
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322400147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


17 

Automated Model  
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1. Introduction 

High level models comprise both faulty and fault-free models. High level fault-free 
modeling may simply indicate behavior of a fault-free circuit, but normally it is not able to 
cope with faulty conditions with strong nonlinearity. The only way to solve this is to replace 
the fault-free model with a faulty one. Furthermore, in fault-free simulation, the difference 
in term of simulation speed between transistor level and high level may not be obvious, but 
this can be shown under fault simulation. High level fault modeling (HLFM) techniques 
have shown the potential ability to deal with at least some degree of nonlinearity in large 
systems.  
Unlike for linear systems, no technique currently guarantees for completely general 
nonlinear systems, even in principle, to produce a macromodel that conforms to any 
reasonable fidelity metric. The difficulty is due to the fact that nonlinear systems can be 
widely varied, with extremely complex dynamical behavior possible, which is very far from 
being exhaustively investigated or understood. Generally in view of the diversity and 
complexity of nonlinear systems, it is difficult to conceive of a single overarching theory or 
method that can be employed for effective modeling of an arbitrary nonlinear block.  
Models can be obtained either manually or automatically. Automated model generation 
(AMG) approaches are becoming an increasingly important component of methodologies 
for effective system verification. Similar to manual creation, AMG can generate lower order 
macromodels via an automated computational procedure by receiving the information from 
transistor level models (Roychowdhury 2003; Roychowdhury 2004). 
Unfortunately, there are not any approaches describing the use of AMG approaches for 
HLFM at a system level except for the publication in (Xia, Bell et al. 2010). For 
straightforward system simulation relatively simple models may be adequate, but they can 
prove inadequate during HLFM. The accuracy and speedup of existing models may be 
doubted when fault simulation is implemented because faulty behavior may force 
(nonfaulty) subsystems into highly nonlinear regions of operation, which may not be 
covered by their models. Multiple training data is required to cover the potentially wide 
range of operating conditions.  
The chapter is organized as follows. Section 2 reviews various AMG approaches using 
MATLAB. A specific AMG approach using MATLAB is presented in sections 3. Section 4 
demonstrates the results in simulated and real environments followed by conclusion for the 
chapter in section 5.  
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For clarity, an attempt has been made to adhere to a standard notational convention. Lower 
case boldface characters will generally refer to vectors. Upper case BOLDFACE characters 
will generally refer to matrices. Vector or matrix transposition will be denoted using (.)T and 
(.)* denotes conjugation for complex valued signals. K K×ℜ  denotes the real vector space of 
K×K dimensions. 

2. Review of automated model generation approaches using MATLAB 

Automatic generation of circuit models for handling strong nonlinearity has received great 
interest over the last few years. It is essential for realistic exploration of the design space in 
current and future mixed-signal SoCs (system-on-chips) and SiPs (system-in-packages). 
Generally such techniques take a detailed description of a block such as SPICE level netlist 
and then generate a much smaller macromodel via an automated computational procedure. 
The advantage of this approach is its generality. As long as the equations of the original 
system are available numerically, knowledge of circuit structure, operating principles and so 
on are not very important (Roychowdhury 2003).  
The model generated by AMG can be structured as either linear-time invariant (LTI), linear-
time varying (LTV), nonlinear-time invariant or nonlinear-time varying. LTI no doubt form 
the most important class of dynamical systems. The basic structure of a LTI block for mixed 
mode circuits is illustrated in Fig. 1, where u(t) and y(t) represent inputs, and output to the 
system in the time domain, respectively. U(s) and Y(s) are forms in the Laplace domain. The 
definitive property of any LTI system is that the input and output are related by convolution 
with an impulse response h(t) in the time-domain, i.e., ( ) ( ) * ( )y t x t h t= , their transforms are 
related to multiplication with a system transfer function H(s), i.e., ( ) ( ) ( )Y s X s H s= ⋅ . Their 
relationship can be expressed by partial differential equations (PDEs) or ordinary 
differential equations (ODEs). Such differential equations can be easily implemented using 
analogue hardware description language (AHDL).  
A typical model structure for LTI is AutoRegressive with eXogenous (ARX) that is able to 
describe any single-input single-output (SISO) linear discrete-time dynamic system (Ljung 
1999). 
 

Impulse response h(t)

ODEs/PDEs 

Transfer function H(s)

u(t)/U(s) y(t)/Y(s) 

 
Fig. 1. Linear time-invariant block 

LTV models are used in practice because most real-world systems are time-varying as a 
result of system parameters changing as function of time. They also permit linearization of 
nonlinear systems in the vicinity of a set of operating points of a trajectory. Similar to LTI 
systems, LTV can also be completely characterized by impulse responses or transfer 
functions. The main difference between them is that time-shift in the input of LTV does not 
necessarily result in the same time-shift of the output. A basic structure of LTV is depicted 
in Fig. 2, where u(t) and y(t) represent inputs, and output to the system in the time domain, 
respectively. U(s) and Y(s) are forms in the Laplace domain.  
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Impulse response h(t,tau)

T-V ODEs/PDEs 

Transfer function H(t,s) 

u(t)/U(s) y(t)/Y(s)

