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1. Introduction  

This chapter applies the laws of thermodynamics to problems in continuum mechanics. 

Initially these are applied to a monophasic medium. The case of a biphasic porous medium 

is then treated with the aim of illustrating how a framework may be established for 

capturing possible couplings in the pertinent constitutive relationships. This approach is 

founded on the two laws of Thermodynamics. The first law expresses the conservation of 

energy when considering all possible forms while the second law postulates that the quality 

of energy must inevitably deteriorate in relation to its transformability into efficient 

mechanical work.  

2. The principles of thermodynamics in the case of monophasic media 

In order to simplify matters so that the reader can have a good intuitive understanding on 

the fundamental principles, in particular their physical contents, we begin with the simplest 

case of a monophasic continuous media. 

Consider a solid body in movement, with mass density 貢 and a velocity field 士 (figure 1). 

Our attention will be focused on an arbitrarily chosen part of this body, which occupies a 

volume Ω担 at time 建. For ordinary problems of solid mechanics, we are concerned with 

mechanical and thermal energies. We therefore suppose that the body inside Ω担 is subject to 

a distributed body force 讃 (for example gravity) and surface tractions 嗣 on its boundary 

surface, noted ∂よ担. At the same time, the body is subject to a heat flux 刺 on ∂よ担 and an 

internal heat source 堅槌. 

To begin with, we consider the energy and entropy balance of all the matter inside the 

volume よ担, using the two principles of thermodynamics. 

3. The first principle of thermodynamics  

The first principle stipulates that energy must be conserved under its different forms. 

Limiting our study here to thermal and mechanical energies, we can write: 
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Fig. 1. よ担 is a generic part of a body in movement, with distributed body forces 讃, surface 
tractions 建 inward heat flux 刺, and distributed heat source 堅槌, 券 is the outward unit normal. 

  
鳥鳥痛 岫継 + 計岻 = 鶏掴 + 芸 (1) 

In the above equation, 継 and 計 are the global internal and kinetic energies, while 鶏掴 and 芸  

are the total external supply of mechanical and thermal power for all matters inside よ担. The 

time derivative refers to the rate of increase of the energy content by following the same 

ensemble of material particles in their movement. This equation simply states that heat and 

mechanical energies received by a body which are not converted into kinetic energy become 

the internal energy. In continuum mechanics, physical quantities vary spatially from one 

point to another. The global quantities can be expressed in terms of the sum of local 

quantities: 

 継 = 完 貢結	穴よ担智盗   

 計 = 完 怠態貢士 ∙ 士	穴よ担智盗  (2) 

 鶏掴 = 完 讃 ∙ 士	穴よ担智盗 + 完 嗣 ∙ 士	穴S柱智   

 芸 = 完 堅槌 	穴よ担智盗 − 完 刺 ∙ 仔	穴S柱智   

where 	結, the specific internal energy is defined as the internal energy per unit of mass. 

Substitution of equation (2) into (1) and on account of the classic equation 嗣 = 時 ∙ 仔 relating 

the surface traction 	嗣  to the second order symmetric stress tensor 時, we get after some 

simplifications: 

 貢結岌 = 時: 資岌 + 堅槌 − 穴件懸刺 (3) 

where 資 denotes the strain tensor and a dot above a variable denotes the material derivative 

(i.e. total derivative with respect to time) by following the movement of an elementary solid 
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particle. Internal energy is the energy content within a given mass of material. This includes 

the (A) kinetic energy due to the disordered thermal agitation and the (B) interaction, or 

potential, energy between molecules due to their relative positions (for example the elastic 

strain energy). It is the macroscopic description of (A) that leads to the introduction of the 

absolute temperature. The internal energy can also be the energy stored due to 

concentration of solutes (osmotic potential), but is outside the scope of this presentation. 

However, it should be noted that the following energies are not counted as internal energy: 

1. Kinetic energy due to the macroscopic (ordered) movement of a material body 
2. Potential energy due to the position of a body relative to an external field such as 

gravity 
The last form of energy, namely the macroscopic potential energy, is accounted for by 

considering conservative body forces derivable from a potential, such as the gravity force 

per unit volume 貢賛, in the term 讃 in the definition of 鶏掴. Note that relative to the first 

principle, all forms of energy have an equal status. 

4. The second principle of thermodynamics  

The second principle of Thermodynamics confers a special status to heat, and distinguishes 

it from all other forms of energy, in that: 
1. Once a particular form of energy is transformed into heat, it is impossible to back 

transform the entire amount to its original form without compensation.  
2. To convert an amount of heat energy Δ芸 into useful work, a necessary condition is to 

have at least two reservoirs with two different (absolute) temperatures 劇怠 and 劇態 
(suppose 劇怠 > 劇態 to fix ideas). 

3. Moreover, the above conversion can at best be partial in that the amount of work Δ激 
extractable from a given quantity of heat Δ芸 admits a theoretical upper bound 
depending on the two temperatures: 

 
綻調綻町 判 脹迭貸脹鉄脹鉄  (4) 

 

 

Fig. 2. The heat engine represented by the circle takes a quantity of heat ΔQ from the hotter 
reservoir 劇怠 and rejects ΔQ′ to the colder reservoir 劇態, while it performs an amount of useful 
work	Δ激. The first principle requires Δ激 = ΔQ − ΔQ′ and the second principle sets a 
theoretical upper bound on the efficiency Δ激/ΔQ attainable by heat engines. 

Note that real efficiencies obtainable in practical cases are far less than that suggested by 

equation (4) due to unavoidable frictional losses. In the limit when the temperature becomes 

uniform, no mechanical work can be extracted anymore and this corresponds to some kind 

of thermal-death. In technical terms, when a particular form of energy is transformed into 

W 
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heat, the energy is degraded and becomes less available to perform useful work. The second 

principle gives a systematic and consistent account of why heat engines have theoretical 

upper limits of efficiency, and why certain phenomena can never occur spontaneously. For 

example, we cannot extract sea water at 20°C, cool it down to 0°C by extracting heat from it, 

and use that heat to drive the turbine and advance a ship! The theoretical formulation of the 

second principle via the concept of entropy derives its basis from a very large quantity of 

observations. The counter-part of the generality of its validity is the high level of abstraction, 

making it difficult to understand. Classical irreversible thermodynamics formulated directly 

at the macroscopic scale has an axiomatic appearance. The entropy change is defined 

axiomatically with respect to heat exchange and production. To understand its molecular 

original requires investigations at the microscopic scale. This is not necessary if the objective 

is to apply thermodynamic principles to build phenomenological models, although such 

investigations do contribute to a better understanding of the physical origin of the 

phenomena. Clausius (1850) invented the thermodynamic potential - the entropy - to 

describe this uni-directional  and irreversible degradation of energy. Formulated in terms of 

entropy, the second principle of thermodynamics says that whenever some form of energy 

is transformed into heat, the global entropy increases. It can at best stay constant for 

reversible processes but can never decrease. If we denote 嫌  the specific entropy (per unit 

mass), the second principle writes: 

