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1. Introduction 

Progressive myoclonic epilepsy (PME) constitutes an heterogeneous group of diseases, 
usually of genetic origin, which begins in childhood and adolescence and presents a variable 
evolution, ranging from slowly to rapidly progressive forms with refractory seizures and 
dead within few years (Marseille Consensus Group, 1990). Despite its broad spectrum of 
manifestations, patients affected with PME share some common specific clinical and 
electrophysiological features, such as: myoclonus, multiple type of seizures, delay or 
regression of psychomotor development, cerebellar ataxia, slow background activity on 
electroencephalogram (EEG), spikes and waves induced by intermittent photo-stimulation 
and sensory evoked giant potentials (Marseille Consensus Group, 1990). 
From the genetic point of view, PME occurs in disorders presenting different genetic 
inheritance, including: the dentatorubralpallidolusyian atrophy (DRPLA), a disease of 
trinucleotide repeats, the myoclonic epilepsy with ragged red fibers (MERRF), a 
mitochondrial disease and autosomal recessive disorders, which may be divided in two 
main categories: non-lysosomal-related diseases such as Lafora disease and lysosomal-
related-disease such as lysosomal storage disorders (LSDs). 
Lysosomal storage disorders are severe genetic diseases caused by the defective activity of 
lysosomal proteins, cofactors or integral membrane proteins, which result in the intra-
lysosomal accumulation of undegraded metabolites such as sphingolipids, cholesterol, 
glycoproteins, mucopolysaccharides or glycogen. Even if they are individually rare, the 
combined frequency of LSDs is estimated to be approximately 1 in 8000 live births (Meilke 
et al., 1999; Poorthuis et al., 1999; Applegarth et al., 2000; Dionisi-Vici et al., 2002; Pinto et al., 
2004; Poupetova et al., 2010).  
More than 50 LSDs have been described to date (Staretz-Chacham et al., 2009). Although they 
are characterized by a wide spectrum of clinical phenotypes, many of these disorders present 
with severe progressive neurological impairment. Among the neurological symptoms, the 
presence of PME has been reported in different  LSDs, including Gaucher disease, action 
myoclonus-renal failure syndrome, neuronal ceroid lipofuscinoses, sialidosis, Niemann Pick 
type C disease,  and GM2 gangliosidosis. Each of these LSDs is characterized by a series of 
specific sings and symptoms. However, many of them share some clinical and biochemical 
features, such as the presence of signs of neurological impairments other than PME or organ 
disorders, which may be useful in the diagnosis of patients presenting with PME due to LSD.  
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Although LSDs are the main cause of the inherited form of PME, lysosomal defects are 
poorly known as a cause of PME and the differential diagnosis might be challenging, 
particularly in adult patients who may present a milder form of the diseases.   
Therefore, the aim of this review is to overview the clinical and molecular findings in 
patients with PME affected with LSDs and their therapeutic options. 

2. Gaucher disease (GD) 

GD, the most frequent LSD, is an autosomal recessive inherited disease due to the deficiency 

in the lysosomal hydrolase, acid -glucosidase (GBA). The enzyme is present in the 

lysosomes of all nucleated cells and cleaves the −glucosidic linkage of glucosylceramide 
(GlcCer) yielding glucose and ceramide. GBA deficiency leads to the progressive lysosomal 
accumulation of GlcCer and other glycosphingolipids (GSLs) and subsequent multi-organ 
dysfunction. The storage predominantly occurs in cells of the monocyte-macrophage 
lineage, but an increase in GlcCer concentration is detectable in most of the body tissues 
(Beutler  &  Grabowski, 2001).  
GD is panethnic (Beutler & Grabowski, 2001; Zimran et al., 1992; Cox & Shofield, 1997; 
Erikson, 1986) and  presents an incidence of one case per 60,000 live births in the general 
population (Meikle et al., 1999). However, it is the most frequent genetic disease in the 
Ashkenazi Jewish population where it shows a incidence of one case per 850 live births 
(Beutler et al., 1993). 

2.1 Clinical aspects 

The disease has been classically classified in three major clinical variants based on the 

presence and progression of central nervous system involvement. Type 1 GD (MIM# 

230800), the most common phenotype, is characterized by enlargement and dysfunction of 

liver and spleen, displacement of normal bone marrow by storage cells and bone damage 

leading to infarctions and fractures. Although type 1 GD is considered a non-neuropathic 

form, there is increasing evidence that neurological involvement (i.e. Parkinson syndrome, 

seizures, oligophrenia, perceptive deafness) can occur. Type 2 GD (MIM# 230900) is a rare 

phenotype associated with an acute neurodegenerative course and death at a very early age. 

These patients commonly present during the first month of life with evidence of brainstem 

dysfunction consisting in supranuclear gaze palsy and hepatosplenomegaly followed by 

progressive deterioration, opisthotonus dysphagia, pyramidal signs, failure to thrive and 

cachexia. They may also have intersititial lung disease and repeated respiratory infections. 

Type 3, the chronic neuronopathic GD (MIM# 231000), comprises an extremely 

heterogeneous group of patients who present with either mild or severe systemic disease 

associated with some form of neurological involvement and with an onset of symptoms that 

might range from childhood to early adulthood (Beutler  &  Grabowski, 2001). A most 

consistent finding in patients affected with this form of GD is an abnormality of the 

horizontal gaze. Among GD3 patients it has been widely demonstrated the existence of a 

subgroup of patients sharing the rare finding of PME (Rapin et al., 1986; Seeman et al., 1996; 

Garvey et al., 2001; Park et al., 2003; Kraoua et al., 2010, Tylki-Szymanska et al., 2010). 

Published data from the International Collaborative Gaucher Group showed the presence of 

myoclonic epilepsy in 3 out of 121 patients who had suffered from seizures when first 

assessed. However, a study performed in a French cohort of 10 patients affected with GD3 
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showed the presence of PME in 2 (Kraoua et al., 2010). Similarly, unpublished data collected 

from GD3 patients followed in our Center showed that 3 out of 13 developed PME.   

The analysis of the clinical phenotype in a group of 16 GD3 patients presenting with PME , 

showed that this is not an homogeneous phenotype. In fact, many clinical features found 

among this group were quite variable including age, sex, ethnic background, degree of 

visceral, skeletal, cognitive and cerebellar involvement and MRI findings. However, a 

clinical finding shared by all patients was the slowing of the horizontal saccadic eye 

movements, a feature present in GD3 patients that was independent of the extent of non-

neurological manifestations. In addition, another finding shared among these patients was 

the abnormal EEG, often with generalized seizures. As disease progressed many of them 

developed ataxia, dementia and spasticity (Park et al., 2003).  

2.2 Molecular aspects 

Human GBA is a peripheral membrane glycoprotein. The mature non-glycosylated 

polypeptide is composed of 497 aminoacids with a molecular weight of about 56 kD while 

the glycosylated enzyme has a molecular weight of 63 kD (Leonova and Grabowski, 2000). 

The human GBA1 gene (GBA; MIM# 606463; GenBank accession no. J03059.1) of 

approximately 7.5 kb is located on chromosome 1q21 and contains 11 exons. A highly 

homologous 5.5 kb-pseudogene (GBAP; MIM# 606463; GenBank accession no. J03060.1) is 

located 16 kb downstream from the active gene (Horowitz et al.,1989). The GBA mRNA has 

two in-frame ATG translational sites located in exons 1 and 2 (Sorge et al., 1985). Both are 

efficiently translated and produce two polypeptides with signal peptides of 39 and 19 

residues, respectively (Sorge et al., 1987; Pasmanik-Chor et al., 1996). 

More than 300 mutations in the GBA gene have been reported to date, including all kinds of 

defects such as single base changes, splicing alterations, insertions, partial and total 

deletions, gene-pseudogene rearrangements (www.hgmd.org;  Stenson et al., 2003).  

Mutations N370S, 84GG, L444P, IVS2+1G>A account for 90% of mutant alleles in the Jewish 

population while they represent fewer than 75% of alleles among non-Jewish Caucasian 

patients with some differences in defined subpopulations (Beutler & Gelbart, 1993; 

Grabowski & Horowitz, 1997). In any case N370S and L444P alleles are the most prevalent 

throughout most population.  

Although, no consistent correlation between the genotype and phenotype has been found, 

some general conclusions can be drawn regarding the neuroprotective nature of the N370S 

mutation and the association between the L444P allele and the severe phenotype.  

The molecular study of the GBA1 gene in a cohort of 16 GD3 patients with PME showed also 

within this subgroup a remarkable genotype heterogeneity even among patients with 

similar clinical presentation. However, an interesting finding of this study was the fact that 

while 72% of 122 GD3 patients included in the International Gaucher Registry carry the 

p.L444P/p.L444P genotype, only one out of 16 GD3 patients with PME presented this 

genotype, suggesting that the most frequent genotype found in GD3 patients would be 

underrepresented among GD3 patients with PME. In contrast, some rare mutants were 

encountered among GD3 patients with PME. In particular three point mutations seems to be 

associated with this phenotype, the V394L, N188S and G377S, suggesting that GD3 patients 

carrying one of these mutations in the absence of the N370S mutation should be carefully 

evaluated for PME (Park et al., 2003).  
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The correlation between the presence of N188S and the occurrence of PME in GD3 patients 
has been further supported by the work of Kowarz et al. showing a high frequency of the 
N188S mutation in a series of 17 GD3 patients with PME (Kowarz et al., 2005). In addition, 
the N188S/S107L genotype was also found in a GD3 patient with visual seizures and PME 
(Filocamo et al., 2004).  
Mutation N188S was first described in Korean and Chinese Type I GD patients (Kim et al., 

1996). Later, it was demonstrated by in vitro expression experiments that the GBA protein 

carrying the N188S mutation retained a high residual enzymatic activity (67% of control, 

Montfort et al., 2004). Furthermore, the residual GBA activity found in cultured fibroblasts 

obtained from a GD3 patient with PME who presented the N188S mutation was 24% of 

control (Park et al., 2003). The reasons for this apparent discordance between the residual 

activity and the clinical phenotype are not fully understood. However, the association 

between the presence of N188S mutation and PME in GD suggests that despite the high 

residual activity the mutation might alter the protein structure, binding, post-translational 

processing or might modify the role of other proteins involved in the ethiology of the PME.  