 
Fig. 2. Linear time-varying block 

LTV are capable of handling time variation in state-space forms (Ljung 1999). Furthermore, 
nonlinear models such as the Wiener and Hammerstein model, and Situation-Dependent 
AutoRegressive with eXogenous (SDARX) give much richer possibilities to describe 
systems.  
These models can be generated by using estimation algorithms, which comprise lookup 
tables (Yang and McGaughy 2004), radial basis functions (RBF) (Mutnury, Swaminathan et 
al. 2003), artificial neural networks (ANN) (Davalo and Naïm 1991; Zhang and Gupta 2000) 
and its derivations such as fuzzy logic (FL) (Verbruggen and Babuška 1999) and neural-
fuzzy network (NF) (Uppal and Patton 2005), and regression (Simeu and Mir 2005). Model 
generators can also be categorized into the black, grey or white box approaches, depending 
on the level of existing knowledge of the system’s structure and parameters. Dong et al 
(Dong and Roychowdhury 2005) indicates that white-box methods can produce more 
accurate macromodels than black-box methods. However, this work was only applied to a 
limited number of digital circuits.  
Regression using MATLAB is an approach that is of interest in this chapter. It is a form of 
statistical modeling that attempts to evaluate the relationship between one variable (termed 
the dependent variable) and one or more other variables (termed the independent variables) 
(Ljung 1999). It can be divided into linear regression and nonlinear regression for generating 
linear or nonlinear models. (McConaghy, Eeckelaert et al. 2005; McConaghy and Gielen 
2005) use the regression approach (Hong, Sharkey et al. 2003), via the predicted residual 
error sums of squares (PRESS) statistic (Breiman 1996), to test predictive robustness of linear 
models that are generated by an automatic symbolic model generator named CAFFEINE 
(Canonical Functional Form Expression in Evolution). CAFFEINE takes SPICE simulation 
data as inputs to generate open-loop symbolic models by using genetic programming (GP) 
via a grammar that is specially designed to constrain the search to a canonical functional 
form without cutting out good solutions. Results show that these models are interpretable, 
and handle nonlinearity with better prediction quality than posynomials (coefficients of a 
polynomial need not be positive, and the exponents of a posynomial can be real numbers, 
while for polynomials they must be non-negative integers). However, McConaghy et al did 
not address whether the generated model can be fitted into a large system and model 
nonlinearity well. Additionally, speed of model generation was not mentioned. 
Unfortunately, AMG may produce high order models of excessive complexity for both 
continuous-time and discrete-time systems, so model order reduction (MOR) techniques are 
required. The purpose of MOR is to use the properties of dynamical systems in order to find 
approaches for reducing their complexity, while preserving (to the maximum possible 
extent) their input-output behavior. It comprises a branch of systems and control theory 
(Roychowdhury 2004). Combining MOR with the model structures produces new model 
structures dubbed LTI MOR (Pillage and Rohrer 1990), LTV MOR (Phillips 1998; 
Roychowdhury 1999) and weakly nonlinear methods including polynomial-based (Li and 
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Pileggi 2003; Li and Pileggi 2005), trajectory piecewise linear (TPWL) (Rewienski and White 
2001), and piecewise polynomial (PWP) (Dong and Roychowdhury 2003).  
Mathematically, a LTI model with a MOR method is expressed as a set of differential 
equations. In (1) u(t) represents the input waveforms to the block and y(t) are the outputs. 
The number of inputs and outputs is relatively small compared to the size of x(t), which is 
the state of the internal variables of the block. A, B, C, D and E are constant matrices, 

& , , , ( )n p p p pn nE A R B R C R u t R× ××∈ ∈ ∈ ∈ . 

 
( ) ( )

( ) ( ) ( )T

Ex Ax t Bu t

y t C x t Du t

= +

= +

$
 (1) 

MOR methods for LTI systems fall into two major groups: Projection-based methods and 
Non-projection based methods. The former consists of such methods as Krylov-subspace 
(moment matching methods), Balanced-truncation method, proper orthogonal decomposition 
(POD) methods etc. Krylov-subspace based techniques such as Padé-via-Lanczos (PVL) 
techniques (Feldmann and Freund 1995), Krylov-subspace projection methods were an 
important milestone in LTI MOR macromodeling (Grimme 1997). Non-projection based 
methods comprise methods such as Hankel optimal model reduction, singular perturbation 
method, various optimization-based methods etc. Via Krylov-subspace operation, reduced 
models are obtained in (2), where , , ,E A B C# ## #  are reduced order matrices, & q pE A R ×∈## , 

,   q p p qB R C R× ×∈ ∈## , W and V are matrices for spanning the matrices.  

 , , ,T T TE W EV A W AV B W B C CV= = = =# ## #  (2) 

However, the reduced models using Krylov methods retained the possibility of violating 
passivity, or even being unstable (Roychowdhury 2003).  
LTI MOR may not be applicable for many functional blocks in mixed signal systems that are 
usually nonlinear. It is unable to model behaviors such as distortion and clipping in 
amplifiers. Therefore, LTV MOR is required. The detailed behavior of the system is 
described using time-varying differential equations as shown in (3): 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )T

E t x A t x t B t u t

y t C t x t D t u t

= +

= +

$
 (3) 

The dependence of A, B, C, D and E on t is able to capture time-variation in the system. This 
time-variation is periodic in some practical case such as in mixers, the local oscillator input 
is often a square waveform or a sine waveform, switched or clocked systems are driven by 
periodic clocks (Roychowdhury 2003). 
Although LTV MOR may be used when modeling some weakly nonlinear systems, in most 
of cases nonlinear system techniques are required for such systems. A standard nonlinear 
system formation is based on a set of nonlinear differential-algebraic equations (DAEs) 
shown in (4), where, nx R∈ , n is the order of matrices, x(t) and y(t) indicate the vectors of 
circuit unknowns and outputs, u is the input, ( )q ⋅  and ( )f ⋅  are nonlinear vector functions, 
and b and c are input and output matrices, respectively. 