  
鳥鳥痛 完 貢嫌	穴よ担智盗 半 完 追忍脹 	穴よ担智盗 − 完 刺∙仔脹 	穴S柱智盗  (5) 

In other words, for a fixed quantity of matter, the entropy increase must be greater than 
(resp. equal to) external heat supply divided by the absolute temperature in irreversible 
(resp. reversible) processes. The difference is due to other forms of energy being 
transformed into heat via dissipative processes. In our study here, this corresponds to 
internal frictional processes transforming mechanical energy into heat. Once this occurs, the 
process becomes irreversible. The previous inequality can be simplified to the following 
local form using Gauss' theorem: 

 貢嫌岌 + 穴件懸 刺脹 − 司刺脹 半 ど (6) 

As a macroscopic theory, irreversible thermodynamics does not give any explanation on the 
origin of entropy. Similarly to the case of plastic strains, the manipulation of entropy and 
other thermodynamic potentials will rely on postulated functions, valid over finite domains 
and containing coefficients to be determined by experiments. 

5. Clausius-Duheim (CD) inequality  

Combining the first and the second principle, we obtain the classic Clausius-Duhem (CD) 

inequality in the context of solid mechanics (electric, magnetic, chemical or osmotic terms 

etc. can appear in more general problems): 

 Φ = 時: 資岌 + 貢岫劇嫌岌 − 結岌岻 − 怠脹 刺 ∙ 賛司珊纂劇 半 ど (7) 

In the limiting case when the temperature field is uniform and the process is reversible, the 
above inequality becomes equality: 
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怠諦時: 資岌 + 劇嫌岌 − 結岌 = ど					or					d結 = 怠諦時: d岨 + 劇穴s (8) 

Since the specific internal energy is a state function and is supposed to be entirely 
determined by the state variables, we conclude from the differential form in (8) that 結 
depends naturally on 綱 and 嫌 (i.e. 結 = 結岫資, 嫌岻) and that the following state equations hold: 

  時 = 貢 擢勅擢資 			 ; 			劇 = 擢勅擢鎚 (9) 

However, the specific entropy 嫌 is not a convenient independent variable as it is intuitively 
difficult to comprehend and practically difficult to control. The classical approach consists of 
introducing another state function, the specific Helmholtz's free energy, via the Legendre 
transform: 

 閤 = 結 − 劇嫌 (10) 

to recast inequality (7) to the following form: 

 Φ = 時: 資岌 − 貢盤閤岌 + 嫌劇岌 匪 − 怠脹 刺 ∙ 賛司珊纂劇 半 ど (11) 

Again, in the absence of dissipative phenomena and a uniform temperature field, we have: 

 
怠諦時: 資岌 − 嫌劇岌 − 閤岌 = ど					or					d閤 = 怠諦時: d岨 − 嫌穴T (12) 

via the same reasoning as previously, we deduce that the specific free energy 閤 depends 
naturally on 綱 and 劇 and satisfies the following state equations: 

  時 = 貢 擢泥擢資 			 ; 			史 = − 擢泥擢脹  (13) 

The Legendre transform (10) thus allows one to define a thermodynamic potential with 

natural independent variables which are more accessible (劇 instead of 嫌 in the present case). 

The quantity Φ, having the unit of energy per unit volume per unit time, is called total 

dissipation. It represents the transformation of non-thermal energy into heat via frictional 

processes, which then becomes less available. 

6. How to use the second principle  

There are two ways to make use of the second thermodynamic principle. We can first of all 
verify the consistency or the inconsistency of a given model with respect to the 2nd principle, 
in an a posteriori manner, in the sense that the construction of the model does not rely in any 
way on the 2nd principle. On the other hand, we can actually construct a model, starting 
from the Clausius-Duhem inequality, by specifying appropriate functional forms for the 
Helmholtz's free energy and the dissipation. Naturally, there is no unique way to achieve 
this goal since thermodynamics does not supply any information on the specific behavior of 
a particular material under study. This process must therefore integrate experimental data 
so that the model predictions are consistent with the reality. Among different 
representations (or models) consistent with thermodynamic principles, the best is the one 
with a clear logical structure and comprising a minimum number of parameters (simplicity). 
This last criterion allows to minimise the amount of experimental work necessary to identify 
these parameters, which is always a very time-consuming task. 
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7. Implicit but essential assumptions  

All classic developments based on irreversible thermodynamics assume implicitly that the 
process does not deviate significantly from thermodynamic equilibrium. In consequence, 
despite the fact the system is in evolution therefore in non-equilibrium, the state equation 
expressing the condition of thermodynamic equilibrium can still be used to reduce the number 
of independent state parameters by one in complex problems (for example, the density, 
pressure and temperature of the pore fluid transiting a porous solid is related by a state 
equation). This is strictly speaking an approximation. Its efficiency can only be assessed a 
posteriori by the results. 
 In a heterogeneous system, the thermodynamic state hence the state parameters are 
position-dependent. This heterogeneity (hence non-equilibrium) is the driving force which 
tends to restore the system back to thermodynamic equilibrium. However, it is assumed that 
the (spatial) variation is sufficiently mild so that every elementary particle can be considered 
as under thermodynamic equilibrium. Its state parameters are therefore linked by the state 

equation expressing this equilibrium requirement. This assumption is called the “hypothesis 
of local equilibrium”. This assumption excludes the treatment of fast processes (for example 
explosions) under the framework of classic irreversible thermodynamics.  

8. Applications to plasticity and viscoplasticity: General equations 

To illustrate how thermodynamic principles can be used to formulate physical laws, let us 
consider the particular case of the inelastic behaviour of solids. The classic partition: 

 資 = 資勅 + 資椎  

Is assumed, where 資勅 is the elastic strain and 資椎 denotes for the time being all forms of 
irreversible (i.e. inelastic) strains. In order to satisfy the CD inequality (11), a common 

practice is to assume that 閤 = 閤岫資勅 , 劇, 惨賃岻, so that 閤岌 = 擢泥擢資 資勅岌 + 擢泥擢脹 劇岌 + 擢泥擢惨入 惨岌 谷. The scalar 

variables grouped into a tensor 惨賃 are internal variables introduced to account for the state-
dependent non-linear inelastic behaviour. In practice, this is often the irreversible strains or 
their scalar invariants. The CD inequality then becomes: 

