sites were located. The 
significance of MRM is tested by permutation of the distance vector. Note that this provides 
a computationally efficient way to compute an equivalent permutation test if the raw data of 
species composition were permuted and distance was computed afterwards (Hayden et al., 
2009). We will focus mainly on the results of pairwise tests among the “new classes” (e.g., 
BSP-BSP, BSP-JPI and JPI-JPI) of the MRM with that of PERMANOVA and PERMDISP to 
further unravel the source of variation for the overall beta diversity and beta diversity 
components.  

4 Results and discussion 

4.1 The relationship of beta diversity components and expectations under and 
beyond null models 

We present results (Fig. 1 and Fig. 2) that illustrate the relationship between overall, 
observed beta diversity (┚sor), and more specifically its turnover (┚sim) and nestedness (┚nes) 
components (sensu Baselga, 2010) with beta a diversity pattern expected by “random” (┚sor-

null) and with deviations beyond (┚sor-diff) random distribution of species among sites using two 
null models. The first null model preserves both species richness and species incidence (FF 
null model; Fig. 1), while the second null model preserves only species richness (FE null 
model; Fig. 2). While the overall beta diversity (┚sor) value was generally correlated to that 
expected by random (┚sor-null) under FF (Fig.1a) and FE (Fig.1a) null models, a stronger 
relationship was evident with that of deviations beyond null model expectations, i.e., ┚sor-diff 
(FF: Fig.1b; FE: Fig. 2b). This indicates that beta diversity patterns of saproxylic beetles show 
a strong signal of deterministic underlying processes that deviates from random 
expectations given variations in species richness and species incidence. 
A more explicit examination of the beta diversity components pattern via partitioning into 
its turnover (┚sim) and nestedness (┚nes) components (sensu Baselga, 2010) revealed that the 
two components exhibited distinct relationships to beta diversity values expected under 
(┚sor-null) and beyond (┚sor-diff) null models. Thus, the turnover component was linearly 
related to beta diversity deviating beyond “random” expectations (Figs 1d and 2d), while the 
nestedness component of beta diversity was related to the null expectations (Figs. 1e and 2e). 
The converse relationships, i.e., turnover with expectations under a null model (Figs. 1c and 
2c) and that of nestedness components with deviations beyond “random” (Figs. 1f and 2f) 
were not significant. Taken together our results demonstrate quantitatively (via null models) 
that the beta diversity components (sensu Baselga , 2010) do indeed reflect different extents 
of dependence on richness gradients. More specifically, we show the independence of the 
turnover and the dependence of the nestedness component on richness variations. In 
addition, our result emphasizes that the nestedness-driven component (sensu Baselga, 2010) 
should be interpreted as a general effect of richness difference on beta diversity.  
Moreover, our results indicate that the relationship of turnover and nestedness components 

with respective null model expectations, i.e., ┚sor-diff and ┚sor-null, were stronger when the null 

model also preserved the species incidence (FF-null model: Fig. 1d, r=0.84; Fig.1e, r=0.73) 

than when species were assumed to be sampled equiprobably (FE-null model: Fig. 2d, 

r=0.68; Fig.2e, r=0.44). Thus, while the nestedness and turnover components would reflect 
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the beta diversity consequent upon and beyond richness gradients respectively, our results 

suggest that both components might be conditioned by species frequency (commonness and 

rarity) patterns. This also implies that the appropriate null model for beta diversity analysis 

sensu lato should preserve not only observed species richness and but also the species 

frequency. The importance for null models to also control for species commonness and 

rarity has been emphasized in the modified Raup-Crick metric (┚RC) proposed by Chase et 

al. (2011). They modified the original Raup-Crick probabilistic index that samples species 

equiprobably (Raup & Crick, 1979) by implementing a null model that samples species 

proportional to their regional frequency in the observed data.  