 
( ( )) ( ( )) ( )

( ) ( )T

q x t f x t bu t

y t c x t

= +

=

$
 (4) 
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A polynomial approximation is simply extension of linearization, with f(x) and q(x) replaced 
by the first few terms of a Taylor series at the bias point x0 as shown in (5), where q(x) = x 
(assumed for simplicity), ⊗  is the Kronecker tensor products operator, 

0

1
!

i
i

n n
i x xi

f
A R

i x

×
=

∂
= ∈

∂
. The utility of this system in (5) is that it becomes possible to 

leverage an existing body of knowledge on weakly polynomial differential equation 
systems. 

 
( )

0 1 0 2 0 0 0( ( )) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

i
i

T

d
x t f x A x x A x x x x A x x bu t

dt

y t c x t

= + − + − ⊗ − + − +

=

A
 (5) 

Volterra series theory (Schetzen 1980) and weakly nonlinear perturbation techniques 
(Nayfeh and Balachandran 1995) can then be used to justify a relaxation-like approach for 
this kind of systems. The former provides an elegant way to characterize weakly nonlinear 
systems in terms of nonlinear transfer functions (Volterra 2005). By using Volterra series, 
response x(t) in (5) can be expressed as a sum of responses at different orders, i.e.,  

1

( ) ( )n
n

x t x t
∞

=
=∑ , xn is the nth order response. The linearized first order through third order 

nonlinear responses in (5) need to be solved recursively using Volterra series as shown from 

(6) to (8), where  
1 2 1 2 2 1

1
( ) (( ) ( ))

2
x x x x x x⊗ = ⊗ + ⊗ . 

 1 1 1( ( ))
d

x t A x bu
dt

= +  (6) 

 2 1 2 2 1 1 1 1( ( )) ( ) ( )
d d

x t A x A x x x x
dt dt

= + ⊗ − ⊗  (7) 

 3 1 3 2 1 2 3 1 1 1 1 1 1 1 2( ( )) 2 ( ) ( ) ( ) 2( )
d d

x t A x A x x A x x x x x x x x
dt dt

= + ⊗ + ⊗ ⊗ + ⊗ ⊗ − ⊗  (8) 

 

The nth-order response can be related to a Volterra kernel of order n, hn(τ1,...,τn), which is an 
extension to the impulse response function of the LTI system exhibited in (9), to capture 
both nonlinearities and dynamics by convolution. Volterra kernels are the backbone of any 
Volterra series. They contain knowledge of a system’s behavior, and predict the response of 
the system (Volterra 2005). 

 1 1 1( ) ( , , ) ( ) ( )n n n n nx t h u t u t d dτ τ τ τ τ τ
∞ ∞

∞ ∞

= − −∫ ∫… … … …  (9) 

Alternatively, a variant that matches moments at multiple frequency points is shown in (10), 
where hn(τ1,...,τn) is transformed into the frequency domain via Laplace transform.  

 1 1( )
1 1 1( , , ) ( , , ) n ns s

n n n n nH s s h e d dτ ττ τ τ τ
∞ ∞

− + +

−∞ −∞

= ∫ ∫ A… … … …  (10) 
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1( , , )n nH s s…  is referred to as the nonlinear transfer function of order n. The nth-order 
response, xn, can also be related to the input using 1( , , )n nH s s… .  
Unfortunately, the size of Volterra based nonlinear descriptions often increase dramatically 
with problem size. Li et al  combines and extends Volterra and projection approaches using 
a method termed NORM (Nonlinear model Order Reduction Method) to reduce the model 
size (Li and Pileggi 2003).  
Outside a relatively small range of validity, but polynomials are known to be extremely 
poor for global approximation (Roychowdhury 2004), so other methods such as piecewise 
approximation can be used to achieve better solutions. (Rewienski and White 2001) 
developed an approach termed trajectory piecewise-linear (TPWL) using a piecewise-linear 
(PWL) system. Initially Rewienski et al select a reasonable number of “centre points” along a 
simulation trajectory in the state space, which is generated by exciting the circuit with a 
representative training input. Around each centre point, system nonlinearities are 
approximated by implicitly defined linearization. A model is generated if the current state 
point x is ‘close enough’ to the last linearized point xi, i.e., ix x ε− < , which means that x 
lies within a circle of radius of ┝ and centred at xi. Each of the linearized models takes the 
form shown in (11), with expansions around states x0 ,…, xs-1: where x0 is the initial state of 
the system and Ai are the Jacobians of f(.) evaluated at states xi.  

 ( ) ( )i i i

dx
f x A x x Bu

dt
= + − +  (11) 

A Krylov subspace projection method is then used to reduce the complexity of the linear 
model within each piecewise region. Rewienski et al then combined all s linear models 
according to a weighting equation in (12), where ( )iw x# are weights depending on state x. 