  Φ = 岾時 − 貢 擢泥擢資峇 : 資岌 蚕 	+ 時: 資岌使 − 貢 岾嫌 + 擢泥擢脹 	峇 劇岌 − 貢 擢泥擢惨暫 ∙ 惨岌 谷 − 刺∙賛司珊纂脹脹 半 ど (14) 

Consider the particular case of elastic (reversible) evolution corresponding to stationary 

values of the internal variables 惨 and plastic strains, with uniform temperatures. We then 

have zero dissipation, retrieving the classic state equations (13). In the sequel it will be 

assumed that these state equations remain valid even under irreversible inelastic evolutions, 

so that the CD inequality becomes: 

  Φ = Φ托 +Φ鐸 = 時: 資岌椎 − 冊暫 ∙ 惨岌 谷 − 刺∙賛司珊纂脹脹 半 ど (15) 

Under a simplified framework, we require the mechanical and thermal dissipations to be 
separately non-negative (this reduces the amount of coupling to account for in the model): 

 Φ托 = 時: 資岌椎 − 冊暫 ∙ 惨岌 谷 半 ど					; 				Φ鐸 = − 刺∙賛司珊纂脹脹 半 ど (16) 

The thermodynamic force  冊賃, the conjugate variable to the thermodynamic flux  惨賃, is “defined” as: 
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 冊暫 = 貢 擢泥擢惨暫 (17) 

In practice, 冊賃 is often the variable which determines the size (isotropic hardening) or the 
amount of translation (kinematic hardening) of the yield surface and represents in a 
simplified manner all the effects of the loading history. One particular example is the pre-
consolidation pressure which determines the current yield envelope of clays (as in Camclay 
model). 
The non-negativity of the thermal dissipation can be satisfied by the classic Fourier Law: 

 刺 = −皐 ∙ 賛司珊纂劇 (18) 

where the thermal conductivity tensor 皐 must be symmetric and strictly positive, so that: 

  Φ鐸 = 賛司珊纂脹∙皐∙賛司珊纂脹脹 半 ど (19) 

It remains to satisfy the non-negativity of the mechanical (or intrinsic) dissipation:  

  Φ托 = 時: 資岌椎 − 冊賃 ∙ 惨岌 谷 半 ど (20) 

The non-negativity of the mechanical dissipation forms the basis for the construction of the 

material behavioral laws. Note that the equation  冊賃 = 貢 擢泥擢惨入  only “defines” the variable 冊賃 

but does not contain any rule to calculate its evolution. Similarly, we need a rule to calculate 

the plastic strain rate  資岌椎. 

9. Onsager’s principle 

In many physical problems, the total dissipation can be written as the sum of the products 

between a set of thermodynamic forces 隙 and theirs conjugates, the thermodynamic flux 捲: 

  Φ = 隙 ∙ 捲 = 隙沈捲沈 半 ど (21) 

Onsager, based on theoretical studies at molecular scales where all phenomena are 

reversible, suggested when the physical process only deviates slightly from the 

thermodynamic equilibrium, the thermodynamic forces and flux can be related by a set of 

phenomenological coefficients: 

  隙沈 = 詣沈珍捲珍 (22) 

Onsager showed theoretically that the coefficients 詣沈珍 must be symmetrical. To ensure the 

non-negativity of the dissipation, it suffices to require 詣沈珍 to be definite positive, other than 

being symmetrical. The off-diagonal coefficients allow to account for cross-couplings. This 

formulation seems to be better suited to moderately non-linear problems. For example, it 

cannot lead to the classical plastic flow rule in solids. 

10. Dissipation potentials  

Another, more general, way to satisfy automatically the non-negativity of Φ托 is  
to introduce dissipation potentials. This can also handle more general non linear 
behaviours. 
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In the case of inelastic behaviour, we define a scalar function called the dissipation potential 砿岫資岌椎, 惨岌 谷岻, convex and continuously differentiable with respect to both its arguments, 

positive everywhere and null at the origin, such that: 

  時 = 擢釘擢資岌妊 			 ; 		冊暫 = − 擢釘擢惨岌 島 (23) 

We get immediately: 

   Φ托 = 時: 資岌椎 − 冊暫 ∙ 惨岌 谷 = 擢釘擢資岌妊 : 資岌使 + 擢釘擢惨岌 島 ∙ 惨岌 谷 半 砿 半 ど (24) 

In general, it is more convenient to work with 砿∗岫時, 冊賃岻, the Legendre transform of 砿, also 

convex and positive definite with respect to its arguments, zero at origin, with: 

 資岌椎 = 擢釘∗擢時 			 ; 	惨岌 谷 = − 擢釘∗擢冊入 (25) 

So that: 

  Φ托 = 時: 資岌椎 − 冊賃 ∙ 惨岌 谷 = 時: 擢釘∗擢時 + 冊賃 ∙ 擢釘∗擢冊入 半 砿∗ 半 ど (26) 

Theoretically, once the free energy and the dissipation function are specified, the stress-

strain relation is fully defined. This is therefore one possible way to construct a constitutive 

model. However the above reasoning does not work for plasticity. 

11. Hardening plasticity for “standard” materials 

In plasticity, the dissipation potential is not differentiable. Classically, the usual way to 

satisfy the dissipation inequality is to define a yield function: 

 繋 = 繋岫時, 冊暫岻 (27) 

(1) convex with respect to its arguments 
(2) the “elastic domain” 繋岫時, 冊賃岻 判 ど  contains the origin, and that: 

 資岌椎 = 膏岌 擢庁擢時 			 ; 			惨岌 谷 = −膏岌 擢庁擢冊暫 				 ; 				膏岌 半 ど (28) 

where 膏 is the classic plastic multiplier, which obeys the conditions that: 

  膏岌 = ど		if	繋 < ど	剣堅	繋岌 < ど					; 					膏岌 半 ど		if		繋 = ど		and		繋岌 = ど (29) 

 

The first condition says if either the stress point is strictly inside the yield surface or if it is 

currently on the yield surface but moves inwards, the plastic multiplier, hence the plastic 

strain rate is null. The second condition expresses the condition of plastic loading when the 

current stress point is on the yield surface and it moves outwards. In this latter case, we 

have: 

  Φ托 =	膏岌 岾時: 擢庁擢時 + 冊暫 ∙ 擢庁擢冊暫峇 	半 ど (30) 

 

The non-negativity of the term between the parenthesis, namely: 
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 峽 時冊暫峺 ∙ 崔 擢庁擢時擢庁擢冊暫崢 半 ど (31) 

stems from geometric arguments (figure 3). This, together with 膏岌 半 ど, allows to ensure the 
non-negativity of Φ托.  
 

 

Fig. 3. The convex elastic domain contains the origin. Hence the position vector of a point on 
the boundary 岶時, 冊賃岼 and the normal vector at the same point 岶示蹄繋, 示冊入繋岼 give a positive 

scalar product. 