3. Action myoclonus-renal failure syndrome (AMRF) 

AMRF (MIM 254900) is a lethal inherited form of PME associated with renal failure. It was 

initially described in French- Canadians but it has been reported in patients with various 

ethnic origins (Andermann et al., 1986; Badhwar et al., 2004). It is caused by the deficiency of 

the lysosomal integral membrane protein type 2 (LIMP-2) (Berkovic et al., 2008, Balreira et 

al., 2008), an ubiquitously expressed transmembrane protein (Fujita et al. , 1992) mainly 

found in the lysosomes and late endosomes (Fukuda, 1991), that mediates the mannose 6-

phosphate-independent targeting of GBA to the lysosomes (Reczek et al., 2007). The 

deficient activity of LIMP-2 leads to the mistarget of the GBA protein, which can not reach 

the lysosome. In fact, this condition is characterized by pathological levels of GBA activity in 

fibroblasts, normal or slightly reduced levels in leukocytes, but increased levels in plasma 

(Balreira et al., 2008; Dardis et al., 2009).   

3.1 Clinical aspects 

Clinically it presents at the age of 15-25 years with proteinuria evolving to renal failure 

and/or with neurological symptoms.  

The renal pathology is characterized by focal glomerulosclerosis and sometimes with 

features of glomerular collapse, while the main neurological symptoms are tremor, action 

myoclonus, seizures and later ataxia without intellectual impairment.  

In most ARMF patients reported until recently, the neurological and renal features 

developed simultaneously or the renal symptoms appeared first. However, mutations in the 

SCARB2 gene (encoded LIMP-2 protein) have been demonstrated in a group of five AMRF 

patients who developed neurological symptoms before the appearance of the renal 

symptoms. When neurological symptoms develop first, the renal disease begun after 3 to 11 

years and always by the age of 30 years (Dibbens et al., 2009, Dardis et al., 2009). These 

findings stressed the concept that a sorting defect of the GBA enzyme should be always 

considered in patients with PME of unknown etiology even in the absence of renal 

impairment (Dibbens et al., 2009, Dardis et al., 2009)  
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3.2 Molecular aspects 

LIMP-2 is a 478 residue type III transmembrane protein (Fujita et al., 1991) comprised of 
about 400 aminoacid luminal domain, two transmembrane domais and a cytosolic domain 
of 20 residues. It presents a highly glycosylated loop within the lysosomal lumen (Eskelinen 
et al., 2003). It has been recently demonstrated that the binding region to the GBA protein is 
located between amonoacids 145 and 288 within the luminal domain of LIMP-2 , which 
probably mediates the binding in a carbohydrate independent manner (Blanz et al., 2010). 
In humans LIMP-2 is encoded by the SCARB2 gene (NM_005506) located on chromosome 
4q13-21 (Reczek et al., 2007). To date, 12 mutations in the SCARB2 gene have been reported 
in 11 patients affected by AMRF (Berkovic et al., 2008;  Balreira at al., 2008; Dardis et al., 
2009; Dibbens et al., 2009). Among these mutations, five are located in intronic regions and 
may affect the mRNA splicing process, three are non sense, three are small deletions or 
insertions that cause a shift in the reading frame and one  is missense.  
The impact of two nonsense mutations, W178X (c.533G.A) and Q288X (c.862C.T), one 
frameshift mutation, W146SfsX16 (c.435_436insAG), and the missense mutation H363N, on 
the LIMP-2 traffiking and binding properties was analyzed in vitro. Both nonsense 
mutations and the frameshift mutation led to the synthesis of truncated proteins that were 
retained in the endoplasmic reticulum. When the interaction between these LIMP-2 mutants 
and the GBA was analyzed, it was found that while the Q288X mutant retained its binding 
capacity, the mutants W146SfsX16 and W178X, lost their ability to bind the GBA almost 
entirely.  
The H363N mutant protein was retained in the ER and its expression level was reduced 

with respect to wild-type. Unexpectedly, the H363N  mutant seems to bind GBA even more 

efficiently than wild-type LIMP-2 (Blanz et al., 2010).  

Although the number of patients affected by AMRF studied to date is quite limited it seems 

that there is no correlation between the genotype and the clinical presentation of the disease. 

Studies in large series of patients as well as longer periods of clinical follow up are needed 

to better understand the molecular bases and the phenotypic expression of this disease. 

4. Neuronal ceroid lipofuscinoses 

The neuronal ceroid lipofuscinosis (NCLs) are a group of severe progressive 

neurodegenerative diseases, which present an incidence in Scandinavian countries of 

1:12000 live births while the worldwide incidence is 1:100000 (Santavuori, 1988).  NCLs are 

caused by mutations in at least ten human genes, eight of which have been characterized  

(CLN1, CLN2 , CLN3 , CLN5 , CLN6 , CLN7 , CLN8 , CLN10 ) (Jalanko et al., 2009). Although 

they constitute a genetically heterogeneous group, they share some clinical and 

histopatological characteristics. All NCLs present a degeneration of nerve cells mainly in the 

cerebral and cerebelar cortex and the accumulation of autofluorescent ceroid lipopigments 

both in the neural and peripheral tissues. 

NCLs are considered lysosomal diseases since the ceroid lipopigments accumulate within 

the lysosomes and many proteins that are deficient in the NCLs are localized within the 

lysosomes (Futerman et al., 2004; Kyttala et al., 2006). However, the accumulated material is 

not a disease specific substrate and the main storage material is the c subunit of the 

mitochondrial ATP synthase or the sphingolipid activator proteins A and D (saposine A and 

D) (Tyynela et al., 1993; Elleder et al., 1997).  
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4.1 Clinical aspects  

Clinically, they are progressive neurological diseases characterized almost in all cases by a 

combination of retinopathy, dementia and epilepsy. They have been originally clinically 

classified according to the age at onset in four main forms: infantile (INCL), late infantile 

(LINCL), juvenile (JNCL) and adult (ANCL). However, they are currently classified on the 

bases of the genetic defect (Wisniewski et al., 2001; Haltia, 2003, Mole et al., 2005, Jalanko et 

al., 2009, Kohlschütter  & Schulz, 2009) (Table 1).  

The clinical spectrum of NCL1 includes all four forms. Patients with NCL2 can present the 

late infantile or juvenile phenotype. The late infantile presentation has been reported in 

NCL5, NCL6, NCL7, NCL 8; the juvenile presentation has been reported in NCL3 and NCL9 

and the adult phenotype has been reported in CLN4 (Table 1). 

The ultrastructural pattern of accumulated lipopigment is different in different types of 
NCL: NCL1 and NCL10 present a pattern referred as granular osmiophilic deposits 
(GROD), while NCL2 and NCL3 are characterized by the presence of curvilinear (CLP) and 
fingerprint (FPP) profiles, respectively. The other forms, NCL4, NCL 5, NCL 6, NCL 7, and 
NCL8, show a mixed combination of CLP, FPP and rectilinear profiles (RLP) (Table 1). 
Despite the wide molecular heterogeneity, the clinical findings are quite monomorfic. In 

fact, neuromotor impairment (tremor, ataxia, myoclonus, dysarthria, speech loss), ocular 

involvement (pigmentary retinal degeneration, optic atrophy, blindness), myoclonic 

epilepsy, progressive mental deterioration and behavior modifications are common clinical 

signs shared by all forms of NCLs. The main clinical signs and symptoms are summarized 

in table 1. 

 

NCL Clinical 
phenotype 

Storage 
pattern 

Clinical  signs 
 

NCL1 
 

ICLN 
 
LINCL/JNCL 
 
ANCL 

GROD 

muscular hypotonia, growth impairment, 
psychomotor deterioration, ataxia, myoclonic jerks, 
seizures, retinal blindness, microcephaly. 
ataxia, myoclonic jerks, seizures, vision 
deterioration, mental deterioration. 
ataxia, parkinsonism, verbal impairment, 
pigmentary retinopathy, tunnel vision, depression, 
hallucinations, mental deterioration  

NCL2 LINCL/JNCL CLP 
spasticity, ataxia, myoclonus, seizures, optic 
atrophy, rapid mental deterioration,  dementia; no 
vaculated lymphocytes 

NCL 3 
(Batten 
disease) 

JNCL FPP 

motor deterioration, dysarthria, parkinsonism, 
myoclonus, seizures, pigmentary retinopathy, optic 
atrophy with rapid visual loss, early mental 
deterioration 

 
NCL4  
 

ANCL  

motor deterioration, athetoid movements, 
myoclonic epilepsy (in type A), tonic-clonic 
seizures, hearing impairment, mental deterioration, 
dementia, psychosis, stupors.  
No visual impairment (generally). 
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NCL Clinical 
phenotype 

Storage 
pattern 

Clinical  signs 
 

NCL5 
(Finnish 
variant) 

LINCL 
CLP, 
FPP 

loss of strength, tremor, language deterioration, 
ataxia, myoclonic epilepsy, visual failure, blindness, 
behavioral changes, mental retardation.   
Rapid disease progression 

NCL6 LINCL 
RLP, 
FPP 

ataxia, myoclonic jerks, seizures, vision 
deterioration, mental deterioration 

NCL 7 
 

LINCL 
RLP, 
FPP 

axial rigidity, hesitation in movement initiatio, 
coarse postural tremor, myoclonus, speech 
impairment, loss of vision, aggressive behaviour, 
memory impairment, mental deterioration   

NCL8 LINCL CLP 

motor impairment, myoclonus, seizures, speech 
impairment, loss of vision, behavioral changes, 
mental deterioration 
Northern epilepsy variant: progressive epilepsy with 
generalized tonic-clonic seizures, mental 
deterioration; No visual involvement 

NCL9 JNCL  
declining vision, ataxia, seizures, motor and 
language impairment, cognitive decline 

NCL10 

LINCL  
 
 
Congenital  

GROD 

ataxia, loss of motor functions at early school age 
progressive cognitive decline, loss of speech;, 
pigmentary retinopathy, retinal atrophy, rigidity, 
tremor,status epilepticus, apnea, microcephaly, 
precocious death 

INCL: infantile, LINCL: late infantile, JNCL:  juvenile, ANCL: adult, GROD: granular osmiophilic 
deposits; CLP: curvilinear profiles; FPP: fingerprint profiles; RLP: rectilinear profiles. 