 
1 1

0 0

( ) ( ) ( ) ( )
s s

i i i i i
i i

dx
w x f x w x A x x Bu

dt

− −

= =
= + − +∑ ∑# #  (12) 

TPWL is more suitable for circuits with strong nonlinearities such as comparators, and has 
more advantages than PWL because as the dimension of the state-space in PWL grows one 
concern with these methods is a potential explosion in the number of regions which may 
severely limit simplicity of a small macromodel. However, Rewienski et al did not address 
the criterion of the training stimulus. Moreover, because PWL approximations do not 
capture higher-order derivative information, the ability of TPWL to reproduce small-signal 
distortion or intermodulation is limited. Therefore, Krylov-TBR TPWL was developed using 
TBR projection to obtain further order reduction (Vasilyev, Rewienski et al. 2003).  
The piecewise polynomial (PWP) technique (Dong and Roychowdhury 2003), which is a 
combination of polynomial model reduction with the trajectory piecewise linear method, is 
able to improve TPWL by dividing the nonlinear state-space into different regions, each of 
which is fitted with a polynomial model around the centre expansion point. These points 
can be selected either from “training simulation” or from DC sweeps. The resulting 
macromodel is refined incrementally by new piecewise regions until a desired accuracy is 
reached. Firstly they expand a polynomial function into many points, each of them is then 
simplified by approximating the nonlinear function in each piecewise region to obtain much 
smaller size models. These models are then stitched together. Finally a scalar weight 
function is used to ensure fast and smooth switching from one region to another. A key 
advantage of PWP is that a macromodel generated can capture not only linear weakly 
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nonlinear (such as distortion and intermodulation) but also strongly nonlinear (such as 
clipping and slewing) system dynamics. Moreover, fidelity in large-swing and large-signal 
analysis can be retained. PWP is further implemented in (Dong and Roychowdhury 2004) 
for extracting broadly applicable general-purpose macromodels from SPICE netlists such 
that the generated model is able to capture different loading effects, simultaneous switching 
noise (SSN), crosstalk noise and so on. Furthermore, a speed up of eight times simulation 
speed is achieved (Dong and Roychowdhury 2005). However, multiple training data has to 
be used to cover different operating regions. 
Xia et al (Xia, Bell et al. 2010) developed an algorithm to generate multiple macromodels 
automatically to perform HLFM and high level modeling (HLM). Moreover, the models 
generated contain low-orders (2nd), so MOR is not required. More details on the approach 
will be discussed in section 3. 

3. The multiple model generation approach using MATLAB 

3.1 Introduction to least square estimate 

Linear models can be obtained using recursive least square (RLS) estimation. It is a 
mathematical procedure for finding the best-fitting curve to a given set of points by 
minimizing the sum of the squares of the offsets of the points from the curve (Ljung 1999). 
Its general process is shown in Fig. 3, where u(t) is the input stimulus, which is used to 
connect both a system and the estimator; y(t) is the output response from a system using the 
transistor level simulation (TLS); yE(t) is the output response using an estimation approach 
such as the RLS. 
 

 

Output y(t)Input  u(t)

 

A system 

(TLS) 

 

Estimator  

(RLS) 

 

Original 

 signals 

- 

Estimated 

Output yE(t) 

 
Fig. 3. General process of the estimation 

Both the system and estimator use the input stimulus to produce individual output 
response, which are then compared, if the difference is significant, the parameters of the 
model need to be modified in order to reduce difference. 
Wilkinson et al (Wilkinson, Roberts et al. 1991) combined RLS estimation with the delta 
operator (Middleton and Goodwin 1990) to obtain the transfer function of a real time 
controller for a servo motor system instead of using discrete-time transfer function because 
that model coefficients in discrete-time models strongly depend on the sampling rate, which 
result in aliasing and slow simulation time. By using the delta operator the coefficients 
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produced relate to physical quantities, as in the continuous-time domain model, but are less 
susceptible to the choice of sampling interval (Wilkinson, Roberts et al. 1991). Initially a 
discrete-time system is given in (13): 

 1 2 1 2( ) ( 1) ( 2) ( ) ( 1) ( 2) ( )na nby t a y t a y t a y t na b u t b u t b u t nb= − − − − − − + − + − + −… …  (13) 

A linear regression form of the system is shown in (14): 

 ( ) ( )Ty t tϕ θ=  (14) 

where θ is the parameter vector shown in (15), φ(t) is the regression vector displayed in (16). 

 [ ]1 2 1 2
T

na nba a a b b bθ = … …  (15) 

 ( ) [ ( 1) ( ) ( 1) ( )]T t y t y t na u t u t nbϕ = − − − − − −… …  (16) 

The least square estimate (LSE) of the parameter vector can be found from measurements of 
u(t) and y(t) using (17) (Ljung 1999): 

 
1

1 1

1 1
( ) ( ) ( ) ( ) ( )

N N
T

t t

t t t t y t
N N

θ ϕ ϕ ϕ
−

= =

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
∑ ∑  (17) 

Its recursive form is expressed in (18), where ┝(t) is the prediction error, λ(t) represents 
forgetting factor (ff), P(t) indicates covariance matrix, and L(t) is the gain vector. 
 

 

( ) ( 1) ( ) ( )

( ) ( ) ( ) ( 1)

( 1) ( )
( )

( ) ( ) ( 1) ( )

1 ( 1) ( ) ( ) ( 1)
( ) ( 1)

( ) ( ) ( ) ( 1) ( )

T

T

T

T

t t L t t

t y t t t

P t t
L t

t t P t t

P t t t P t
P t P t

t t t P t t

θ θ ε

ε ϕ θ
ϕ

λ ϕ ϕ

ϕ ϕ
λ λ ϕ ϕ

= − +

= − −
−

=
+ −

⎡ ⎤− −
= − −⎢ ⎥

+ −⎢ ⎥⎣ ⎦

 (18) 

 

The linear regression is then restructured using the delta operator as shown in (19) 
(Middleton and Goodwin 1990), where ├ represents delta, q is the forward shift operator 
and Ts is the sampling interval. The relationship between ├ and q is a simple linear function, 
so ├ can offer the same flexibility in the modeling of discrete-time systems as q does.  
 