To construct an elastoplastic model, we need to define a hardening rule: 

 冊暫 = 冊暫岫惨暫岻 (32) 

The plastic multiplier 膏岌 can then be determined by the classic consistency condition: 

 繋岌 = 擢庁擢時 ∙ 時岌 + 擢庁擢冊暫 ∙ 冊岌 谷 = ど	 (33) 

For stress-controlled evolutions, this yields, after a little substitution: 

 膏岌 = 買鈍買時∙時岌張 					 ; 					茎 = 擢庁擢冊暫 ∙ 擢冊暫擢惨暫 ∙ 擢庁擢冊暫 (34) 茎 is known as the hardening or plastic modulus. To relate the stress increment directly to 

the strain increment via the tangent stiffness tensor, we substitute: 

 時岌 = 拶蚕 ∙ 岫資岌 − 資岌椎岻						; 					資岌椎 = 膏岌 擢庁擢時  (35) 

in the above to get: 

 膏岌 = 買鈍買時∙拶蚕∙資岌張袋買鈍買時∙拶蚕∙買鈍買時 (36) 

Restarting with 時岌 = 拶蚕 ∙ 岫資岌 − 資岌使岻 = 拶蚕 ∙ 岾資岌 − 膏岌 擢庁擢時峇  and after some manipulation leads to: 

  購岌 = 拶蚕使 ∙ 資岌 					; 					拶蚕使 = 峭拶蚕 − 拶蚕∙買鈍買時⊗買鈍買時∙拶蚕張袋買鈍買時∙拶蚕∙買鈍買時 嶌 (37) 

Note that the associative flow rule 資岌椎 = 膏岌 擢庁擢時  renders the tangent matrix 拶勅椎 symmetric. This 

relation is also essential in the model construction to ensure the non-negativity of the 
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dissipation. If we replace 資岌椎 = 膏岌 擢庁擢時  by  資岌椎 = 膏岌 擢直擢時  with 訣 ≠ 繋 (non-associative flow rule), the 

CD inequality will no longer be automatically verified. This means that thermodynamic 
principles may then be violated in some evolutions. Note that in order to describe isotropic 
and kinematic hardening, the thermodynamic flux 惨賃 is often decomposed into a tensor 詩 
and a scalar 堅, associated with thermodynamic forces 散 and 迎. We would then have to 
write: 

 繋 = 繋岫時,散, 迎岻				; 					資岌使 = 膏岌 擢庁擢時 					 ; 					詩岌 = −膏岌 擢庁擢散 					 ; 					堅岌 = −膏岌 擢庁擢眺 (38) 

A common example is to identify 堅 with the cumulated plastic deviatoric strain 紘椎, defined 
as: 

 堅 = 紘椎 = 完 磐態戴 蚕岌椎岫酵岻: 蚕岌椎岫酵岻卑怠/態 穴酵痛待  (39) 

where  蚕岌 椎 = dev岫資岌椎岻. 
12. Viscoplasticity  

We start with: 

 資 = 資蚕 + 資士使 (40) 

then go through the same procedure as for plasticity: 

 Φ = 時: 資岌 − 貢盤閤岌 + 嫌劇岌 匪 − 刺∙賛司珊纂脹脹 半 ど (41) 

and: 

 閤 = 閤岫資蚕, 劇, 惨暫岻 (42) 

 

We end up with the same dissipation inequality: 

 Φ = 岾時 − 貢 擢泥擢資峇 : 資岌 蚕 	+ 時: 資岌士使 − 貢 岾嫌 + 擢泥擢脹 	峇 劇岌 − 貢 擢泥擢惨暫 ∙ 惨岌 谷 − 刺∙賛司珊纂脹脹 半 ど (43) 

the same state equations: 

 時 = 貢 擢泥擢資 			 ; 			嫌 = − 擢泥擢脹  (44) 

the same intrinsic dissipation (we discard the thermal part here): 

 Φ托 = 時: 資岌士使 − 冊暫 ∙ 惨岌 谷 半 ど (45) 

 

the same definition for the thermodynamic force  冊賃 conjugate to the thermodynamic flux  惨賃: 

 冊暫 = 貢 擢泥擢惨暫 (46) 

However, a fundamental difference with plasticity intervenes here. In viscoplasticity, a 
continuously differentiable dissipation potential, definite positive, convex and contains the 
origin, can be defined: 
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 砿∗ = 砿∗岫時, 冊暫岻		; 			資岌士使 = 擢釘∗擢時 			 ; 		惨岌 谷 = − 擢釘∗擢冊暫 (47) 

so that the non-negativity condition can be a priori satisfied: 

 Φ托 = 時: 資岌士使 − 冊暫 ∙ 惨岌 谷 = 	時: 擢釘∗擢時 + 冊暫 ∙ 擢釘∗擢冊暫 半 砿∗ 半 ど (48) 

As for plasticity, in order to describe isotropic and kinematic hardening, the internal 
variable 惨賃 is often decomposed into a tensor 詩 and a scalar 堅, associated with 
thermodynamic forces 散 and 迎: 

 閤 = 閤岫資蚕, 劇, 詩, 堅岻		; 			散 = 擢泥擢詩 			 ; 			迎 = 擢泥擢追  (49) 

The mechanical dissipation inequality then becomes: 

 Φ托 = 時: 資岌士使 − 散 ∙ 詩岌 − 迎堅岌 半 ど (50) 

with the corresponding dissipation potential : 

 砿∗ = 砿∗岫時, 散, 迎	岻		; 	資岌士使 = 擢釘∗擢時 			 ; 			詩岌 = − 擢釘∗擢散 		 ; 			堅岌 = − 擢釘∗擢眺  (51) 

We and up with: 

 Φ托 = 時: 資岌士使 − 散 ∙ 詩岌 − 迎堅岌 = 	時: 擢釘∗擢時 + 散 ∙ 擢釘∗擢散 + 迎 擢釘∗擢眺 半 ど (52) 

For example, Lemaitre's model with isotropic hardening is based on the following 
dissipation potential: 

 砿∗岫時, 迎	岻 = 懲朝袋怠 		岾蹄賑忍貸眺懲 峇錆袋層 怠抵 (53) 

Where 耕 is considered as a parameter independent of the stress tensor, with: 

 購勅槌 = 謬戴態 史: 史			; 			史 = dev岫時岻 = 	時 − 怠戴 建堅岫時岻薩 (54) 

A differentiation gives: 

 資岌士使 = 擢釘∗擢時 = 岾蹄賑忍貸眺懲 峇錆 怠抵 磐戴態 史蹄賑忍卑 (55) 

 

and: 

 堅岌 = − 擢釘∗擢眺 = 岾蹄賑忍貸眺懲 峇朝 怠抵 (56) 