Table 1. NCLs classification, age at onset, storage pattern and clinical signs. 

As other neurodegenerative disorders, which manifest during the first year of life, 
generalized hypotonia and psychomotor regression are the first clinical signs of classic 
INCL. They are generally accompanied by head growth impairment (leading to 
microcephaly), seizure and myoclonic jerks. Behavior and sleep disturbance are frequently 
reported. Disease progression leads to visual and language deterioration. Death usually 
occurs within the first decade of life (Williams et al., 2006). 
The late-infantile forms present with a similar clinic phenotype, showing progressive 
neurological deterioration during pre-school age. The classical late-infantile form of NCL2, 
generally begins during the second year of life, with slow cognitive regression and language 
deterioration. Epilepsy appears later, becoming rapidly intractable and accompanied with 
cognitive loss, myoclonic jerks and retinopathy. Patient autonomy is completely lost within 
the age of 6-8 and death occurs within adolescence period (Zhong et al., 2000; Steinfeld et al., 
2002; Kohan et al., 2009). 
Two major distinct phenotypes have been described for classical juvenile phenotype of 

NCL3 (Batten disease), according to the patient’s genotype: a. patients carrying the 1-kb 

deletion in homozygous, (firstly described in Finland and Northern Europe), and b. patients 

carrying a compound of 1-kb deletion with other mutations (Munroe et. al., 1997). 
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In homozygous patients, visual impairment represent the onset sign, appearing during the 

first school years, with a pigmentary retinopathy; frequently a first diagnosis of retinitis 

pigmentosa or cone dystrophy is made. Often the cognitive skills are normal until teenage 

period, with subsequent deterioration and development of generalized or partial epilepsy, 

responsive to therapy. Behavior becomes aggressive; mood disturbance and psychotic 

symptoms are present. With disease progression, motor skills regress as well as speech 

articulation and parkinsonism and myoclonus become prominent. 

In compound heterozygous patients, visual impairment is also the first accused symptom, 

but cognitive and motor deterioration are less pronounced and slower. Some patient have 

been reported as completely free from motor and cognitive signs (Lauronen et al. 1999,  

Jarvela et al. 1999). 

Adult phenotypes are described in NCL1 and in the very rare form of NCL4 (Kukfs disease) 

(Martin, 1991; Ruchoux  & Goebel, 1996). In the NCL1 patients, neurological and mental 

degeneration, depression, retinal and optic atrophy have been described, while the ocular 

involvement is not present in NCL4.  

Absence of visual impairment, has also been reported in NCL8. This form comprises a 

subgroup of patients (described as Northern Epilepsy Variant) who develop generalized 

tonic-clonic epilepsy during early school age, followed by progressive mental retardation. 

With ageing epilepsy severity decreases but cognitive deterioration is maintained. Survival 

may last to fifth-sixth decade (Herva et al., 2000) . 

Finally, a rare congenital form of NCL has been described in NCL10 (Siintola et al., 2006). 

Clinical course is characterized by microcephaly and severe neurological involvement 

(rigidity, tremor, status epilepticus) in the first hours of life. Respiratory insufficiency and 

apnea crisis follow with precocious death (generally within the first weeks of life). 

Electrophysiological exams (EEG, ERG,VEP, ABR, SSP) show a wide spectrum of 

abnormalities in the different phenotypes (Topçu et al., 2004; Weleber et al., 2004; Caraballo 

et al., 2005; Collins et al., 2006). While brain imaging studies show a variable degree of 

cerebral and cerebellum atrophy accompanied with abnormalities in the signal pattern of 

the periventricular white matter and other brain areas (thalami, basal ganglia and putamen) 

(D'Incerti , 2000; Santavuori et al., 2001; Vanhanen et al., 2004). 

4.2 Molecular aspects 

NCLs are caused by mutations in at least 10 different recessively inherited human genes. 

Eight of them have been identified.  These genes encode soluble or transmembrane proteins 

localized to the endoplasmic reticulum (ER) or the endosomal/lysosomal organelles.  

The genes involved in the NCLs, their chromosomal localization, the encoded proteins and 

the storage materials are summarized in table 2.  

The human CLN1 gene has been located to chromosome 1p32 and encodes a palmitoyl 

protein thioesterase (PPT1), an enzyme that removes palmitate residues from proteins (Vesa 

et al., 1995). The enzyme consists in a 306 aminoacid polypeptide including a N-terminal 

signal sequence which is cleaved cotraslationally. Overexpressed PPT1 is directed to late-

endosomes/lysosomes via mannose-6-pèhosphate receptor (M6PR) mediated pathway in 

non neuron cells (Verkruyse & Hofmann, 1996; Hellsten et al., 1996). It has not been 

demonstrated that this pathway is utilize to target the PPT1 in neurons. However, PPT1 has 

been found as part of the human brain mannose 6-phosphoproteasome ( Sleat et al., 2005).   
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Most NCL1 patients accumulate autofluorescent lysosomal deposits, consisting mainly in 
sphingolipids activation proteins A and D.  
In neurons palmitoylation targets proteins for transport to nerve terminals and regulates 
trafficking at synapses (Huang et al., 2005). It is worth of note that PPT1 has been detected in 
non lysosomal compartments such as cells soma, varicosities and presynaptic terminals  
(Lehtovirta et al., 2001; Ahtiainen et al., 2003). 
 

Gene Chromosome Protein Main storage material 

CNL1 1p32 palmitoyl protein 
thioesterase 
(PPT1), lysosomal 
enzyme 

Saposins A and D 

CNL2 11p12 ripeptidil 
peptidase 1 
(TPP1), lysosomal 
enzyme 

Subunit c of ATP synthase 

CNL3 16p12 CNL3, lysosomal 
transmembrane 
protein 

Subunit c of ATP synthase 

CNL5 13q21-q32 CNL5, lysosomal 
soluble protein 

Subunit c of ATP synthase 

CNL6 15q23 CNL6, 
transmembrane 
ER protein 

Subunit c of ATP synthase 

CNL7 4q28.1-q28.2 CNL7, lysosomal 
transmembrane 
protein 

Subunit c of ATP synthase 

CNL8 8p23 CNL8, 
transmembrane 
ER protein 

Subunit c of ATP synthase 

CNL10 11p15.5 CTSD, cathepsin 
D, lysosomal 
enzyme 

Saposins A and D 

Table 2. NCL genes, localization, encoded proteins and storage materials (Jalanko & 
Braulke, 2009) 