 
1q

Ts
δ

−
=  (19) 

 

This operator behaves as a form of the forward-difference formula, as shown in (20) (Burden 
and Faires 1985). This is used extensively in numerical analysis for computing the derivative 
of a function at a point.  

 
( ) ( )

'( )
f x h f x

f x
h

+ −
=  (20) 

www.intechopen.com



 
Automated Model Generation Approach Using MATLAB   

 

413 

The delta operator makes use of the discrete incremental difference (or delta) operator that 
whilst operating on discrete data samples, is similar to those of the continuous-time Laplace 
operator. A better correspondence can be obtained between continuous and discrete time if 
the shift operator is replaced by a difference operator that is more like a derivative 
(Middleton and Goodwin 1990).  
A similar procedure is used to achieve regression based on the delta operator. This starts by 
considering a continuous time transfer function shown in (21).  

 
1 0

0 1
1 0

1

( )
n n

n
m m

m

b s b s b s
G s

s a s a s

−

−
+ +

=
+ +

…
…

 (21) 

When Ts is sufficiently short, the continuous time transfer function G(s) is equal to the delta 
transfer function G(├) (Middleton and Goodwin 1990) displayed in (22).  

 
1 0

0 1
1 0

1

( )
( )

( )

n n
n

m m
m

y t b b b
G

u t a a

δ δ δδ
δ δ δ

−

−
+ +

= =
+ +

…
…

 (22) 

After arranging this, equation (23) is obtained: 

 1
1 0( ) ( ) ( ) ( ) ( )m m n

m ny t a a y t b b u tδ δ δ−= − + + + + +… …  (23) 

This can be written as (24) (Middleton and Goodwin 1990), which is similar to (14): 

 ( ) ( )m Ty t tδ ϕ θ=  (24) 

where 

[ ]1 2 0 1
T

m na a a b b bθ = … …  

1 0( ) [ ( ) ( )T mt y t y tϕ δ δ−= − −…   0( ) ( )]nu t u tδ δ…  

Using a similar approach to LSE in the discrete-time transform, the parameter vector is 
obtained using the delta operator in (25):  

 
1

1 1

1 1
( ) ( ) ( ) ( ) ( )

N N
T m

t t

t t t t y t
N N

θ ϕ ϕ ϕ δ
−

= =

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
∑ ∑  (25) 

RLS is also obtained in (26), as shown that it is similar to equation (18), the difference is that 
the vectors including , ,yθ ε  have been deltarised. 

 

( ) ( 1) ( ) ( )

( ) ( ) ( ) ( 1)

( 1) ( )
( )

( ) ( ) ( 1) ( )

1 ( 1) ( ) ( ) ( 1)
( ) ( 1)

( ) ( ) ( ) ( 1) ( )

m T

T

T

T

t t L t t

t y t t t

P t t
L t

t t P t t

P t t t P t
P t P t

t t t P t t

θ θ ε

ε δ ϕ θ
ϕ

λ ϕ ϕ

ϕ ϕ
λ λ ϕ ϕ

= − +

= − −
−

=
+ −

⎡ ⎤− −
= − −⎢ ⎥

+ −⎢ ⎥⎣ ⎦

 (26) 
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However, the approach in (Wilkinson, Roberts et al. 1991) is only available to single-input 
single-output (SISO) systems. 

3.2 System development using delta transfer function 

In this section a novel AMG approach named multiple model gradation system using delta 
transfer operator (MMGSD) is developed. The concept of process is shown in Fig. 4. The 
MMGSD generates macromodels by observing the variation in output voltage error against 
input range. The advantage is that the estimated signal can be adjusted recursively in time 
to handle nonlinearity. It consists of two parts: the automated model estimator (AME) and 
automated model predictor (AMP). The AME implements the model generation algorithm, 
and the AMP uses these models from AME to predict signals in the simulation with 
different types of stimuli. The system is based on a set of models n. The location of each 
model is decided by the thresholds seen in u(t). 
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Fig. 4. Schematics for the procedure of MMGSD 

The AME comprises three stages: the pre-analysis, estimator and post-analysis. The general 
structure is shown in Fig. 5. 
Pre-analysis is mainly to set up conditions such as input range and the number of intervals 
for model creation and is only performed once; the estimator is used to determine the 
quality of output data; post-analysis is the critical step because procedures for creating 
models are implemented here. This process terminates when no new model is created.  
Pre-analysis is mainly to set up conditions such as input range. In the whole algorithm, this 
stage is only run once. The Estimator process starts by running through all samples using 
the for loop in MATLAB. The indices for creating the threshold are found with a find 
statement. A statement min is used to guarantee that only the smallest index is selected, and 
then the new model pointed by this index is generated. Parameters (th) and the covariance  
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matrix (p) in each model need to be created and updated. The innovation error (epsi) and 
residual error (epsilon) are all calculated. Moreover, the prefilter needs also to be updated. 
The estimation is not over until all samples finish (Ljung 1999). 
 

start 

Pre-analysis 

Create a model 

Post-analysis   

Estimator 

yes

no 

end 

Is new model 

needed? 