 

where we have used the identity 
擢蹄賑忍擢時 = 戴態 史蹄賑忍. Note that the viscoplastic strain rate is purely 

deviatoric, in other words 建堅岫資岌 塚椎岻 = ど. Using the classic definition of the equivalent 
deviatoric viscoplastic strain rate: 

 紘岌塚椎 = 謬態戴 資岌塚椎: 資岌 塚椎	 (57) 
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It can easily be verified that: 

 紘岌塚椎 = 堅岌 = 岾蹄賑忍貸眺懲 峇朝 怠抵 (58) 耕 is an intermediate variable to ensure the consistency of the relations. A particular choice of 耕	can be 耕 = 堅朝/暢which is consistent with the text of Lemaitre & Chabouche (1990). In view 
of the above identity on 紘岌塚椎 and 堅岌 , we can also write: 

 資岌士使 = 紘岌塚椎 磐戴態 史蹄賑忍卑 = 堅岌 磐戴態 史蹄賑忍卑 (59) 

To define completely the model, we still need a (hardening) relation between 迎 et 堅. This can 
either be defined explicitly 迎 = 迎岫堅岻 or by specifying a specific Helmholtz free energy  閤 

and then uses 迎 = 擢泥擢追 . 

13. Case of biphasic porous media  

13.1 Fundamental hypotheses and definitions  

In a macroscopic description, a biphasic medium is considered as the superposition of 2 
continua. At a given time 建 and at a given position 姉, 2 particles, one representing the solid 
and the other, the fluid, occupy simultaneously the same spatial region 穴よ担 around the 
geometric point 姉. In order to access separately the mass of each phase, we define the 
Eulerian porosity 券 (resp. the Lagrangian porosity 剛) so that 券	穴よ担 (resp. 剛	穴よ待) represents 
the current volume of fluid inside 穴よ担. We have to deal with the macroscopic strain and 
porosity variations of the solid skeleton. Following Coussy (2004), we split the strain and 
porosity variation into a elastic and a plastic part: 

 資 = 資蚕 + 資使		; 	剛岌 = 剛岌勅 + 剛岌椎			; 			Δ剛 = 剛 − 剛待 = 剛勅 + 剛椎 (60) 

We denote by 香 and 香鎚 the volumetric component of the skeleton strain and that of the solid 
matrix (i.e. 香 = 建堅岫資岻, etc.), which admit the same decomposition: 

 香 = 香勅 + 香椎		; 	香鎚 = 香鎚勅 + 香鎚椎 (61) 

The global volume change comes from those of the solid matrix and of the porous space. It 
can be proved that: 

 香 = 岫な − 剛待岻香鎚 + 剛 − 剛待				; 	香勅 = 岫な − 剛待岻香鎚勅 + 剛勅 			; 			香椎 = 岫な − 剛待岻香鎚椎 + 剛椎 (62) 

Extending equation (5) to include the contributions of the fluid, we write: 

 
鳥濡鳥痛 完 岫な − 券岻貢鎚嫌鎚	穴よ担智盗 + 鳥肉鳥痛 完 券貢捗嫌捗	穴よ担智盗 半 完 追忍脹 	穴よ担智盗 − 完 刺∙仔脹 	穴S柱智盗  (63) 

where 
鳥濡鳥痛 岫∙岻, 鳥肉鳥痛 岫∙岻	 express the kinematics of the solid skeleton and fluid phases respectively 

while 貢鎚, 嫌鎚 , 貢捗, 嫌捗 denote the respective density and entropy of the solid and fluid phases. 

The Clausius-Duhem inequality corresponding to deformable porous thus admits the 

following: 

 Φ = Φ暢 +Φ庁 +Φ脹 半 ど  

www.intechopen.com



 
Thermodynamics in Mono and Biphasic Continuum Mechanics 81 

where Φ暢, Φ脹 are as before the ïntrinsic mechanical and thermal dissipations while Φ庁 is the 
fluid dissipation. Going through the same procedure as in the case of monophasic media, 
but considering the contributions of both the solid and fluid phases, each with an 
independent kinematic field, the Clausius-Duhem inequality can be derived: 

 Φ托 = 時: 資岌 + 喧剛岌 − ゆ岌 坦 半 ど (64) 

 Φ庁 = 岾−賛司珊纂喧 + 貢捗盤讃 − 誌捗匪峇 ∙ 篠 半 ど	 (65)  

where 貢捗盤讃 − 誌捗匪 represents the body and inertia forces of the fluid; 篠 = 券盤惨捗 − 惨鎚匪 is the 

filtration vector and	盤惨捗 − 惨鎚匪 is the velocity of the fluid phase relative to the solid phase. 

Introduce the Gibb's free energy 罫鎚 = ゆ鎚 − 喧岫剛 − 剛待岻 	= ゆ鎚 − 喧岫剛勅 + 剛椎岻 leads to: 

 Φ托 = 時: 資岌 − 岫剛勅 + 剛椎岻喧岌 − G岌 坦 半 ど (66) 

Restricting to the case of reversible behaviour where the plastic components and the 

intrinsic dissipation Φ托 vanish, so that the above inequality becomes an equality, we deduce 

that 罫鎚 = 罫鎚岫綱勅 , 喧岻, and get the state equations: 

 時 = 擢弔濡擢資蚕 			 ; 			剛勅 = − 擢弔濡擢椎  (67) 

Differentiating the above leads to the following constitutive equations: 

 穴購沈珍 = 系沈珍陳津穴綱陳津勅 − 決沈珍穴喧			; 			穴剛勅 = 決沈珍穴綱沈珍勅 + 怠朝 穴喧 (68) 

with: 

 系沈珍陳津 = 擢鉄弔濡擢悌日乳賑 擢悌尿韮賑 			 ; 			決沈珍 = − 擢鉄弔濡擢悌日乳賑 擢椎 			 ; 			 怠朝 = − 擢鉄弔濡擢椎鉄  (69) 

For isotropic behaviour, we have: 

 穴購沈珍 = 岾計 − 態戴罫峇穴綱賃賃勅 絞沈珍 + に罫穴綱沈珍勅 − 決	穴喧	絞沈珍 			; 			穴剛勅 = 決	穴香勅 + 怠朝 穴喧 (70) 

The first of the above equations can be rewritten to introduce an elastic effective stress 購沈珍嫗  

which determines entirely the strain increments under elastic behaviour: 

 穴購沈珍嫗 	= 岾計 − 態戴罫峇穴綱賃賃勅 絞沈珍 + に罫穴綱沈珍勅 			; 			購沈珍嫗 = 購沈珍 + 決	喧	絞沈珍 (71) 

Recalling the following relation resulting from fluid mass conservation and the definition of 
fluid bulk modulus 計捗: 

 d剛 = 鳥陳肉諦肉 − 剛 鳥椎懲肉 (72) 