To date, 48 disease causing mutations distributed throughout the entire CLN1 gene have 
been described (http://www.ucl.ac.uk/ncl) , most of them have been found in individual 
families. The only exception is represented by the missense mutation (c.364A>T, R122W), 
which has been found in most Finnish families. Most mutations cause the severe infantile 
form of NCL (MIM256730). However, mutations causing late infantile, juvenile and adult 
form have also been reported. No clear correlation between the phenotype and the genotype 
has been demonstrated (Das et al., 1998; Mitchison et al., 1998; van Diggelen et al., 2001; 
Williams et al., 2006). 
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The human CLN2 gene has been located to chromosome 11p12 and encodes the CLN2 
protein tripeptidil peptidase 1 (TPP1)  (Sleat et al., 1997), a lysosomal hydrolase that 
removes tripeptides from the N-terminus of small polypeptides (Golabek et al., 2006) such 
as the subunit c of mitochondrial ATP synthase. TPP1 consists in a 563 aminoacids, which 
includes a 19 aminoacid signal peptide and a 176 aminoacid prosegment that is 
autocatalytically cleaved within the lysosomes (Golabek et al., 2003). It is transported to the 
lysosomes in a M6PR-dependent manner (Chang et al., 2008).  
The storage bodies contain mainly the subunit c of mitochondrial ATP synthase and to a less 
extent saposin A and D. 
To date, 72 disease-causing mutations have been reported (http://www.ucl.ac.uk/ncl) 
leading to the classic late infantile NCL or Jansky-Bielschowsky disease (MIM 204500). 
Among them, the splice site mutation c.509-1G>C and the nonsense mutation c.622C>T  
(R208X) are quite frequent (Mole et al., 2005) and they result in very similar phenotypes.  
The human CLN3 has been located to chromosome 16p12 and encodes an integral 
membrane glycoprotein of 438 aminoacids (International Batten Disease Consortium, 1995). 
It possesses six transmembrane domains and the glycosilation varies in different tissues 
(Ezaki et al., 2003; Storch et al., 2007). Overexpressed CLN3 protein is localized in the 
lysosomes in non neuronal cells while it is detected in the endosomal/lysosomal structures 
and in the synaptosome in neurons (Kyttala et al., 2004; Luiro et al., 2001). In addition, CLN3 
protein  has also been detected in the plasma membrane and in lipid rafts (Rakheja et al., 
2004; Rusyn et al., 2008). Many different functions have been attributed to CLN3 protein, 
including lysosomal acidification (Holopainen et al., 2001), lysosomal import of basic 
aminoacids (Kim et al., 2003), autophagy (Cao et al., 2006), membrane fusion, vesicular 
transport, , cytoskeletal organization (Brooks et al., 2003; Luiro et al., 2006) and apoptosis 
(Persaud-Sawin & Boustany, 2005;  Wang et al., 2011).  
The storage deposits contain mainly subunit c of the mitochondrial ATP Synthase (Lake & 
Hall, 1993). NCL3 is the only NCL typified by vacuolated lymphocytes (Mole et al., 2005) 
So far, 49 disease causing mutations have been described in the CLN3 gene 
(http://www.ucl.ac.uk/ncl), causing the juvenile NCL or Batten disease (MIM 204200). 
Many patients present the ancestral 1 kb deletion mutation, which results in the deletion of 2 
exons. This mutation is predicted to produce an inactive truncated protein. However, it has 
been recently proposed that this mutated protein may retain some degree of residual 
function (Kitzmuller at al, 2008). 
The human CLN5 gene has been located to chromosome 13q21-q32 and encodes a 407 
aminoacid polypeptide. Sequence analysis shows the presence of four initiation methionines 
and the production of four different polypeptides with a molecular weight ranging  from 39 to 
47 kDa has been described (Vesa et al., 2002). The human CLN5 contains mannose-6-
phosphate residues on high-mannose type oligosaccharides, suggesting that at least some 
variants would be soluble. (Sleat et al., 2006). Overexpressed protein is localized to lysosomes, 
however it has also been detected in axons in neuronal cells (Holmberg et al., 2004). It has been 
demonstrated that CLN5 interacts with both NCL2 and NCL3 (Vesa et al., 2002).  
The main storage component in NCL5 patients is the subunit c of the mitochondrial ATP 
Synthase (Tyynela et al., 1997). 
Mutations in the CLN5 gene cause the Finnish variant form of late infantile NCL (MIM 
256731). Twenty seven mutations have been reported to date (http://www.ucl.ac.uk/ncl). A 
frequent mutation consists in a 2bp deletion in exon 4 (c.1175delAT) and has been found in 
94% of Finnish NCL5 alleles.  
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The human CLN6 gene has been located to chromosome 15q23 and encodes a 311 amoniacid 
non glycosilated membrane protein. It is localized in the ER and in neuronal cells it is 
additionally found along neural extension in subdomains of a tubular ER network. It 
contains a N-terminal cytoplasmic domain, seven putative transmembrane domains and a 
C-terminal luminal domain (Heine et al., 2004; Mole et al., 2004). 
The main storage component in NCL6 cells is the subunit c of the mitochondrial ATP 
Synthase (Elleder et al.., 2006). 
Forty six disease mutations have been described to cause a late infantile variant of NCL 
(MIM601780) (http://www.ucl.ac.uk/ncl). The nonsense mutation c.214G>T (p.E72X) has 
been demonstrated to be highly frequent in patients from Costa Rica probably due to 
founder effect (Gao et al, 2002; Wheeler et al., 2002). 
The human CLN7 gene has been recently located to chromosome 4q28.1-q28.2 and encodes a 
transmembrane protein of 518 aminoacids. The CLN7 protein belongs to the major facilitator 
superfamily (MFS), which transport specific substrates. However, its specific substrate has 
not been identified yet (Kasho et al., 2006). Overexpressed CLN7 is located in lysosomes 
(Siintola et al., 2007).  
Mutations in the CLN7 gene cause a variant late infantile NCL (MIM610951). Twenty-three 
disease-causing mutations have been described to date (http://www.ucl.ac.uk/ncl). 
Mutations in CLN7 gene have been initially described in Turkish patients (Siintola et al, 
2007) and therefore it has been considered the Turkish variant late infantile NCL. However, 
it has been recently shown that CLN7 defects are geographically widespread (Aiello et al., 
2009; Aldahmesh et al., 2009; Stogmann et al., 2009;  Kousi et al., 2009). The missense 
mutation c.881C>A (p.T294K) was found in most patients of Romany origin previously 
studied by Elleder et al. (Elleder et al., 1997). Haplotype analysis of these patients was 
consistent with the existence of a common founder effect (Kousi et al., 2009). 
The human CLN8 gene has been located to chromosome 8p23 (Ranta et al., 1999). It encodes 
a non glycosylated membrane protein of 286 aminoacids. The CLN8 protein belongs to the 
TRAM-Lag1p-CLN8 (TLC) family. Members of this family are involved in the biosynthesis, 
metabolisms, transport and sensing of lipids (Winter & Ponting, 2002). However, the 
function of the CLN8 is not known. 
The overexpressed protein has been localized in the ER but it seems to shuttle between ER 
and the ER-Golgi intermediate complex (ERGIC) (Lonka et al., 2000). The storage material in 
NCL8 patients consists mainly in the subunit c of the mitochondrial ATP Synthase.  
Sixteen mutations in the CLN8 gene have been reported to date 
(http://www.ucl.ac.uk/ncl). They have been identified in Finnish families with Northern 
Epilepsy (Ranta et al., 1999) and in patients of other ethnic origins affected with a more 
severe variant of NCL (Ranta et al., 2004; Cannelli et al., 2006; Vantaggiato et al., 2009; Kousi 
et al., 2009; Reinardt et al., 2010; Zelnik et al., 2007; Mole et al.,  2005) . All but one Finnish 
patient present the missense mutation c.70C>G (p.R24G)in homozygous, suggesting that 
this mutation would be associated to a protracted and atypical NCL (Ranta et al., 1999). 
The human CLN10 gene has been located to chromosome 11p15.5 and encodes the major 
lysosomal aspartic protease cathepsine D (CTSD). The CLN10 protein consists in 412 
aminoacids and it is synthesized as a preproenzyme, which becomes posttranslationally 
modified by glycosilation and proteolysis leading to intermediates and mature forms 
(Gieselmann et al., 1985). Depending on the cell type it is trafficking to the lysosomes as a 
M6PR dependent or independent manner (Dittmer et al., 1999). CTSD is involved in limited 
proteolysis in the lysosomes and several proteins function as CTSD substrates, including 
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prosaposin that can be cleaved to saposins A, B, C and D (Gopalakrishnan et al., 2004). Most 
patients accumulate autofluorescent lysosomal deposits with GRODs. 
Only four disease-causing mutations have been described to date (http://www.ucl.ac.uk/ncl). 

5. Sialidosis  

Sialidosis (MIM#256550) is a LSD caused by the inherited deficiency of the lysosomal 

enzyme alpha-N-acetyl-neuraminidase-1 (NEU1), which cleaves the terminal sialic acid 

residues of several oliogosaccharides and polypeptides.  

Therefore, the deficiency of NEU1 leads to the accumulation of sialic acid (N-

acetylneuraminic acid) covalently linked to oligosaccharides and/or glycoproteins. This 

aspect distinguishes sialidoses from sialurias, in which the neuraminidase activity is normal 

or elevated with a storage and excretion of 'free' sialic acid, rather than 'bound' forms.   

5.1 Clinical aspects  

A systematic classification of Sialidosis has been provided by Lowden and O’Brien in 1979, 

who divided them in two main clinical variants: Type I, the milder form of the disease, 

which lacks the physical changes (normosomatic) and Type II, a more severe form with an 

earlier onset, which can be subdivided in 2 different phenotypes:  congenital/neonatal and 

juvenile forms.  

Patients affected with type I sialidosis, (normomorphic or 'cherry-red-spot, myoclonus 

syndrome’), generally manifest first clinical signs during school-age period or early 

adulthood. Progressive reduction of visual acuity, red-green and night blindness, bilateral 

cherry-red spots, punctate corneal opacity and nistagmus, are prominent symptoms.  Ocular 

involvement is accompanied or followed by the appearance of motor impairment, with 

walking difficulties and myoclonus. Same cases may present seizures. In contrast with type 

II forms, these patients generally do not present dysmorphisms or bone dysplasia and they 

have a normal intelligence. Survival is usually long.  

Type II congenital sialidosis  may manifest in utero with foetal hydrops or foetal ascites 

while the neonatal form is characterised by diffused edema, hepatosplenomegaly, ascites 

and Hurler’s like clinical signs: facial dysmorphisms, umbilical and inguinal hernias,  short 

trunk with a prominent sternum, kyphosis, and dysostosis multiplex (Froissart et al., 2005). 

Severe dysmrphisms (coarse facies, pectus carinatum, short trunk, exaggerated toracic 

kyphosis, and wadding gait) as well as growth delay characterize also infantile phenotypes, 

cherry-red spot, corneal opacity, hearing loss, progressive neurodegeneration and cognitive 

deterioration with myoclonic seizures. Skeletal imaging shows dysostosis multiplex with 

vertebral abnormalities and generalized osteoporosis. Renal involvement, nephrosialidosis, 

may be present in some patients with proteinuria evolving to nephrotic syndrome (Okada et 

al., 1983). 

Juvenile onset is charactrized by less pronounced dysmorphic signs with muscular 

hypotonia and hypotrophy, ataxia, and myoclonic seizures. Cherry-red spots and corneal 

opacities are constantly present, as well as hearing loss. Pyramidal syndrome with cerebellar 

anomalies  and peripheral neuropaty have been described. Mental retardation is costant. 

Survival rarely exceed the second, third decade of life (Winter et al., 1980; Caciotti et al., 

2009; Canafoglia et al., 2011). 
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5.2 Molecular aspects  

The human NEU1 gene (Gen Bank AF040958) has been located to chromosome 6p21.3 
within the region of the major histocompatibility complex (Bonten et al., 1996; Pshezhetsky 
et al., 1997). It contains 6 exons and spans approximately 3.5 kb of genomic DNA (Milner et 
al., 1997). 
The NEU1 gene encodes a protein of 415 aminoacids including a signal sequence, a central 

hydrophobic core and a more polar c-terminal domain (Bonten et al., 1996). After the removal 

of the signal peptide and glycosilation the protein would have a molecular mass of 45 kD. In 

fact, western blot studies have demonstrated the presence of two major bands of 44 -45 kD 

which yielded a 40 kD protein after de-glycoslation (Bonten et al., 1996). NEU1 exists as a 

multienzyme complex with at least two other proteins,-galactosidase and the protective 

protein/cathepsin A (PPCA) (d’Azzo et al., 2001). The association with PPCA is necessary for 

its enzymatic activity.  The association with PPCA stabilizes the active conformation of NEU1 

in lysosomes. Moreover, since NEU1 is poorly mannose 6-phosphorylated, it depends on 

PPCA for its correct compartmentalization and catalytic activation in lysosomes (van der Spoel 

et al., 1998; van der Spoel et al., 2000; Yamamoto et al., 1987).  