 
Fig. 5. The flowchart for the AME 

Post-analysis is the critical step because procedures for creating models are run here. The 
workflow is described in Fig. 6. The decision to add a new model to an interval of input 
voltage is based on (27), where mediumRange is half of the difference between the 
maximum amplitude of the error (highInterval) and the minimum amplitude of the error 
(lowInterval) for the interval. criticalRange is the equivalent summation. criteria calculated 
for the interval results from the comparison of these measures and that of the central 
interval of the simulation (mediumRange(central)).  

 

( ) / 2

( ) / 2

[ ( )]

mediumRange highInterval lowInterval

criticalRange highInterval lowInterval

criteria mediumRange mediumRange central criticalRange

= −
= +

= − −
 (27) 

If the difference between two mediumRange is greater than the criticalRange, one model is 
added within the jth interval (if there are j intervals), otherwise no action is taken. If j is 
greater than a central point, the threshold will be set at the lower range, otherwise it is set at 
the higher range in order to obtain the position close to the central point. In order to increase 
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simulation speed a shift mechanism is used to delete equivalent models. Finally the new 
threshold array is sorted into monotonic order. Only one model is created per iteration, 
because the error profile is recalculated whenever a model is added. 
The AMP is used to verify the AME system. It loads models generated by the AME to 
predict output responses. 
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Fig. 6. The algorithm for post-analysis 
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The model structure is based on the RARMAX system (Ljung 1999) but with modification 
since RARMAX is under the discrete-time transform, whereas the MMGSD is based on delta 
transform. Therefore, during simulation (estimation) some quantities in the system need to 
be either deltarised or undeltarised, for example, the residual error epsilon in the AME and 
AMP is already deltarised, but during the vector update the undeltarised value is required. 
Therefore, we create two functions in the MMGSD: the Deltarise function and Undeltarise 
function. The former is to generate derivative vectors based on original vectors. The 
undeltarise function requires original data during the estimation. These two functions are 
used in different places in the MMGSD. 

3.2.1 The deltarise function 

The deltarise function is used to find the deltarised value using the delta operator given in 
(28), where delta (├) is related to both the present and future values, Ts is the sampling rate, 
q is the forward shift operator used to describe discrete models, which is shown in (29).   

 
1

s

q d

T dt
δ

−
= ≅  (28) 

 1k kqx x +=  (29) 

The equivalent form of (29) is obtained in (30), the relationship between ├ and q is a simple 
linear function, so ├ can offer the same flexibility in the modeling of discrete-time systems as 
q does. 

 1 ( ) ( )k k s s s
k

s s

x x x kT T x kT dx
x

T T dt
δ + − + −

= = ≅  (30) 

The use of delta operator and its relationship is illustrated in the following example. It is a 
discrete-time model, but only output vectors are displayed in (31(a)). Initially each vector is 
subtracted from the one next to it, as seen in (31(b)), and is then divided by Ts, so deltarised 
value is obtained, as seen in (31(c)). However, the last one highlighted by the rectangle is not 
involved in the calculation. 

 ( ) ( ) ( ) ( )y t                y t 1         y t 2      y t 3− − −  (31(a)) 

 ( ) ( ) ( )y t 1          y t 2         y t 3− − −  (31(b)) 

 ( ) ( ) ( )y t 1     y t 2      y t 3δ δ δ− − −  (31(c)) 

 ( ) ( )y t 2     y t 3δ δ− −   (31(d)) 

To achieve ├2y(t-3), equation (31(c)) is subtracted from (31(d)), and then divided by Ts. The 
procedure is used to obtain ├3y(t-3) seen in (31(g)).  

 ( ) ( )2 2y t 2     y t 3δ δ− −  (31(e)) 

 ( )2 3y tδ −   (31(f)) 
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 ( )3 3y tδ −  (31(g)) 

Thus, the deltarised version of (31(a)) is obtained shown in (32). 

 ( ) ( ) ( ) ( )3 2 1 03      3     3    3y t y t y t y tδ δ δ δ− − − −  (32) 

The same procedure is also used for other vectors such as the inputs vectors u, e and the 
noise vector c. Delay is not included here. However, there is some difference such that in the 
input vector the current deltarised values (u(t), v(t)) are not required. 

3.2.2 The undeltarise function  

This function is based on (28) but with the modification, q = ├Ts+1, in order to model at the 
current time. An example is also used to demonstrate how this reverse algorithm works. It is 
a model in delta transform, but only the output vectors y are shown in (33(a)). Firstly each 
vector, except for the last one, highlighted by the rectangle because it is already 
undeltarised, is multiplied by Ts in (33(b)). We then add the output vectors as shown in 
(33(b)) and (33(c)), so undeltarised vectors are obtained in (33(d)), i.e., y(t-2) is obtained. 

 ( ) ( ) ( ) ( )3 2 1 0y t 3    y t 3    y t 3    y t 3δ δ δ δ− − − −  (33(a)) 

( )

( )

( )

( )

( )

( )

( )

( )

( )

3 2 1
s s s

2 1 0

2 1

T y t 3 T y t 3 T y t 3 (33(b))

                                     (33(c))y t 3 y t 3 y t 3

(33(d))y t 2y t 2 y t 2

δ δ δ

δ δ δ

δ δ

− − −
+ + +

− − −

−− −

E E E
 

To achieve y(t-1), equation (33(d)) is multiplied by Ts, and then we add the vectors shown in 
(33(e))- (33(g)). 