 

 

Fig. 1. The relationship of overall betadiversity (┚sor ), and its partitions, the “spatial” 
turnover (┚sim) and nestedness (┚nes) components, with beta diversity values expected under 
null distributions (┚sor-null) and beyond-null model expectations (┚sor-diff). The null 
communities were generated using fixed-fixed null model (FF null model).  
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Fig. 2. The relationship of overall betadiversity (┚sor ), and its partitions, the “spatial” 
turnover (┚sim) and nestedness (┚nes) components, with beta diversity values expected under 
null distributions (┚sor-null) and beyond-null model expectations (┚sor-diff). The null 
communities were generated using fixed-equiprobable null model (FE null model).  

The utility of null models for disentangling beta diversity patterns independent of richness 

variation has only recently been emphasized (Anderson et al., 2011; Chase et al., 2011). Chase 

et al. (2011) have highlighted that the ┚RC dissimilarity metric (as expressed in probability 

between 0 and 1, or as rescaled from -1 to 1; see Chase et al 2011) reflects the beta diversity 

or dissimilarity patterns independent of richness variations (also see Chase, 2007).  We also 

found that ┚RC was generally correlated withthe turnover component of beta diversity ┚sim (r 

=0.73) as well as to our computation of beta diversity beyond null expectations ┚sor-diff (r 

=0.90). However, it should be emphasized that the ┚RC dissimilarity metric is a probability 

index rather than a direct measure of the departure from random chance in terms of “beta 

diversity units” sensu stricto (┚sim or ┚sor-diff). To obtain a dissimilarity measure comparable 
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to ┚RC metric, we estimated the probability associated with ┚sor-diff values by applying a 

inverse-logit transformation on the standard effect size of their deviations (standard 

deviation units), i.e., ┚sor-SES (also see Azeria et al., 2009a; 2011). Accordingly, the ┚sor-SES 

computed using the FF-null model was linearly related to ┚RC, albeit the data points for ┚RC 

were slightly lower from the one-to-one line (Fig. 3a). This slight deviation is expected given 

that our FF-null model preserves observed species frequency while the null model for ┚RC 

samples species proportional to their respective observed frequencies. On the other hand, 

values of ┚RC were higher than the values computed for ┚sor-SES under FE-null model, which 

samples species equiprobably (Fig 3b). When the two metrics were computed using a 

comparable null models that sampled species equiprobably, the ┚sor-SES and ┚RC were highly 

correlated (Fig. 3c). The same results were obtained when ┚sor-SES was transformed by 

normal distribution.  
 

 

Fig. 3. Relationship between dissimilarity/beta diversity values beyond null expectations as 
expressed in terms of standard effect size (┚sor-SES) and the Raup-Crick metric (┚RC). The ┚sor-

SES values were transformed using logistic function. In all null models, the species richness 
of sites is maintained as in the observed. The species frequency was preserved in computing 
the ┚sor-SES (FF-null model: a,c), or equiprobably (FE-null model: b,d) (see method). The null 
models for computing the ┚RC sampled species proportional to observed frequencies (┚RC: 
a,b) or equiprobably (*┚RC: c,d) (for details of the method see Chase et al., 2001).  

www.intechopen.com



 
Research in Biodiversity – Models and Applications 

 

86

These results underscore that a clear distinction should be made between the “actual” values 
of turnover beyond null model (┚sim and ┚sor-diff) and the probabilities associated with these 
values as estimated from null model, using the ┚sor-SES and ┚RC metrics. As demonstrated 
above, a more direct link to the turnover component of beta diversity (┚sim) is obtained by 
beta diversity beyond “null” distribution ┚sor-diff. It is noteworthy that ┚sor-diff will be negative 
when observed dissimilarity is less than expected (sites were more similar), and a proper 
rescaling should be made (e.g., subtract the minimum value) in subsequent analysis that 
require positive values (e.g. ordinations or PERMANOVA). Certainly, the null model 
derived ┚sor-SES (this study, also see Azeria et al., 2009a) and ┚RC metrics are applicable and 
important measures for studying beta diversity independent of richness variation (Chase, 
2007; Chase et al., 2011). However, caution should be exercised as the values can become 
biased for site pairs that have extremely low species richness relative to the regional species 
pool. For example, although the difference between the observed and null expectation ┚sor-diff is 
small, the variation of the null expectations ┚sor-sd might be so small that ┚sor-SES become inflated 
(for related caveats with ┚RC and other issue see Chase et al., 2011). Although, the inverse-
logit/normal transformation should minimize the bias (see Azeria et al, 2009a), caution should 
still be exercised when using the value in subsequent analysis. In addition, our results offer 
interesting qualitative comparisons among the null model based indices of beta diversity and 
how constraints imposed on species incidence would influence the values.   