About 45 different mutations in NEU1 gene have been reported to date 

(http://www.hgmd.org/). Almost all of them have been found in single families and most 

of them are missense mutations. Bonten et al. have studied the impact of some missense 

mutations on NEU1 protein distribution and catalytic activity and they classified these 

mutant proteins in 3 groups: 1-catalytically inactive and not lysosomal; 2-catalytically 

inactive and lysosomal and 3-catalytically active and lysosomal. A good correlation between 

the residual activity of mutant proteins and the severity of the disease has been found. In 

fact, patients with the severe type II infantile form presented mutations from group 1 while 

those with a mild form of type I disease had at least one mutation from group 3. Mutations 

from group 2 were found mainly in patients with the juvenile form of type II sialidosis with 

an intermediate phenotype (Bonten et al., 2000). 

6. Niemann pick type C (NPC) disease 

Niemann Pick type C (NPC) disease (NPC1, MIM 257220; NPC2, MIM 607625) is an 
autosomal recessive neurodegenerative lysosomal storage disorder, caused by the abnormal 
function of NPC1 or NPC2 protein. Both proteins are involved in the intracellular trafficking 
of cholesterol and other lipids. The deficiency of either of them leads to the accumulation of 
the endocytosed unesterified cholesterol within the lysosomes (Patterson et al., 2001).  
Endocyted low density lipoproteins are delivered to the late endosomes/lysosomes where 

they are hydrolized. In normal cells, free cholesterol is transported to the plasma membrane 

or to the endoplasmic reticulum through the action of NPC1 and NPC2 proteins. In NPC 

cells cholesterol accumulate within the lysosomes and the subsequent induction of all low-

density lipoprotein cholesterol-mediated homeostatic responses, including cholesterol 

esterification, is compromised.  

In addition NPC-deficient cells also accumulate gangliosides and other GSLs. These findings 

show that the defect in NPC cells encompasses a global transport error. In fact, while 

unesterified cholesterol is the main lipid accumulated in peripheral tissues, GM3, GM2 and 

glucosylceramide are the mayor lipids accumulated in brain of NPC patients (Zervas et al., 

2001a).  

www.intechopen.com



 
Novel Aspects on Epilepsy 

 

 

234 

Approximately 95% of NPC patients present mutations in NPC1 gene (MIM 607623) 

(Carstea et al., 1993; Vanier et al., 1996) , while the other 5% of patients present mutations in 

NPC2 gene (MIM 601015) (Naureckiene et al., 2000)  

The incidence of NPC disease has been difficult to assess. Estimates of incidences ranging 
from 0,66 to 0,83 per 100000 were proposed for France, UK and Germany based on the 
diagnoses made over a period 1988-2002. This incidence is probably underestimated since 
the wide clinical spectrum of NPC disease was not recognized until the early 90’s and no 
specific laboratory testing was available until the mid 80s. A probably more realistic 
incidence of 0,96/100000 was recently calculated considering the total amount of cases 
diagnosed in France from 2000-2009 (including prenatal cases from terminated pregnancies) 
vs the number of birth during the same period. However, this data is likely to be still 
underestimated due to the presence of atypical phenotypes that may not be recognized, in 
particular among adult patients (Patterson, 2001; Vanier and Millat, 2003). 

6.1 Clinical aspects 

Clinically, NPC disease presents a highly variable phenotype ranging from fetal to adult 
age. It is classically a neurovisceral condition, characterized by liver and/or spleen 
enlargement, and neurological or psychiatric manifestations.  Systemic disease, when 
present, always precedes the neurological symptoms. However, it is absent in about 15% of 
patients and in about half of the adult onset patients (Vanier 2010). 
It is important to point out that the course of the systemic signs  is independent of that of the 

course of the neurological symptoms and that disease progression and lifespan are always 

correlated with the age at onset of the neurological symptoms.   

Even if initial manifestations may be systemic, neurological, or psychiatric, the disease has 
been classified according to the age at onset of neurological symptoms. Although the 
neurological forms of the disease may be considered as a continuous of phenotypes, the 
disease has been classically classified in a severe infantile form (onset before 2 y of age), a 
late infantile form (onset between 3-5 y of age), a juvenile form (onset between 5 and 16 y) 
and an adult form (onset at age>16 y) (Patterson et al., 2001; Vanier & Millat, 2003). 
A perinatal form of NPC has also been described. This form is characterized by the presence 

of prolonged neonatal cholestatic icterus, appearing within the first weeks of life and often 

associated with progressive hepatosplenomegay (Kelly et al., 1993; Vanier et al., 1998; 

Yerushalmi et al., 2002). In most cases, the icterus spontaneously resolves at 2-4 month of 

age while the hepatosplenomegaly remains for a variable period. In about 10% of patients 

the icterus worsens leading to liver failure and dead within the first 6 month of age (Vanier 

et al., 1998). Some patients, in particular those presenting mutations in NPC2 gene, may 

present with hepatosplenomegay in association with a severe respiratory insufficiency, 

which in most cases is fatal. It is important to note that NPC patients do not present 

neurological symptoms during the neonatal period. However, an important observation to 

consider during the genetic counseling is the fact that in many cases patients who die during 

the perinatal period have siblings affected with the infantile or juvenile neurological form 

(Vanier & Susuki, 1998; Vanier and Millat, 2003).  

Patients affected with early infantile form (3 month to < 2 years) almost invariable present 
with isolated hepatosplenomagaly during the first month of age followed by delay of 
development motor milestones, which presents at around 8-9 month of age,  and central 
hypotonia. Subsequent clinical course includes loss of acquired motor skills, spasticity with 
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pyramidal tract involvment, hearing loss (Wraith et al., 2009). Seizures are uncommon in 
these patients and they usually die during the first 5 years of age (Vanier 2010). 
In late infantile forms (2 to <6 years), hepatosplenomegaly is usually present. Language 

delay is frequent and these children often present gait problems, frequent falls and 

clumsiness. Cataplexy is quite frequent and vertical supranuclear gaze palsy (VSGP) is 

usually present but it may not be recognized at this early stage. Progressive ataxia is 

followed by dystonia, dysphagia, dysarthria and central hypotonia. Hearing loss has been 

described (Wraith et al., 2009; Vanier 2010). A significant proportion of patients develop 

seizures, partial, generalized or both. In general these patients respond to standard 

antiepileptic treatment but some cases may be refractory to therapy. Severe epilepsy has a 

bad prognosis and shortens the lifespan of patients. As disease progress patients develop 

pyramidal signs, spasticity and swallowing problems. In most cases patients die between 7 

to 12 years of age (Vanier 2010). 

The juvenile form (6 to 15 years is in many countries the most frequent form of the disease. 
Moderate splenomegaly or hepatosplenomegaly is frequently present and may have been 
detected at early time. However, in at least 10% of the cases organomegaly is not present. 
School failure, learning disability and behavioral problems are the most common signs. 
VSGP is almost invariabile present and may be the first sign. As the disease progress the 
children present frequent falls, clumsiness and develop progressive ataxia, dysarthria, 
dystonia, dysphagia.  Cataplexy and myoclonus are other common symptoms. About half of 
the patients with this form develop seizures (partial and/or generalized). At late stage 
patients develop Pyramidal signs, spasticity and swollowing problems (Wraith et al., 2009; 
Vanier 2010).  
Even if during the last years many patients affected with the adult form (>15 years) of the 
disease have been reported, this diagnosis has been probably underestimated. 
Organomegaly or isolated splenomegaly are rare in adult patients and VSGP is usually 
present. The most common clinical presentation is similar to that of a juvenile form but 
attenuated. However, it is worth of note that about one third of patients present with 
psychiatric signs that may appear several years before the onset neurological symptoms. 
During this period the neurological examination may be normal. Among the psychiatric 
signs, paranoid delusions and auditory or visual hallucinations are the most commonly 
described. Other psychiatric signs that may be present in these patients are depressive 
syndrome, behavioral problems with aggressiveness, social isolation, bipolar disorders, 
obsessive compulsive disorders. Epilepsy is not very common in this group of patients 
(15%) and the course is similar to that in the juvenile form (Vanier 2010). 

6.2 Molecular aspects 

As mentioned above, two disease-causing genes, NPC1 (NM000271) and NPC2 (NM006432) 
have been identified (Steinberg et al., 1994; Vanier et al., 1996 ; Cartsea et al., 1997).  About 
95% of human NPC disease is caused by mutations in the NPC1 gene (Naureckiene et al., 
2000). NPC1 gene, located on chromosome 18q11-q12, encodes a large membrane glycoprotein 
of 1278 aminoacids containing 13 transmembrane domains and located predominantly in late 
endosomes (Davies & Ioannou, 2000).  It presents a sterol sensing domain (SSD), which shows 
extensive homology with the sterol sensing domains (SSD) found in SREBP cleavage activating 
protein (SCAP) and 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase, two 
cholesterol regulated proteins. The SSD domain appears to have important functional 
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significance (Watari, et al., 1999). Two luminal functional important domains have been 
identified: a cysteine-rich loop with a ring-finger motif which harbours about 1/3 of the 
mutations described in patients and a highly conserved N-terminal domain with a leucine 
zipper motif which has been shown to possess a cholesterol-binding domain (Davies & 
Ioannou, 2000). In fact, it has recently been demonstrated that  a water soluble fragment of 
NPC1 is able to bind  cholesterol and oxysterols (Infante et al., 2008a; Infante et al., 2008b). The 
mature NPC1 protein has 14 potential glycosilation sites and shows a size of 170 and 190 kDa 
NPC2 gene is mapped to chromosome 14q24.3 and encodes a small soluble protein present 
in the lumen of the lysosomes (Naureckiene et al., 2000, Vanier & Millat 2004). 
It possess a hydrophobic pocket that has the property to bind cholesterol (Vanier & Millat, 
2004). 
Although it is well known that NPC1 and NPC2 participate together in mediating the egress 
of cholesterol from endo/lysosomes, the precise mechanism by which these proteins 
function is not fully understood. It has been demonstrated that a water soluble fragment of 
NPC1 binds cholesterol in an orientation opposite to NPC2. Based on these results, the 
following working model was proposed to explain the egress of cholesterol derived from 
receptor mediated endocytosis of LDL from lysosomes: after liberation from LDL, 
cholesterol is bound by NPC2 which carries it to the lysosomal membrane, where it transfers 
to the N-terminal domain of the membrane bound NPC1 (Kwon et al., 2009).  
The mutational spectrum of NPC1 gene is very heterogeneous and to date more than 290 

mutations have been reported (http://npc.fzk.de/; Runz et al., 2008). Among them, the 

mutant allele I1061T is quite frequent in Western Europe and US (Millat et al. 1999, Sun et al. 