Recalling the definition of fluid volume content (neglecting 2nd order terms) 穴懸捗 = 鳥陳肉諦肉  and 

combining with the 2nd state equation, we obtain: 

 穴懸捗 = 穴剛椎 + 決	穴香勅 + 怠暢 穴喧			; 			 怠暢 = 怠朝 + 笛懲肉 (73) 
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To introduce a simple non linear skeleton behaviour, we restart with Φ托 = 時: 資岌 + 喧剛岌 − ゆ岌 坦 半ど, and postulates that: 

 皇鎚岫資蚕, 剛勅 , 惨暫岻 = 激鎚岫資蚕, 剛勅岻 + 戟岫惨暫岻 (74) 

Where 戟岫惨賃岻 represents the trapped energy due to hardening, depending only on the 
internal state parameters 惨賃. Substituting this into the Clausius-Duhem inequality and 
simplifying leads to: 

 Φ托 = 時: 資岌使 + 喧剛岌椎 	+ 冊暫 ∙ 惨岌 暫 半 ど (75) 

with: 

 時 = 擢恥濡擢資蚕 =	 擢茸濡擢資蚕 		 ; 			喧 = 擢恥濡擢笛賑 = 擢茸濡擢笛賑 		 ; 				冊暫 = − 擢恥濡擢惨暫 = − 擢腸擢惨暫 (76) 

The above inequality can also be rewritten as: 

 絞Φ托 = 絞激椎 − 穴戟 半 ど			; 			絞激椎 = 時: 穴資使 + 喧穴剛椎			; 			穴戟 = 擢腸擢惨暫 穴惨暫 (77) 

Hence 穴戟 represents that part of the plastic work which is not dissipated into heat. 
Returning to (65), it is observed that the non-negativity of the dissipation Φ庁 leads to 
Darcy’s law as the constitutive equation of flow, which is defined for the isotropic case as: 

   n盤惨捗 − 惨史匪 = λ竪 岾−訣堅欠穴使 + 貢捗盤讃 − 誌捗匪峇  (78) 

where 膏朕 is the hydraulic conductivity or coefficient of permeability of the medium. It is 
interesting to note that the thermodynamic approach confirms Darcy’s law governs fluid 
flow relative to the solid matrix, and not with respect to a stationary observer. 

13.2 Poroplastic behaviour  

As for monophasic media, the dissipation potential is not differentiable in plasticity. To 

satisfy the non-negativity of the intrinsic dissipation, we postulate an elastic domain defined 

by a convex function 血: 

 繋岫時, 喧, 冊暫岻 判 ど (79) 

The domain contains the origin, in other words: 

 繋岫ど,ど,ど岻 < ど (80) 

Introducing the classic standard material behavioural law: 

 穴資使 = 穴膏 擢庁擢時 			 ; 			穴剛椎 = 穴膏 擢庁擢椎 			 ; 			穴惨暫 = 穴膏 擢庁擢冊暫 			 ; 			穴膏 半 ど			; 		繋 判 ど (81) 

we have: 

 Φ托 = 穴膏 峙時: 擢庁擢時 + 喧 擢庁擢椎 + 冊賃 擢庁擢冊入峩 半 ど (82) 

The quantity between square brackets represents the scalar product between the position 

vector 岫時, 喧, 冊賃岻 and the outward normal vector 岾擢庁擢時 , 擢庁擢椎 , 擢庁擢冊入峇 which is perpendicular to the 
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boundary of the elastic domain 血 = ど. Its positivity comes from the geometric convexity of 
the domain 繋 判 ど and the fact that the domain contains the origin. In the above formulation, 
the yield criterion is supposed to depend both on the total stress and the fluid pressure. This 
can be simplified if the plastic porosity change is related to the plastic volumetric strain: 

 剛岌椎 = 決嫗香岌椎 = 決嫗資岌使: I (83) 

so that: 

 Φ托 = 時′′: 資岌使 −ゆ岌 坦 半 ど			; 			時′′ = 時 + 決嫗喧	I (84) 

Mechanical stress and fluid pressure then intervene in the yield function only via a plastic 
effective stress 時′′:  

 繋岫時′′, 冊暫岻 判 ど (85) 

with: 

 穴資使 = 穴膏 擢庁擢時嫦嫦 			 ; 			穴惨暫 = 穴膏 擢庁擢冊暫 			 ; 			穴膏 半 ど			; 		繋 判 ど (86) 

However, there are two effective stresses 時′ and 時′′, which is confusing. The situation will be 

optimum if we can assume either 決嫗 = 決, hence 時嫗 = 時嫗嫗, or matrix incompressibility which 

implies 決嫗 = 決 = な and that 時嫗 = 時嫗嫗 = 	時 + 喧掘. The last case is of particular importance and 

corresponds to the majority of cases in soils.The above flow rule is known as associative 

since the strain rate is normal to the yield surface, with the advantage that the non-

negativity of the dissipation is always satisfied. Geomaterials exhibit complex volumetric 

behaviours and sometimes call for non associative flow rules: 

 穴資使 = 穴膏 擢直擢時嫗嫗 			 ; 			穴惨賃 = 穴膏 擢直擢冊暫 			 ; 			穴膏 半 ど			; 		繋 判 ど (87) 

However, the non-negativity of the dissipation is not always satisfied in this last case. 

13.3 Poroviscoplastic behaviour  

Recall that we have to satisfy: 

 Φ托 = 時: 資岌使 + 喧剛岌椎 	+ 冊暫 ∙ 惨岌 暫 半 ど (88) 

The dissipation potential is in this case differentiable so that we can write: 

 砿∗ = 砿∗岫時, 喧, 冊賃 	岻			; 		資岌使 = 擢釘∗擢時 	 ; 			剛岌椎 = 擢釘∗擢椎 			 ; 			惨岌 賃 = 擢釘∗擢冊入	 (89) 

Hence: 

 Φ托 = 時: 擢釘∗擢時 + 喧 擢釘∗擢椎 + 冊賃 ∙ 擢釘∗擢冊暫 半 ど (90) 

Similar to the case of plasticity, we can simplify by supposing  剛岌椎 = 決香岌椎 = 決資岌椎: 掘 and 時′ = 時 + 決喧	掘. We then require the dissipative potential to satisfy: 

 砿∗ = 砿∗岫時′, 冊賃	岻				; 			資岌使 = 擢釘∗擢時嫗 				 ; 				惨岌 暫 = 擢釘∗擢冊暫	 (91) 
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For example, if we take: 

 砿∗ =	 怠態挺 極繋岫時′, 冊賃岻玉態	 (92) 

We get: 

 資岌使 = 擢釘∗擢時嫗 =	 怠挺 極繋玉 擢庁擢時嫗 			 ; 				惨岌 暫 = 擢釘∗擢冊暫 = 怠挺 極繋玉 擢庁擢冊暫 (93) 

14. Applications 

14.1 Example 1 – Hardening plasticity – EPS geofoam 

In the following example we illustrate the first type of use of the second thermodynamic 
principle discussed in Section 6, namely, by verifying a constitutive model of EPS geofoam a 
posteriori for thermodynamic consistency. This model was developed by the authors (Wong 
and Leo, 2006) based on experimental results from a series of standard “drained” triaxial 
tests. It initially adopted the Mohr-Coulomb yield function used widely in soil mechanics 
but upon further testing with a true triaxial apparatus (Leo et al., 2008), a Drucker-Prager 
type yield function was subsequently preferred. This is written as: 

 繋岫時, 欠岻 = 紐ぬ雑態 − 決荊怠 − 欠 = ど  (94) 

i.e. 