( )

( )

( )

( )

( )

( )

2 1
s s

1 0

1

T y t 2 T y t 2 (33(e))

                                                    (33(f))y 2 y 2

(33(g))y t 1y t 1

t t

δ δ

δ δ

δ

− −
+ +

− −

−−

E E
 

Finally y(t) is obtained using the same procedure as above. 

( )

( )

( )

1 (33(h))y 1

                                                                 (33(i))y 1

(33( j))y

sT t

t

t

δ −
+
−
E

 

Therefore, the undeltarised version of (33(a)) is achieved shown in (34). 
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 ( ) ( ) ( ) ( )y       y 1     y 2     y 3t t t t− − −  (34) 

The number of iterations depends on a variable called numb, the reason to use the variable is 
that during undeltarising, vectors such as output vector need to be undeltarised once to 
obtain the value at next time, but during the prefilter update, it needs to be fully 
undeltarsied. If a full undeltarisation is required, the variable is set to 0, otherwise an integer 
is selected. If the number is greater than the size of the vector array an error message is 
produced. 

3.2.3 Two functions utility in MMGSD 

It is known that the delta operator is a very high gain system because of the sampling 
interval Ts (10us in this case), so it is important not to put a vector or a variable in the wrong 
place during the manipulation, otherwise, the whole process may numerically explode very 
quickly.  
In this subsection some key modifications in the MMGSD based on the functions defined 
above are described in the following subsections. 

3.2.3.1 The AME  

In order to obtain the deltarised output data dy at current time and the deltarised vector 
array dphi, the vector array phi (φ) and the original output data y at current time are 
needed. The deltarise function is employed in (35). 

 ( )( )4y  y ,  dphi deltarise phi iiia Ts= ⎡ ⎤⎣ ⎦  (35) 

where iiia indexes the array for the output vector in phi. Ts is the sampling interval, dphi4y 
is the deltarised vector array for output, in which the first element is dy, and all other 
elements are assigned to dphi(iiia).  
Similarly input vectors u and e, and the noise vector c are deltarised values for dphi. 
However, their deltarised values at the current time are not required.  
Secondly in the prefilter ztil in RML, the relationship between psi (ψ) and phi (φ) in z 
transform is expressed as: phi(t) = c(z)*psi(t), or  phi(t) = psi(t)+c1psi(t-1)+…+cncpsi(t-nc), 
where c is the polynomial coefficients [1, c1, …, cnc] for noises to improve the property of psi 
so that the estimator converges more reliable. It is seen that phi(t) is related to psi at both 
current and previous time. The relationship between psi and phi in delta (├) transform is 
expressed as in (36), where the c polynomial is a deltarised version of the coefficients, 

 ( ) ( ) ( )phi t c psi tδ= ⋅  (36) 

or its full expression in (37).  

 1 1 2
1( ) ( ) ( ) ... ( )nc nc nc

ncphi t nc psi t nc c psi t nc c psi t ncδ δ δ− − −− = − + − + + −  (37) 

To achieve deltarised psi at current time, this equation is manipulated as shown in (38). It is 
a two-dimensional array, the number of rows is equal to the size of vectors in phi and the 
number of columns is equal to the number of terms in the c polynomial.  

 ( ) ( ) ( ) ( )1 1 2
1      nc nc nc

ncpsi t nc phi t nc c psi t nc c psi t ncδ δ δ− − −− = − − − −…− −  (38) 
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When using the z transform, (Ljung 1999) makes use of the fact that past values of psi and 
phi are readily available in the estimator, so that psi(t) can be obtained easily from available 
data vectors in the estimator. This is because the nature of the data does not change with 
storage position in the data vector. However, when using the delta transform ( )-1 -nc psi t ncδ  
cannot be obtained using the same procedure, because samples in the data vector are 
different orders of ├. All these data vectors have to be refilled at each sampling interval.  
The vectors in ( )1nc psi t ncδ − −  are shown in (39), if, for example, the coefficients array nn is 
[3 4 2 1 4]. 
 
 

2 0 3 0 1 0 3 0( 3) ( 3), ( 4) ( 4), ( 2) ( 2),1, ( 4) ( 4)y t y t u t u t t t v t v tδ δ δ δ δ ε δ ε δ δ− − − − − − − − − −… … …  (39) 
 
 
 

2 0( 3) ( 3)y t y tδ δ− − − −…  are obtained by deltarising ( 1) ( 3)y t y t− − − −…  using deltarise 
function. The undeltarise function in 0 is also required to firstly fully undeltarise each row 
of dpsi at previous time to achieve the current time psi(t), e.g., ( 1) ( 3)y t y t− − − −…  is 
achieved by fully undeltarising 2 0( 3) ( 3)y t y tδ δ− − − −… . The undeltarise function is 
employed again but only for a single iteration (numb = 1) to obtain dpsi the next time, so 
this matrix is shifted forward once. The last term (├0psi) in the array is then thrown away, 
so ├1psi becomes ├0psi and so on in order to add the new array in front and keep the 
algorithm consistent.  
Finally the vector array phi is updated with the new estimation including the noise vector 
that is updated by residual error epsilon. We must keep in mind that depsilon is the 
deltarised version of epsilon, in this case we only have depsilon at current time, thus the 
undeltarise function is needed for epsilon, as shown in (40). 
 

 epsilon = undeltarise([depsilon dphi(iiic)], Ts, 0) (40) 
 

where dphi(iiic) includes noise vectors at previous time, iiic is the index array for noise 
vectors in dphi, Ts is the sampling rate, 0 indicates the full undeltarisation as has been 
discussed above.  