2001, Park et al. 2003) where it accounts from 20-25% of the alleles. However, it seems to be 

much less frequent in Italy and Spain (Fernandez- Valero et al., 2005; Fancello et al., 2009; 

Macias-Vidal et al., 2010), suggesting that there is a gradient of increasing frequency of the 

p.I1061T mutation from southeast to northwest Europe.  

Two other relatively frequent mutations, p.P1007A and p.G992W, have been reported to be 

associated to the biochemical “variant phenotype” (see section 9), characterized by a milder 

cholesterol trafficking impairment. The p.G992W mutation is typical of patients from Nova-

Scotia but it has been found in patients from other origins (Millat et al., 2001; Ribeiro et al., 

2001; Fernandez- Valero et al., 2005; Fancello et al., 2009 ).  

Phenotype-genotype correlation studies are quite difficult to perform due to the very limited 

number of patients carrying the same genotype. However, some general consideration can 

be made. It has been shown that the genotype correlates with the neurological form of the 

disease and not with the systemic manifestations.  While a good correlation has been found 

between the nonsense or frameshift mutations and the more severe infantile form of the 

disease, the phenotype is more variable in patients carrying missense mutation. However, 

the presence of missense mutations in the sterol sensing domain of the protein correlates 

with the more severe form of the disease.  

 It has been proposed that in the homoallelic state mutation I1061T is associated with a 

severe impairmet of cholesterol trafficking and correlates with the juvenile neurologic form 

of the disease, while in the heteroallelic state, the final phenotype depends on the mutation 

present in the second allele but until recently it had never been found in the severe infantile 

neurologic form. However, a study performed in a Spanish cohort of 30 patients affected 

with NPC has demonstrated the presence of the p.I1061T mutation in homozygosis in a 

patient affected with the severe infantile form (Macias-Vidal, 2010). 
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So far, only 19 mutations have been reported in the NPC2 gene. Among them the most 
frequent mutation is the p.E20X. A good correlation between the severity of the mutation 
and the clinical course of the disease has been found.  
Most reported patients affected with mutations in the NPC2 gene presented a very severe 

fatal form of the disease leading to dead within the first years of life. Only few patients 

presenting a slower disease progression and a longer survival have been described so far 

(Klunemann et al., 2002; Millat et al., 2001; Millat et al., 2005). 

7. GM2 gangliosidosis 

GM2 gangliosidoses are a group of recessive disorders characterized by accumulation of 

GM2 ganglioside in neuronal cells due to the deficient activity of human ┚-hexosaminidases 

(┚-N-acetylhexosaminidase, EC3.2.1.52, Hex), ysosomal hydorlases that cleave the terminal 

N-acetylhexosamine residues from GM2 gangliosides bound to the GM2 activator protein. 

Two major isoenzymes exist: Hex A consisting of one ┙ and one ┚ subunit encoded by 

HEXA and HEXB genes, respectively, and Hex B consisting of two ┚ subunits. In vivo, the 

GM2/GM2 activator complex is a substrate only for the Hex A isoenzyme. Mutations in 

either HEXA or HEXB genes or in the GM2A gene (that encodes for the GM2 activator 

protein) result in GM2 gangliosidosis.  
In particular, mutations in the HEXA gene cause Tay Sachs disease (TSD; MIM 272800), 
characterized by deficiency of Hex A activity, while mutations in the HEXB gene lead to 
Sandhoff disease (SD; MIM 26880), characterized by combined deficiency of Hex A and Hex 
B activities. On the other hand, mutations in the GM2A gene cause GM2 activator deficiency, 
characterized by normal Hex A and Hex B activities but the inability to form a functional 
GM2/GM2 activator complex. Only few patients with a defect in the GM2A gene have been 
reported whereas most patients affected by GM2 gangliosidosis present mutations in HEXA 
or HEXB genes.  
While SD disease is panethnic, the incidence of TSD is about one in 3600 Ashkenazi Jewish, 
corresponding to a carrier frequency of 1 in 30. Among Sephardic Jews and all non-Jews, the 
disease incidence has been observed to be about 100 times less common, corresponding to a 
tenfold lower carrier frequency (between 1/250 and 1/300).  

7.1 Clinical aspects  

The clinical phenotypes associated with each biochemical variant vary widely from the 

infantile onset of rapidly progressive neurodegenerative forms, leading to death before the 

fourth year of life, to the later onset forms, a progressive neurological condition compatible 

with survival into childhood or long survival (Gravel et al., 2001) 
For TSD, three main phenotypes have been identified: classic infantile, juvenile and chronic 
or adult forms. Signs of the classic infantile TSD are generally evident within the first 
semester of life. In general noise hypersensitivity with startle response precedes 
psychomotor retardation, generalized hypotonia, growing of head circumference leading to 
macrocephalia, amurosis and myoclonic epilepsy. Cherry red spots may be present at 
funduscopic examination. The peripheral organs are spared from storage process. Disease 
progression leads to a very severe neurological degeneration until decerebration state. The 
juvenile form has a later onset, generally between the age of 2-6 years, presenting with 
behavior modifications and progressive cognitive impairment. Ataxia become evident and 
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the disease progresses to decerebrate rigidity. Unlike classic form, blindness is not 
obligatory. Death occurred between ages 5 and 15 years. Finally, in the adult phenotype the 
disease may be silent for a prolonged period, becoming evident during school-age. 
However, the diagnosis may be delayed until adulthood. Clinical presentation is variegated, 
some patients present with symptoms of atypical Friedreich ataxia, while in others a clinical 
picture suggestive of Kugelberg-Welander phenotype (progressive leg weakness and 
fasciculations) was described. A different pattern of motor impairment (including: ataxia, 
progressive gait disturbance, clumsiness, generalized weakness, mild spasticity, dystonia, 
dysarthria, tremor involuntary jerks) and cognitive deterioration (loss of memory and 
comprehension, dementia) has been detected. In some patients mental capacity and 
behaviour are normal (Neudorfer et al., 2005; Maegawa et al., 2006).  
Imaging studies on TSD patients showed different findings in the three different forms, an 
involvement of basal ganglia and thalamus with cortical atrophy has been detected in classic 
infantile form, while both juvenile and adult phenotypes do not present basal ganglia 
abnormalities but show a cortical and cerebellar atrophy, the later characteristic of adult 
form (Grosso et al., 2003; Inglese et al., 2005; Aydin et al., 2005; Maegawa et al. 2006).  
Neurophysiological studies showed a variable pattern of EEG abnormalities with an early 
progressive loss of the VEP in infantile form. Saccadic abnormalities and impairment of 
smooth pursuit have also been observed at the evaluation of eye movements in some 
patients (Rapin 1986; Rucker et al. 2004). 
In SD clinical findings are indistinguishable from those of TSD. In infantile onset, startle 
reaction, psychomotor deterioration, early blindness, macrocephaly, cherry red spots are all 
present. The course of the disease is rapidly fatal, with death within the third year of life. In 
late-onset forms, cognitive and mental involvement (school difficulties, emotional lability, 
intermittent psychosis, confusional state) as well as neurological deterioration (muscle 
weakness, muscle atrophy, fasciculations, supranuclear gaze palsy, muscular atrophy, 
hyperreflexia, myoclonic jerks, seizures) have been described. Imaging and 

neurophysiological studies are similar to TSD (Yüksel et al., 1999; Alkan et al., 2003; 
Hendriksz et al., 2004; Jain et al., 2010) 