4.2 Effect of habitat factors for overall and components of beta diversity  

We found a significant effect of tree species, burn severity, and tree-size class on overall beta 

diversity (┚sor) of saproxylic beetles (PERMANOVA Table 1, Fig. 4a, d, and g). In addition, 

we found a marginal effect of interaction terms between tree species and burn severity.  The 

effect of tree species and tree-size class was primarily due to compositional difference 

between treatments (location of treatment in multivariate response) but not due to 

differences in the within-class dispersion (PERMDISP, Table 2). In contrast, the influence of 

burn severity was primarily due to differences in the within-class dispersion, which was 

lower for low-severity burn (more homogeneous) than that of moderate- and high-severity 

burns (PERMDISP, Table 2). Results from multivariate regression analysis on distance 

matrices (MRM) provide a concise summary of the simultaneous effect of within- and 

between-treatment on the overall beta diversity pattern (Fig. 5a, b, c and d). The MRM also 

showed some trends that were not evident through the use of PERMANOVA and 

PERMIDISP.  For example, the beta diversity or composition dissimilarity within jack pine 

(JPI-JPI) was similar to that found between jack pine and black spruce (BSP-JPI) (Fig 5a).  

Overall, the effect of geographical distance on beta diversity patterns was only marginal, 

and when detected it was due to differences in the within-burns dissimilarity (lower for F1, 

forest burn in the north, than the others, Fig 5d) rather than between-burns differences. In 

other words, there was no increase in composition dissimilarity of saproxylic beetles in 

burned forests with increasing site-to-site geographical distance (┚sor: r= 0.032; ┚sim: r= 0.040; 
┚nes: r= -0.017). Thus our results do not provide support for the “distance decay of 

similarity” hypothesis (Nekola & White, 1999). It seems that saproxylic beetles might be 

good dispersers due to the ephemeral nature of their habitats (Boulanger et al., 2010) and 

thus may not be strongly limited by dispersal, at least at the scale of our study (up to 200 

km). Baselga (2010) has shown that composition dissimilarity of longhorn beetles increase 

with geographical distance measured across larger scales (up to 3000 km) across Europe.  

www.intechopen.com



Towards a Better Understanding of Beta Diversity: Deconstructing  
Composition Patterns of Saproxylic Beetles Breeding in Recently Burnt Boreal Forest 

 

87 

  Total (┚sor ) Turnover (┚sim) Nestedness (┚nes) 

Source of variability df SS  F- value SS F- value SS F- value 

Tree species (Ts) 1 0.911 8.546*** 0.706 11.327*** -0.030 -1.835 

Burn severity (Bs) 2 0.717 3.362*** -0.058 -0.466 0.486 14.956*** 

Tree size/dbh class (Dc) 3 1.502 4.696*** 0.334 1.789 0.578 11.869*** 

Forest burns “zone” 3 0.484 1.513§ 0.394 2.109 § 0.035 0.726 

Ts x Bs 2 0.369 1.729 § 0.281 2.253 § -0.033 -1.026 

Ts x Dc 3 0.317 0.992 0.181 0.969 0.082 1.683 

Bs x Dc 6 0.555 0.868 0.240 0.642 0.213 2.184 § 

Ts x Bs x Dc 6 0.684 1.069 0.300 0.804 0.050 0.510 

Residuals 44 4.691  2.741  0.714  

Total 70 10.230  5.119  2.094  

***p <0.001; ** <0.01; * <0.05; § <0.10 

Table 1. PERMANOVA table of saproxylic assemblages indicating the effect of habitat 
variables on the overall beta diversity (┚sor) and its “spatial” turnover (┚sim) and nestedness-
driven (┚nes) components. Note that ┚sor = ┚sim + ┚nes. Significance of the pseudo F-ratio was 
tested using a permutation test (9999 permutations); significant results Pr (>F-value) are 
indicated by bold typeface, and those indicated in italics are marginal.  