 穴繋 = 示擦示時 ∙ 時 + 示擦示珊 ∙ 穴欠 = ど  (95) 

where 薩怠 = 建堅岫時岻 is the first stress invariant, 雑態 = 怠態 史: 史 is the second stress invariant and b is 

a material constant. Here 欠岫堅岻 = 欠待 + 紅堅 is the hardening law accounting for the isotropic 
hardening effects; 欠待, 紅 are material constants and 堅 is an internal variable chosen as the 
equivalent deviatoric plastic strain defined by: 

 堅 = 完 謬層匝蚕岌 使: 蚕岌使嗣宋 穴酵  (96) 

Referring to the discussion in Section 11, we observe that equation (94) is a particular form 

of (27), 欠岫堅岻 of 冊賃岫惨賃岻, and (96) is the equivalent of (39). Geometrically, the surface of 

equation (94) corresponds to a conical surface, with the symmetry axis coinciding with the 

hydrostatic axis. The apex angle is governed entirely by the constant b, whereas a, together 

with b, determines the distance separating the cone tip from the origin. According to the 

laws of thermodynamics, an associative flow rule should have been adopted for the plastic 

strain (i.e. 資岌椎 = 膏岌 擢庁擢時 in equation (28)) for this constitutive model, but we chose a non-

associative flow rule instead where, 

 資岌使 = 膏岌 擢弔擢時 ; 罫岫時岻 = 紐ぬ雑態 − 算荊怠  (97) 

c is a rheological parameter which depends on the initial stress. This is because experimental 
measurements suggest that the plastic volumetric strain is better represented by the plastic 
potential given in (97) rather than the yield function of (94). As discussed earlier, this means 
that the thermodynamics principle in terms of the non-negativity of the dissipation may 
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possibly be violated in some evolutions since the normality rule (plastic strain increment 
being normal to the yield function) is not being followed. The associative flow rule, 
however, has been a problem with some geomaterials such as soils and rocks in that it tends 
to erroneously predict plastic volumetric strain. This is one instance where the insight 
provided by thermodynamics into post yielding volumetric behavior is seemingly at odds 
with experimental evidence. In these cases it is widely accepted that the plastic volumetric 
behavior would be better captured using a non-associative flow rule. These cases also 
demonstrate that while thermodynamics insights provide useful guidance to help engineers 
focus on important aspects of the constitutive relationships in continuum mechanics, it is 
necessary that these insights should ultimately be supported by experimental evidence.  

14.2 Example 2 – Poroelasticity: closure of a spherical cavity  

This example dealing with the closure of a deeply embedded cavity in poroelastic medium 

was previously studied by the authors (Wong et al. 2008). Here we illustrate the second type 

of use of the second thermodynamic principle discussed in Section 6, where the 

thermodynamics concepts from Section 13.1 are applied to formulate the constitutive 

relationships that lead, importantly, to the analytical solutions for the closure of a spherical 

cavity. The closure constitutes part of a life cycle of an underground mining cavity idealised 

by four stages. Initially, the ground is in a state of hydro-mechanical equilibrium. The cavity 

is then excavated and an internal support is provided to maintain its stability. Various 

techniques of support exist. For example, it can be evenly spaced steel bolts or a layer of 

shotcrete or a combination of them. For modelling purposes, this support can be assimilated 

to a layer of elastic material lining the cavity walls. At the end of its service life, the cavity is 

backfilled with a poro-elastic material before being abandoned. We were interested in the 

long term evolution of the hydro-mechanical fields in the surrounding medium and in the 

backfill after the its abandonment, when the support starts to deteriorate. This problem 

deals with a special case of the reversible behaviour where the intrinsic dissipation vanishes, 

namely Φ暢 = ど (as opposed to the more general case of irreversible behaviour for materials 

with plasticity and/or viscosity), leading to the state equation (67) and the constitutive 

equations (70) for isotropic poroelastic material. Limiting ourselves to small strains, we 

define: 

 穴購沈珍 = 購沈珍 − 購沈珍待 	   ;    穴ε沈珍奪 = 綱沈珍勅 − 綱沈珍待    ;   穴喧 = 喧 − 喧待   (98) 

where 購沈珍待 , 綱沈珍待 , 喧待 denotes the initial stress, strain, pore pressure respectively. We make 

further assumptions that the solid grains of the medium are incompressible, and it thus 

holds that the skeletal volumetric change 穴香勅 = 穴綱賃賃勅  must be the same as the change in the 

porosity 穴剛勅, that is: 

 穴香勅 = 穴剛勅 (99) 

By comparing (99) to the second equation of (70), it is evident that the values of Biot 

coefficients must be: b = 1 and な 軽⁄ = ど. Taking initial strain 綱沈珍待 = ど, equation (70) thus 

yields the following constitutive relationships for a linear isotropic poroelastic material: 

 購沈珍 − σ辿棚待 = 岾計 − 態戴罫峇 ϵ奪	絞沈珍 + に罫綱沈珍勅 − 岫喧 − 喧待岻		絞沈珍 			; 			剛 − 剛待 =	香勅    (100) 
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 Since we are clearly dealing with a poroelastic medium, the superscript ‘e ‘ denoting elastic 
strain shall be omitted in Example 2 without ambiguity, for the sake of brevity. For the fluid 
phase of the porous material, the constitutive equation follows from the thermodynamically 
consistent Darcy’s law, equation (78). Here, after neglecting inertia effects but not body 

forces due to gravity g, the fluid mass flux, 始捗 = 貢捗券盤惨捗 − 惨鎚匪 is related to the 

thermodynamic forces as: 始捗 貢捗⁄ = 膏朕盤−賛司珊纂喧 + 貢捗賛匪. At t = 0, the fluid is assumed to be 

in hydraulic equilibrium, implying that: ど = 膏朕盤−賛司珊纂喧待 + 貢捗賛匪. The difference between 

these two equations yields: 

  始讃 貢捗⁄ = −膏朕賛司珊纂岫喧 − 喧待岻  (101) 

As shown above, insights from thermodynamics principles have lead to constitutive 
equations (100) and (101). These equations thus allow us to develop a set of governing 
equations which is applicable to the cavity closure problem. These equations are then solved 
with respect to the initial and boundary conditions for a spherical cavity to obtain a set of 
analytic solutions, of which a detailed discussion is given in Wong et al. (2008).  