3.2.3.1 The AMP 

Similar to the AME both the deltarise and undeltarise functions are required through the 
system. Unlike the AME, the predicted value y is used for updating the vector array phi, 
whereas in the AME inputs u, e and output y are obtained from the training data.  
To obtain the output data y, dy is fully undeltarised by employing the undeltarise function 
shown in (41): 
 

 y = undeltarise([dy  -dphi(iiia)], Ts, 0) (41) 
 

where dphi(iiia) includes the previous deltarised output vector, iiia is the array for the 
outputs in dphi, Ts is the sampling rate, 0 indicates the full undeltarisation is utilized.  

4. Results and discussions 

In this subsection the MMGSD is evaluated based on two experiments. The data obtained 
from a two-stage CMOS operational amplifier (op amp) as shown in Fig. 7. The op amp is 
used in an open-loop configuration.  
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Fig. 7. Schematic of the two-stage CMOS operational amplifier 

4.1 A single model detection 

The aim of the experiment is to prove that it is able to hunt for known models and converges 
well. The process follows two steps: 
1. The AMP system is applied to a known linear model. Both input data and output data 

are stored in a text file. 
2. The AME generates the model based on these data. 
The reason to work in the opposite way is that the AMP is less complicated than the AME 
and it is easier to find out whether or not the delta operator works well in the MMGSD. The 
system used in this example is a linear model given in (42). 
 

 2

(20 500) (10 250) 250

20 500
in ip offset

o

s V s V V
V

s s

− + + + +
=

+ +
 (42) 

 
 

Two types of training data are generated from the PRBSG for the MISO AMP: one is a 0.6V, 
50Hz square waveform with a 0.12V, 100kHz PRBS superimposed on it for the inverting 
input, a similar signal but with lower amplitude and frequency is applied to the 
noninverting input with 14,000 samples. Another training waveform is a 0.2V, 100Hz 
triangle waveform with a 0.05V, 100kHz PRBS superimposed on it for the inverting input, 
the second input is a similar signal but with lower amplitude and frequency for the 
noninverting input with 14,000 samples. 
The AME is employed to generate the model seen in (43) with Ts of 10us. It is seen that two 
models can be matched referring to their coefficients.  
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 2

(20 500) (10 250) 250.02

20 500
in ip offset

o

s V s V V
V

s s

− + + + +
=

+ +
 (43) 

4.2 High level fault modeling (HLFM) 

In this subsection HLFM is performed to evaluate the models generated using AMG in 
MATLAB. The training stimulus is a 2.5V, 83.33Hz triangle waveform with a 0.5V, 100kHz 
PRBS superimposed on it and connects to the inverting input of the open-loop op amp. A 
similar signal but with lower amplitude and frequency is applied to the noninverting input. 
The MMGSD generated five models to cover both fault-free and faulty situations. The model 
thresholds were -2.5V, -1.5V -0.5V, 0.5, 1.5V and 2.5V and number of training samples used 
for these models were 2263, 2010, 2267, 2452 and 3048, respectively. The generated models 
are then used to perform a fault simulation of a circuit built from these op amps.  
A standard quadratic low-pass filter, shown in Fig. 8, was used to investigate fault 
simulation with the generated model. The input signal was a 2.0V, 20Hz sinusoid. Transient 
analysis using SystemVision from Mentor Graphics results from 60ms to 200ms with a step 
of 0.1ms where used to compare output waveforms. 
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C1 
100k

100k 100k 100k

100k 
0.01u

0.01u
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1 2 3 4 5

gnd gnd gnd

In 
Out 

 
Fig. 8. The quadratic low-pass filter. 

Simulation of fault M9_dss_11 is shown in Fig. 9. Again the signal becomes nonlinear 
compared with the fault free case and in this instance the TLFS and HLFS are well matched 
throughout. TLFS takes 1.297s to complete simulation, and HLFS requires 2.543s 

5. Conclusion 

In this chapter automated model generation (AMG) techniques using MATLAB were 
outlined. The models generated were able to generate either SISO or MISO models from 
transistor level SPICE simulations. They showed the advantage and ability to perform high 
level fault modeling (HLFM) with the reasonable accuracy compared with transistor level 
fault simulation (TLFS). 

                                                 
1 short between drain and source on transistor 9 at op1 
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In section 1, various model structures were introduced, such as linear-time invariant (LTI) 
models, or nonlinear-time varying models.    

 

 
 

Fig. 9. The output signal from fault M9_dss_1 

In section 2, various estimation methodologies were concluded, which consisted of 
regression, table lookup, neural networks and so on. Particularly regression approaches 
were focused in this case. 
In section 3, an example of AMG termed multiple model generation system using delta 
operator (MMGSD) was introduced under MATLAB environment. We demonstrated how 
the delta operator was converted from the discrete-time operator, and how they could be 
used in the MMGSD.  
In section 4, two experiments were implemented. The first one was to demonstrate that the 
MMGSD was capable of detecting an existing model accurately. The second experiment 
proved that it could handle the low-pass filter and model nonlinear behaviors accurately.  
In summary, AMG approaches using MATLAB are efficient to support high level modeling 
and simulation, especially useful for high level fault modeling and simulation because of 
their accuracy.     
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