Taken together our results suggest that the total beta diversity (┚sor) pattern of saproxylic 

beetles was driven by differences between tree species and between tree size classes, as well 

as variation in within-treatment dissimilarity among burn severity classes and to some 

extent among sites within forest burns. The effects of these habitat attributes on overall beta 

diversity may be through influences on its “spatial” turnover (dissimilarity by species 

replacement) and/or nestedness (dissimilarity by richness variation) components. It is 

crucial that the two components of beta diversity are disentangled for a proper 

understanding of the most likely distinct underlying mechanisms (Baselga, 2008; 2010).  

Our results indicate that the turnover (┚sim) and nestedness (┚nes) components of beta 

diversity of saproxylic beetles are indeed dependent upon different habitat attributes 

(Tables 1 &2; Figs. 4 & 5). The turnover component of beta diversity was primarily driven by 

tree species, which showed a significant composition differentiation between black spruce 

and jack pine (PERMANOVA, Table 1; Fig. 4b). In addition, there was a significant 

difference in the within-treatment turnover among tree species: turnover was higher within 

jack pine than within black spruce (PERMDISP, Table 2; Fig. 4b; Fig. 5e). In fact, the within-

treatment species turnover for jack pine was to the same extent as that found between jack 

pine and black spruce (Fig. 5e). The within forest-burn turnover was also lower for the two 

north burns (F1, F2) than for the southern (F3, F4) forest burns (Tables 2; Fig. 5h), but 

composition differentiation between burns were not significant (Tables 1; Fig. 5h).  

The influence of tree species on the turnover component of beta diversity indicates that 

there is some level of differentiation in community ensembles between black spruce and jack 

pine. This pattern is expected among saproxylics that exhibit host-tree specificity (Allison et 

al.,2004; Janssen et al. in press) Such distinct habitat preferences or suitability of trees for 

component species can lead to segregated species distributions (Azeria et al., 2010). It was 

intriguing that the within-treatment dissimilarity was higher for jack pine than black spruce; 

www.intechopen.com



 
Research in Biodiversity – Models and Applications 

 

88

this might be related to jack pine being less common (although widely distributed) than 

black spruce in the landscape. The high turnover within the southern forest burns compared 

to the northern forest burns may be related to their higher heterogeneity in terms of 

composition and structure. Notably, the dissimilarity within and between the southern 

burns (F3 and F4) was of the same extent as that observed with respect to the northern forest 

burns (F1 and F2). 

 
 
 
 

Source of variability df 

Total (┚sor ) Turnover (┚sim) Nestedness (┚nes) 

SS F value SS F value SS F value 

Tree 
species 
(Ts) 
 

Groups 1 0.029 2.697 0.065 5.802* 0.014 1.594 

Residual  69 0.751  0.770  0.587  

Pairwise tests BSP=JPI BSP <JPI BSP=JPI 

Burn 
severity 
(Bs) 
 

Groups 2 0.085 4.583* 0.033 1.496 0.077 5.991** 

Residual  68 0.634  0.755  0.438  

Pairwise 
tests  L < (M=H) L =M=H L < (M§=H) 

Tree 
size/dbh 
class (Dc) 
 

Groups 3 0.068 2.185§ 0.047 1.486 0.043 2.168§ 

Residual  67 0.694  0.712  0.443  

Pairwise tests 
Db1=Db2=Db3=
Db4 

Db1=Db2=Db3=
Db4 Db1=Db2=Db3=Db4 

Forest 
burns 
“zone” 
  