7.2 Molecular aspets 

The human HEXA gene (MIM# 606869) is located on chromosome 15q23-q24 and contains 
14 exons. More than 100 mutations have been identified to cause TSD disease,  
including single base substitutions, small deletions, small duplications/insertions,  
partial gene deletions, splicing alterations and complex gene rearrangements 
(http://www.hexdb.mcgill.ca/hexadb; http://www.hgmd.org/; Stenson et al., 2003). Most 
of these alterations are “private” mutations and have been detected in single or very few 
families. Others are present in small isolated populations and only a few have been 
frequently found in diverse populations. In the Ashkenazi Jewish population three distinct 
HEXA mutations are responsible for 98% of all mutant alleles: the most common four-bases 
duplication c.1274_1277dupTATC and the splicing mutation c.1421+1G>C (IVS12+1G>C) 
account for 81% and 15% of alleles, respectively; the alteration in exon 7 c.805G>A 
(p.G269S), associated with the late onset form of the disease, has been found in 
approximately 2% of alleles (Kaback et al., 1993). Among the non-Jewish populations the 
mutation pattern is completely different. Only 30% of the alleles are due to the duplication 
c.1274_1277dupTATC, none present the IVS12+1G>C and about 5% carry the G269S 
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mutation (Kaback et al., 1993). By contrast, the abnormal splicing mutation c.1073+1G>A 
(IVS9+1G>A), absent among the Jewish population, is found in about 15% of the non-Jewish 
carriers (Akerman et al., 1992). There are mutations in the HEXA gene causing the B1 
Variant, associated with the late onset form of TSD. This biochemical phenotype is 
characterized by a Hex A isoenzyme catalytically inactive against the physiological 
substrate, GM2 ganglioside, but active towards commonly used synthetic substrate (4-
methylumbelliferyl ┚-Nacetylglucosaminide) (Tutor, 2004). Concerning the HEXA 
mutations associated with the B1 Variant, the most common is the c.533G>A (p.R178H) that 
was first found predominantly in Portuguese patients (dos Santos et al., 1991; Gravel et al., 
2001) and which has been subsequently detected in individuals with different European 
backgrounds (Montalvo et al., 2006).  
Human HEXB gene has been located to chromosome 5q13 (MIM 26880) and contains 14 exons 

distributed over about 40 kb of DNA. To date, about 40 different mutations have been 

identified to cause SD, most of the have been identified in individual families 

(http://www.hexdb.mcgill.ca/hexadb; http://www.hgmd.org/). However, a common 

mutation found in patients with different ethnic backgrounds  is a deletion at the 5′ end of the 

gene that removes 16 kb of DNA including the HEXB promoter, exons 1–5, and part of intron , 

which account for about 27% of SD alleles (Neote et al., 1988; Bolhuis & Bikker, 1992) . This 

mutation seems to be quite unfrequent in Italian SD patients. Among this population the most 

frequent mutation is the c.850C>T (p.R284X) present in 27% of the affected alleles. The high 

frequency of this mutation is probably due to a founder effect (Zampieri et al., 2009). 

Although the number of SD patients characterized to date is quite small to perform an 

analysis of phenotype/genotype correlation, it is of note that missense mutations p.P504S, 

p.R505Q and p.R533H, seem to be associated to the late onset form of the disease (Maegawa 

et al., 2006). In addition, the missense mutation p. D459A has been recently discovered in six 

patients with a rare juvenile SD variant (Wang et al., 2008). 

8. Differential diagnosis  

The diagnosis of the specific LSD present in patients affected with PME may be challenging. 

However, the correct diagnosis is crucial in order to implement the best available 

therapeutic options and to provide an accurate genetic counselling. 

Although each LSD presents with specific sings and symptoms, some general features 

should prompt the physician to suspect the presence of a LSD in a patient with PME: 

1- a familiar history suggestive of a genetic disease, 2- association with other signs of 

neurological impairment, 3- the presence of visceral involvement. 

The visceral and neurologic signs most frequently associated to PME in LSD are shown in 
table 3. At physical examination, dysmorphism is a constant feature of sialidosis type II. 
Visceral storage represents a major sign of GD and sialidosis, while is generally less evident 
in NPC, where protracted jaundice is a highly suggestive sign that must be searched during 
patient anamnesis. Macrocephaly is a diagnostic sign in the infantile TSD, where abnormal 
growing of head circumference becomes evident with disease progression. With disease 
progression, ataxic motor impairment is generally detected in all of them, with dystonic 
movements evident in NPC, NCL and GM2 gangliosidosis, while dysarthria is detectable in 
AMRF, NPC and GM2 gangliosidosis. Parkinsonian syndrome may be present in adult 
patients with NCL.  Involvement of ocular system is widely described in many LSD, both at 
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functional and tissue storage levels. Supranuclar gaze palsy is patognomonic in NPC, but is 
also present in GD3 and AMFR, while blindness affects particularly infantile TSD and NCL 
(infantile NCL1 and late-infantile NCL Finnish variant, CLN5); green-red and nocturnal 
visual loss may be present in type 1 sialidosis. Signs of retinal storage are detectable in form 
of cherry-red spot (in Sialidosis and GM2), pigmentary degeneration (diagnostic sign in 
NCL) and optic atrophy (NCL and GM2 gangliosidosis). Degeneration of mental capacities 
with different grade of severity are constantly present in all these pathologies, while 
skeleton is severely involved by in sialidosis and usually mildly affected in GD3. Finaly, 
renal failure characterized the late phase of AMFR, but in form of nephritic syndrome may 
affect sialidosis type 2. 
 

 
GD3 AMRF NPC NCL Sialidosi 

GM2 
gangliosidosis 

dysmorphisms - - - + - 

visceral storage + - + - + - 

protracted 
joundice 

- - + - - - 

macrocephaly - - - - - + 

ataxia + + + + + + 

dystonia - - + + - + 

dysarthria - + + - - + 

parkinsonism - - - + - - 

gaze palsy + + + - - - 

blindness  - - - + + + 

cherry red spot - - - - + + 

retinal 
degeneration 

- - - + - - 

optic atrophy - - - + - + 

mental 
deterioration 

+ + + + + + 

skeletal 
involvement 

+ - - - + - 

renal 
involvement 

- + - - + - 

Table 3. visceral and neurologic signs most frequently associated to PME in LSD 

8.1 Laboratory diagnosis 
Routine laboratory tests result usually normal in patients with LSDs, with just few 
exceptions summarized in table 4.  
On the other hand, in patients with PME in whom the presence of a LSD is suspected, some 
relative simple tests may be performed (Table 4). The assessment of chitotriosidase activity 
in serum, a marker of macrophage activation, is substantially elevated in patients affected 
with GD and may be slightly elevated in patients with NPC disease. In addition, a recent 
report described the presence of high levels of chitotriosidase activity in 2 patients affected 

www.intechopen.com



 
Myoclonic Epilepsy in Lysosomal Storage Disorders 

 

 

241 

with sialidosis type II ( Caciotti et al., 2009). However, about 30% of individual from various 
genetic origins carry a chitotriosidase gene with a 24 bp duplication that prevents the 
production of the enzyme. Therefore, about 6% of the population is homozygous for this 
mutant allele and completely lack chitotriosidase activity. 
Patients affected with sialidosis excrete increased amount of several oligosaccharides and 

sialylglycopeptides derived from glycoproteins. Since the metabolic defect in these patients 

results in the inability to cleave sialic acid, the accumulated oligosaccharides are rich in sialic 

acid. Thus, a first screening test that may be performed when a sialidosis is suspected is the 

analysis of oligosaccharides in urine by thin layer chromatography (TLC). Staining of 

oligosaccharides resolved by TLC reveals a abnormal pattern in affected patients. However, 

abnormal patters of urine oligosaccharides are also found in patients affected with other 

disorders of glycoprotein degradation. In addition it is also possible to analyze the presence 

of sialic acid containing oligosaccharides by staining the TLC plates with resorcinol (Holmes 

& O’Brien, 1979).  
 

LSD Non specific laboratory findings
Gaucher  Anemia, thrombocytopenia, 

Minor elevation of liver enzymes 
Elevation of acid phosphatase, angiotensin converting 
enzyme (ACE) and ferritin 
Elevation serum chitotriosidase acivity

AMRF Proteinuria
Niemann Pick type C Reduced plasma levels of HDL-cholesterol

Moderate elevation of serum chitotriosidase acivity 
Sialidosis Elevation of serum chitotriosidase.

Abnormal pattern of urin oligosaccharides 

Table 4. Non specific laboratory findings in patients affected with LSDs that may present 
with PME. 

The presence of glycolipid-laden macrophages in various tissues is a hallmark of GD. In 
particular the presence of these “Gaucher cells” in bone marrow aspirates provide a strong 
support for this diagnosis. However, these cells have to be distinguished from those present 
in other disorders that exhibit pathological macrophages as a hallmark, such as the sea blue 
histiocyte syndrome or NPC disease. In addition, foam cells my also be present in bone 
marrow samples of patients affected with sialidosis. Although the examination of bone 
marrow aspiration may be useful for the diagnosis of GD, NPC disease and sialidosis, it 
should not be necessarily the initial diagnostic test considering the invasiveness of the 
procedure. 

8.1.1 Specific test 

A schematic approach to the laboratory diagnosis of the specific LSDs discussed in this 
chapter is represented in figure 1.  
The suspect of GD can be confirmed by the assessment of GBA activity in peripheral blood 

leukocytes or cultured fibrobalsts. A residual activity below 15 % of the mean normal 

activity is diagnostic.  

However, it is important to keep in mind that AMRF is caused by a mistargeting of GBA 
enzyme due to a defect in its receptor LIMP-2 and therefore patients affected by this disorder 
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also show low levels of GBA activity in fibroblasts but slightly reduced or normal in peripheral 
blood leukocytes. AMRF should always be considered in patients with reduced intracellular 
GBA activity in the absence of other markers of Gaucher disease, such as elevated serum 
chitotriosidase activity or the presence of “Gaucher” cells in bone marrow.  
The determination of GBA activity in serum should be perform in order to provide a 
differential diagnosis since it is elevated only in patients affected with AMRF (Dardis et al., 
2009).  
In both cases the molecular analysis of GBA or SCARB-2 gene should be carried out in order 

to confirm the diagnosis and to provide a genetic counseling. 