14.3 Example 3 – Poroviscoelasticity: closure of long cylindrical tunnel 

Example 3 illustrates the use of thermodynamics principles in formulating constitutive 

equations for a poro-viscoelastic medium. The ultimate purpose here is also to develop 

solutions for a long horizontally aligned tunnel with a circular cross-section embedded in a 

poro-viscoelastic massif. The setting of the problem is similar to Example 2 discussed above 

except that the spherical cavity is replaced by a long lined tunnel (Dufour et al. 2009). We 

start by restricting to small strain problems where the strain tensor of a viscoelastic material 

can be decomposed into an elastic part (denoted by superscript  ‘e ’) and a viscoelastic part 

(superscript ‘ ’): 

 綱沈珍 = 綱沈珍勅 + 綱沈珍程      (102) 

The strain and stress tensors are separated into isotropic and deviatoric parts as follow: 

 綱沈珍 = 怠戴 香絞沈珍 + 結沈珍          ;            購沈珍 = 購絞沈珍 + 嫌沈珍    (103) 

where 香, 結沈珍 are the mean and deviatoric strains defined previously; 購 = 購沈珍 ぬ⁄  is the mean 

stress and 嫌沈珍 = 購沈珍 − 購絞沈珍
 
is the deviatoric stress tensor. It is noted that the decomposition 

into elastic and viscoelastic parts in (102) apply separately to 香, 結沈珍 and the porosity as well 

such that: 

 香 = 香勅 + 香程       ;            結沈珍 = 結沈珍勅 + 結沈珍 ;       剛 − 剛待 = 剛勅 + 剛程      (104) 

Correspondence between volumetric strain and porosity change holds for each of the elastic 
and viscoelastic components: 

 香 = 剛 − 剛待          ;        香勅 = 剛勅           ;      香程 = 剛程             (105) 

14.3.1 Poroviscoelastic constitutive equations  

Following (74), we postulate the existence of trapped energy due to viscosity that depends 
on viscous strains only and write the free energy of the skeleton as: 
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 皇史盤香勅 , 結沈珍勅 , 剛奪, ϵ蓄, 結沈珍程 匪 = 激鎚盤香勅 , 結沈珍勅 , 剛奪匪 + 戟盤ϵ蓄, 結沈珍程 匪   (106) 

where the following relationships are considered for the functions 激鎚, 戟: 

 激鎚盤香勅 , 結沈珍勅 , 剛奪匪 = 怠態計待香勅態 + 航待結沈珍勅 態 + 怠態軽待岫香勅 − 剛勅岻態     (107) 

 戟盤ϵ蓄, 結沈珍程 匪 = 怠態 行香程態 + 鋼結沈珍程 態       (108) 

Specialising to a linear isotropic porous material, after substituting (107) into (76) and taking 
into consideration the decomposition into the mean and deviatoric parts, and the initial 
stresses we get: 

 岫購 − 購待岻 + 岫喧 − 喧待岻 = 計待岫香 − 香程岻   (109) 

 嫌沈珍 − 嫌沈珍待 = に航待盤結沈珍 − 結沈珍程 匪   (110) 

 喧 − 喧待 = −軽待岫香勅 − 剛勅岻     (111) 

K0, 0, N0 are the initial or “short term” analogues of K, , N respectively. Further 
substitution of (106) – (111) into (64) yields: 

 岶岫購 − 購待岻 + 岫喧 − 喧待岻 − 行香程岼香岌程 + 版盤嫌沈珍 − 嫌沈珍待 匪 − に鋼結沈珍程 繁結岌沈珍程 半 ど     (112) 

In the next step, a convex dissipative potential 鴫盤香岌程, 結岌沈珍程 匪 is introduced so that based on 

(112): 

 
擢鴫擢敵岌 盃 = 岫購 − 購待岻 + 岫喧 − 喧待岻 − 行香程       ;         

擢鴫擢勅岌日乳盃 = 盤嫌沈珍 − 嫌沈珍待 匪 − に鋼結沈珍程   (113) 

which leads to: 

 鴫盤香岌程 , 結岌沈珍程 匪 = 怠態 耕香岌程態 + 考結岌沈珍程 態       (114) 

where positivity of  耕 半 ど; 	考 半 ど ensures the convexity of 鴫盤香岌程, 結岌沈珍程 匪. From the above 

developments, the constitutive equations relating stresses to strains for an isotropic poro-

viscoelastic material may thus be defined by equations (109)-(111) as well as by the 

following equations.  

 岫購 − 購待岻 + 岫喧 − 喧待岻 = 行香程 + 耕香岌 程      (115) 

 嫌沈珍 − 嫌沈珍待 = に鋼結沈珍程 + に考結岌沈珍程      (116) 

where 行, 耕, 鋼, 考	are rheological constants. Note that these equations have been formulated 
based on the thermodynamics approach while adopting the convex dissipative potential, 鴫盤香岌程, 結岌沈珍程 匪, in equation (114). Before proceeding further, we will now introduce the Laplace 

transform, defined for a typical function 血岫堅, 建岻 as follows: 

 血岫堅, 嫌岻 = 詣岶血岫堅, 建岻岼 = 完 血岫堅, 建岻結貸鎚痛著待 穴建;血岫堅, 嫌岻 = 詣貸怠版血岫堅, 建岻繁 = 怠態訂沈 完 血岫堅, 建岻結鎚痛箪袋沈著箪貸沈著 穴嫌 (117) 

where s is the Laplace transform parameter and i2 = -1. In the notations adopted here, the 
bar over the symbol denotes the transformed function represented by the symbol. The value 
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Γ is chosen such that all poles in the s-plane lie to the left of the vertical line Re(s) = Γ. Taking 
the Laplace transform of (109), (110), (113) and (116) and solving for the viscous volumetric 
and deviatoric strains give, 

 香程博博博 = 懲轍懲轍袋締袋抵鎚 香 ̅      ;         結̅沈珍程 = 禎轍禎轍袋鼎袋挺鎚 結̅沈珍   (118) 

The constitutive equations (115), (116), (118) are then used to developed governing 
equations for the closure of a long cylindrical tunnel in poroviscoelastic massif. Laplace 
transform solutions have been developed and discussed in detail in Dufour et al. (2009) to 
which interested readers may refer.  
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