Groups 3 0.111 4.279** 0.112 3.702* 0.053 2.377§ 

Residual  67 0.579  0.674  0.496  

Pairwise tests F1<(F3=F4)=F2  (F1=F2) § < F3=F4 F1=F2=F3=F4 

 

** P<0.01; * <0.05; § <0.10 

 
 

Table 2. Summary of PERMDISP analysis examining differences in the within-treatment 
dispersion/dissimilarity based on metrics of overall, turnover and nestedness components 
of beta diversity. Significant differences are indicated in bold letters; while bold-italics 
indicate marginally significant results (9999 permutations). Treatments or classes of habitat 
attributes considered are- Tree species: BSP=Black spruce and JPI=Jack pine; Burn severity: 
L=Low, M=Moderate and H=High; Tree size/dbh (diameter at breast height in cm) classes: 
Db1=8-12, Db2=12-16, Db3=16-20 and Db4=20-24. Forest burns were located north to south: 
F1-F2-F3/F4.  
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Fig. 4. A two-dimensional MDS representation of site-to-site dissimilarity showing the effect 
of tree species (a-c), burn severity (d-f) and tree-size class (g-i) on saproxylic beetle’s total 
beta diversity(a,d,g), and when partitioned into “spatial” turnover (b,e,h) and nestedness-
driven (c,f,i) components. The ellipse encloses 80% of the dispersion of habitat classes from 
their respective group centroid as accounted by the first two axes. Habitat classes are Tree 
species: BSP=Black spruce and JPI=Jack pine; Burn severity: L=Low, M=Moderate and 
H=High; Tree size/dbh (diameter at breast height in cm) classes: db1=8-12, db2=12-16, 
db3=16-20 and db4=20-24. 

The nestedness-driven beta diversity (┚nes), however, was influenced by gradients of burn 
severity and tree size/dbh, but not by tree species (PERMANOVA, Table 1, Fig 4f, i). There 
was significant nestedness-driven composition dissimilarity between high severity burns 
and both low- and moderate-severity burns (Fig 4f and Fig. 5j); and between small-sized 
trees (Db1) and large-sized trees (Db3 and Db4) (Fig 4i; Fig 5k). In addition, there was a 
significant difference in the within-class dissimilarity for burn severity; ┚nes was higher for 
the high-severity burns and moderate-severity burns than in the low-severity burn class 
(PERMDISP; Table 2, Fig 4f and Fig 5j). Finally, although PERMIDISP indicated a non-
significant result for tree species, the MRM analysis indicated that the nestedness-driven 
dissimilarity was higher within black spruce than jack pine (Fig. 5i), which was opposite to 
that observed for turnover component (Fig. 5e).  

www.intechopen.com



 
Research in Biodiversity – Models and Applications 

 

90

 

Fig. 5. A simultaneous analysis of beta diversity patterns (┚sor, ┚sim, ┚nes) differences within- 
(gray bars) and between-habitat (black bars) classes according tree species (a,e,i), burn 
severity (b,f,j),  tree-size class (c, g, k) and burns (d, h, i) on saproxylic beetle’s total beta 
diversity(a-d), and when partitioned into “spatial” turnover (e-h) and nestedness-driven (i-l) 
components. On the y-axis are mean values of dissimilarity (beta diversity) for the 
corresponding habitat contrasts. Habitat codes are as in Fig. 4. 