The diagnostic approach of NCL depends on the type of defect that is suspected. As shown 
in figure 1, the diagnosis of NCL 1, NCL2 and NCL10 can be achieved by the assessment of 
PPT1, TPP1 or Cathepsin D activity in leukocytes or cultured fibroblasts. If NCL3 is 
suspected, the diagnosis can be confirmed by the presence of typical vacuoles in the 
cytoplasm of the patient lymphocytes, which are detectable on a regular blood smear 
(Kohlschütter & Schulz, 2009). 
In the case of NCL5, NCL6, NCL7 and NCL8 it is advisable to investigate the presence of 
storage material by electron microscopic examination of skin biopsy material or isolated 
lymphocytes as a first approach and then procede to the molecular genetic studies. The 
definitive diagnosis in all cases is reached by the molecular analysis of the corresponding 
genes (Kohlschütter & Schulz, 2009). 
The definitive diagnosis of sialidosis is achieved by measuring the NEU1 activity is fresh 
samples of blood leukocytes or cultured fibroblasts. Special care should be taken to ensure 
that the tissue to be examined has not been frozen or exposed to prolonged sonication since 
the neuraminidase is quite unstable (Den Tandt & Brossemer, 1984). The residual enzymatic 
activity is extremely low or absent in patients affected with sialidosis independently of the 
severity of the clinical phenotype. On the contrary, a good correlation between the genotype 
and the phenotype has been found, therefore the molecular analysis of the NEU1 may 
provide useful information about disease severity and progression, which is particularly 
relevant to provide a better genetic counseling. 
It is important to keep in mind that also the Galactiosialidosis, a LSD associated with 

combined deficiency of NEU1 and galactosidase due to the defect of the proteictive 
protein /cathepsin A (PPCA), results in reduced levels of NEU1 activity. However, in this 
case the levels of NEU1 are not as low as in sialidosis and they are associated with low 

levels of galactosidase activity.  
The diagnosis of NPC disease may be quite challenging. It is time consuming and should be 
performed by specialized centers with the required experience.  
The biochemical diagnosis is based on the demonstration of the impaired intracellular 

cholesterol transport and homeostasis in fibroblasts in culture. The filipin test is considered 

the more specific and sensitive assay. Cells are cultured in the presence of LDL enriched 

medium and then fixed and stained with filipin, a molecule that has a high affinity for 

unesterified cholesterol (Blanchette-Mackie et al., 1988). In patients with NPC disease, 

fluorescence microscopic examination of stained cells shows in most of them, the presence 

of strong fluorescent perinuclear vesicles evidencing the intralysosomal accumulation of 

cholesterol. The majority of NPC patients present this “classical” biochemical pattern. 

However, about 20% of NPC patients present a milder level of unesterified cholesterol 

storage, presenting the so called “variant” biochemical phenotype.The diagnosis in these 
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Fig. 1. Schematic representation of the laboratory diagnostic strategy in suspected cases of 

PME due to LSD 
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patients may be difficult. Measurement of the LDL-induced rate of cholesterol esterification 
may be used as a secondary test. However, while very low levels rates of  esterification are 
detected in cell lines with a "classical" biochemical phenotype only a mild or non-significant 
impairment is detected in those with a "variant" phenotype. Therefore, in these cases 
mutational analysis of NPC1 and NPC2 are necessary in order to provide a definitive 
diagnosis. Since some mutations of NPC1 gene have been associated to the variant 
biochemical phenotype (see 6.2), it is advisable to  screen the presence of these mutations in 
patients presenting a variant phenotype.   
Finally, the molecular analysis should be performed in all newly diagnosed patients since 

molecular genetic studies are the highly preferred strategy for prenatal diagnosis, and the 

only reliable one for identification of carriers in blood relatives (Vanier et al., 2010). 

The suspect of GM2 gangliosidosis can be confirmed by the measurement of ┚-

hexosaminidases activities in blood leukocytes or cultured fibroblasts. From the biochemical 

point of view, the differential diagnosis between SD and TSD, the most common causes of 

GM2 gangliosidosis, can be performed by the assessment of total Hex activity, the HEX 

activity after heat inactivation and the specific assay of the HexA isoenzyme in leukocytes or 

fibroblasts. The synthetic substrate usually used is the 4-methylumbelliferyl N- acetyl-

glucosaminide which can be digested by both HexA (heterodimeroand  HexB (/ 

homodimero) isoenzymes and it is used to determine the total Hex activity. Since the HexA 

is thermolabile, it can be inactivated by heating the sample at 50°. The activity against the 4-

methylumbelliferyl N- acetyl-glucosaminide after heat inactivation is represented only by 

HexB. This value is used to determine the % of HexA and HexB activity The specific activity 

of Hex A isoenzyme can be measured using the synthetic substrate, 4-methylumbelliferyl N-

acetyl -glucosamine 6-sulfate (MUGS) (Bayleran, et al., 1984 ). Sandhoff disease is 

characterized by the impairment of both HexA and HexB activities and therefore total Hex 

activity is very low. A residual Hex A activity may be detected in these patients due the 

presence of HexS, consisting in two subunits, which is not deficient in SD and is also 

active towards the synthetic substrate.  

Tay Sachs disease is confirmed by the presence of reduced levels of total Hex and very low 

levels of HexA. It is important to keep in mind that the B1 variant of Tay Sachs is 

characterized by the presence of an Hex A isoenzyme catalytically inactive against the 

physiological substrate, GM2 ganglioside, but active towards commonly used synthetic 

substrate  4-methylumbelliferyl –N-acetyl glucosaminide (Tutor, 2004). Biochemical 

identification of these patients requires always the use of the specific substrate MUGS. 

(Bayleran et al., 1984 ). 

In the case of normal Hex activities a deficiency of the GM2 activator protein should be 

suspected. In this case, the definitive diagnosis is achieved by the molecular analysis of the 

GM2A gene. 

In patients with a biochemical diagnosis of SD and TSD it is advisable to perform the 

molecular analysis of HEXA or HEXB genes, respectively, in order to confirm the diagnosis 

and to provide genetic counseling. In addition in patients with a biochemical pattern 

compatible with a diagnosis of TSD disease it is important to exclude the presence of a 

pseudodeficiency due to specific mutations (p.R247W and p.R249W) in the HEXA gene. 

These protein variants are inactive towards the synthetic substrates but active towards the 

natural substrate, GM2 ganglioside  (Triggs-Raine et al., 1992; Cao et al., 1993).  
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9. Therapeutic options  

Twenty years ago the availability of enzyme replacement therapy (ERT) for GD opened a 

new era for the treatment of LSDs, giving to the patients a concrete hope for recovering 

(Brady, 2006; Connock et al. 2006). However, clinical history of GD demonstrated the limited 

effect of ERT on neurological phenotypes. The difficulty to cross the blood-brain barrier for 

macromolecule such glycoproteins prevent the neuronal access to the intravenous infused 

enzyme. Despite the good efficacy in correcting the visceral and hematological alterations of 

the disease also in neurological phenotypes, only a very limited number of patients seem to 

benefit from ERT, showing an improvement of EEG pattern and a stabilization of 

neurological conditions. Quite all of them carried the L444P mutation in homozygosis.  On 

the contrary very few are GD3 patients presenting with myoclonic epilepsy that carry these 

mutation in homozygosis or heterozygosis with other rare mutations. Therefore, myoclonic 

epilepsy represents a unfavorable prognostic factor in GD3 (Altarescu et al., 2001).  Despite 

the negative results obtained by Schiffmann et al. (2008), Capablo at al. (2007) showed an 

improvement of neurologic conditions and EEG pattern as well as a  decrease of the 

epileptic crisis in patients who presented with myoclonic sezures and the 

L444P/E326K+N188S phenotype, after 12 month treatment with combined ERT and 

substrate reduction therapy (SRT). Recently, Accardo et al. (2010), demonstrated the 

recovery of saccades in two GD3 sisters in course of SRT. The availability of small molecules 

capable to cross the blood-brain barrier might widening therapeutic prospective in 

neuronopathic GD. 

Glycosphingolipids reduction therapy may represent a strategy also for other 

glycosphingolipidosis, like NPC and GM2 gangliosidosis (Platt et al., 2005; Platt & 

Lachmann, 2009). 

Different clinical experiences have been reported in literature concerning SRT in NPC 

patients. The results of clinical trials performed both in pediatric and adult patients showed 

a significant improvement of swallowing and saccades, as well as an overall stabilization of 

neurological conditions (Patterson et al. 2007; Galanaud et al. 2009). Substrate reduction 

therapy has also been used to reduce glicosphingolipids synthesis in GM2 gangliosidosis 

patients (Bembi et al., 2006;Shapiro et al., 2009), both in infantile and late-onset forms, 

without any evidence of measurable benefits.  

Very recently a Clarke JT et al. (2011) have demonstrated an in vivo enhancement of Hex A 

activity in a group of late-onset GM2 patients (TSD and Sandhoff) treated with 

pyrimethamine for a period of 16 weeks. The study was aimed to analyze drug safety and 

no data on clinical results are available at present. 

Apart from symptomatic and supportive therapy, no specific treatments are at present 

available for NCL and sialidosis, even if preclinical therapeutic programs are ongoing, based 

on enzyme and gene therapy, stem cell replacement and immunotherapy (Wang et al, 2005; 

Hobert & Dawson, 2006).  

10. Conclusions 

LSDs are the main cause of the inherited form of PME. However, they are poorly known as 

a cause of PME and the differential diagnosis might be challenging. An accurate diagnosis is 

crucial to provide the best therapeutic approach and an appropriate genetic counselling. 
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Therefore, in this chapter we have discussed the main clinical and molecular findings in 

patients with PME affected by LSDs. 

It is important to highlight that even if each LDS present with specific sings, some general 

features should prompt the physician to suspect the presence of a LSD in a patient with 

PME, such as 1- a familiar history  suggestive of a genetic disease, 2- association with other 

signs of neurological impairment, 3- the presence of visceral involvement. 

In the suspect of a LSDs as a cause of PME, specific tests should be performed in specialized 

laboratories in order to provide an accurate biochemical diagnosis. In addition, the 

identification of the genes involved in most of these disorders offers the possibility to 

perform a molecular diagnosis. This type of analysis is quite laborious and time consuming 

since in most cases the complete sequencing of the affected gene is needed. However, 

molecular genetic studies are the only reliable tests for the identification of carriers in blood 

relatives and it is the highly preferred strategy for prenatal diagnosis. 

Over the last years a lot of progresses in the understanding of the clinical features and the 

genetic bases of LSDs have been done. However, very little is known about their 

pathogenetic mechanisms. In fact, the elucidation of the molecular pathways leading to the 

neuronal degeneration and the development of therapeutic strategies for these diseases 

remain the main challenge for the future.   
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