The effects of burn severity and tree size gradients on the nestedness component of beta 

diversity indicate that hierarchical suitability of the attributes is causing richness-driven 

composition differences between respective treatments. Generally, large trees of low burn 

severity are more suitable to saproxylic beetles than small trees of high burn severity, 

because they provide suitable oviposition conditions and high quality food resources (i.e., 

subcortical tissues) for larvae feeding directly on the bark and wood of trees (Allison et al., 

2004; Saint-Germain et al., 2004).  Indirectly, these trees may also be more suitable to  

predators of these larvae (Kenis et al., 2004). Indeed, large-sized and/or less severly burned 

treess have been shown to support more saproxylic beetle species than small-sized and/or 

very severely burned trees (Azeria et al., 2010; Boulanger et al., 2010). It is interesting, and 

counter intuitive, that a similar trend was also observed in the within-class nestedness-driven 

composition dissimilarity among burn severity classes; thus, nestedness-driven dissimilarity 

was higher for high-severity than low-severity burns. This might be explained by the  high 
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variance (relative to average) in species richness exhibited within severe burns. We suspect 

that an interaction effect between burn severity and tree-size might play a role, but this is 

difficult to isolate statistically from their independent effects in PERMDISP analysis.  
The above results clearly underscore that the turnover and nestedness components of 
saproxylic beetles are driven by different post-fire habitat legacies. Disentangling causal 
factors influencing beta diversity patterns of saproxylic beetles can have important 
conservation implications, such as in post-fire salvage logging operations where 
maintaining saproxylic diversity can concern management plans. Indeed, concern over 
ecological consequence of post-fire salvage logging on biodiversity and ecosystem function 
is a pressing management issue (Lindenmayer et al., 2008), and saproxylic beetles constitute 
key component of burned forest ecosystems (Grove, 2002; Cobb et al., 2010). Knowledge 
about the factors influencing beta divesity components can be crucial in setting salvage 
logging practices that will conserve also these essential groups. For example, given the 
species composition turnover exhibited between jack pine and black spruce, conserving the 
totality of saproxylic beetle species will require a management approach that maintains a 
mosaic of both tree species in the landscape. In addition, higher turnover within-jack pine 
than black spruce (and within moderate severity burns) may require special considerations 
to conserve all species occupying that habitat. On the other hand, the nestedness driven 
component will perhaps require emphasis on habitat attributes that increase species 
richness, e.g., large trees of lower severity burns. These decisions could also have 
implications for the structure of forest stands that are to be set aside for protective purposes. 
For example, in old-growth stands with numerous large-diameter trees (e.g., Db4=20-24), a 
smaller number of trees might suffice to capture the totality of species given the low 
differentiation of both turnover and nestedness component of beta diversity within large 
trees (given all other attributes are considered). However, if the available forest stands 
contain only moderately sized trees (e.g., Db2=12-16), then protecting more trees during 
salvage-logging might be required (given high turnover), although variation of nestedness-
driven beta diversity was to the same extent as that of larger trees. These examples are just 
to illustrate the implication of disentangling the turnover and nestedness components and 
underlying factors for management (also see Azeria et al., 2006; 2009b; Baselga, 2010).  

5. Conclusion 

Ecologists face a continuing challenge to disentangle and explain the species ‘turnover’ from 
composition dissimilarity that is driven by variation in species richness among sites. The 
recently proposed beta diversity partitioning framework and null model approaches make a 
significant step forward in meeting this challenge. We demonstrate the explicit quantitative 
relationship of the beta diversity components as depicted in the partitioning framework with 
that expected under and beyond random assembly of communities by using null models. Our 
results indicate that the turnover component indeed reflects the beta diversity deviating beyond 
that expected from “random” assembly given species richness variations, while the nestedness 
component of beta diversity was related to the null expectations. In addition, the beta diversity 
components were conditioned by variation in species frequency; this also implies that null 
models for beta diversity studies should perhaps preserve both the observed richness and 
species frequency patterns. We concur with others (Baselga 2010, Anderson et al. 2011) that the 
distinction between the two beta diversity components is important, because they were driven 
by different underlying causes (habitat factors) and this has implications for post-fire 
management in the boreal forest. Additional studies that directly incorporate habitat and 

www.intechopen.com



 
Research in Biodiversity – Models and Applications 

 

92

spatial effects into null model analysis such as using habitat- and spatially-constrained null 
models are needed in order to increase our understanding of the factors that control beta 
diversity patterns across space (also see Chase et al., 2011). 
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