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1. Introduction

The imaging performance of a conventional far-field microscope is restricted by the so-called

diffraction limit Born & Wolf (1997). For an imaging wavelength of λ this corresponds to
a maximum attainable resolution of approximately λ/4 (laterally) and λ/2 (axially) when

using a high numerical aperture objective lens. With recent advances in molecular biology

some of the most interesting questions require a resolution beyond this. Higher resolution

has been typically achieved using lower wavelength probing/scanning fields, or resorting

to near-field scanning techniques (e.g. Scanning Near-field Optical Microscopy (SNOM)

Betzig et al. (1991)). Unfortunately these come with their limitations and undesirable side

effects, which prove to be limiting when it comes to studying molecular dynamics in their

native environment. Furthermore, the use of fluorescent labels for studying specific processes

and background suppression is desirable in many applications. Far-field optical microscopy

still remains the only practical non-invasive technique suitable for imaging fast dynamics over

extended periods and distances of interest with minimal perturbations to the system.

Fortunately, far-field optical microscopy capable of imaging beyond the conventional

diffraction limit for life science applications has seen many advances over the last few

decades. Our current arsenal of techniques include commercially well developed techniques

such as confocal laser scanning microscopy Cremer & Cremer (1978) and Total Internal

Reflection Fluorescence (TIRF) microscopy Axelrod (1981)1. The improved resolution with

these techniques is in itself however only by a factor ∼ 2 and often not sufficient in many cases.

More powerful techniques such as Fluorescence PhotoActivatable Localization Microscopy

(FPALM), Stimulated Emission Depletion (STED) Microscopy, Structured Illumination

1 Although this is in itself not practically speaking a superresolution technique as it only achieves
sub-diffraction limit axial localization over a single small axial region and can thus not be used to
distinguish two emitters separated by distances smaller than ∼ λ/2.
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Microscopy (SIM), and variations thereof - see e.g. review Hell (2007) - have been developed

which can offer lateral resolution improvements by factors of up to ≈ 20. Despite the great

success of these techniques they struggle with achieving sufficient temporal resolution in

many cases. They also struggle with achieving axial super-resolution, which when achievable
usually requires elaborate modifications to the setup. Currently there exists to our knowledge

no far-field optical microscopy technique that is capable of studying axial dynamics with

< 20nm resolution in live cells without either significantly perturbing the sample or requiring

an elaborate and/or costly microscopy setup.

Here we outline the computational aspects associated with a technique - Metamaterial

Substrate Modified Fluorescence (MeSuMo) Microscopy - we have recently developed that

allows for dynamic imaging with axial superresolution which is compatible with standard

epifluorescence microscope setups. As with majority of optical imaging techniques currently

used in the lifesciences, MeSuMo is essentially a fluorescence microscopy technique, requiring

the objects of interest to be labelled with suitable fluorescent emitters. Compared to other

techniques capable of achieving comparable resolution (e.g. Kanchanawong (2010)), MeSuMo

microscopy is, once optimized, experimentally very simple to implement and suitable for

fast dynamic studies on live cells. It relies on using microscope slides coated with an

optimized metal-dielectric coatings (metamaterials) which modify the emission spectrum

of fluorophores in a manner that is dependent on their separation from the surface of the

substrate. A spectral analysis over a sampled area allows one to infer the average separation

of the emitters in the studied region. In this chapter we will not aim to provide an exhaustive

description of the underlying principles and details associated with the technique, but rather

emphasis how the data analysis can be performed in a MATLAB environment. We note that

there exists an extensive underlying theoretical body of work in the various areas of classical

and quantum physics for modeling the near-field electromagnetic interaction with plasmonic

structures and the photophysics of fluorophores, which the interested reader may learn more

about through the referenced literature. To maintain the focus of the chapter we will thus in

most cases only present qualitative interpretations of the effects when relevant and quote the

essential results (equations and integrals) in a form that can be readily entered and computed

using MATLAB.

The chapter is divided into five sections that include: (1) modeling the metamaterial coated

substrates, (2) fitting the experimental data to the model, (3) modifying the model to obtain

best fit results, and (4) an example of the technique being implemented. We conclude the

chapter in section (5) with a discussion of future additions to the technique we are actively

working on.

2. Modeling the metamaterial coated substrate

An optical metamaterial is an artificial material typically consisting of subwavelength

scale metal and dielectric components. In the most general context its key feature is, in

a nutshell, that it has a unique response to certain electromagnetic fields that can not

be found in naturally occurring materials. This typically consists of negative refractive

properties - namely that an incident field would refract in the opposite direction from

the normal-axis as compared to a conventional naturally occurring material. Numerous

interesting and potentially useful effects may result such as strong enhancements of the

Purcell factor for nearby emitters Jacob et al. (2010), which allow for the realizations of
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devices such as SPASERs Bergman and Stockman (2003) and lasing SPASERs Zheludev et al.

(2008). Here we focus on a relatively simple case of layered metallic-dielectric layers

each having a thickness much smaller than or comparable to the wavelength. Depending

on the precise thicknesses of the layers as well as their individual response properties
such structures may exhibit Fabry-Perot resonances, resonant photon tunneling and other

unusual transmission/reflection properties Belov and Hao (2006); Darmanyan and Zayats

(2003); Elsayad and Heinze (2010); Ramakrishna et al. (2003). It turns out that many of these

properties can quite intuitively be modeled analytically using MATLAB due to the matrix

formalism often used to describe them.

In the context of the technique we will discuss there are two properties of interest to us. Firstly,

there is the complex reflection coefficients of the structures. These determine the local field

at the site of the emitter and hence also the excitation and decay rates. Secondly there is the

dispersion relation of the supported modes of the structure which will give us physical insight

into the type of excitations the emitters couple to at different distances and frequencies, and

thereby allow us to tune our structures to obtain optimal results. Of particular relevance

for the latter will be a so-called “cut-off energy” which exists in asymmetric structures

at a given energy, where there is a transition from a bound to an unbound SPP mode

Burke and Stegeman (1986).

For the case of the transmission/reflection coefficients one simple way to model the structures

is to use transfer matrices which describe the propagation and attenuation in each layer

Born & Wolf (1997). As mentioned such calculations are particularly well suited for MATLAB

where, once the matrices are defined, the coefficients for arbitrary combinations of layers

and structures can readily be determined and compared. The transfer matrices are generally

defined in the Fourier domain parallel to the surface of the layers (kx ,ky) and the real domain

normal to the layers (z). This also allows for easy analysis of the contribution from different

evanescent field components which are dominant in the near-field (distances smaller than

about the wavelength). Once one has written matrices for the transmission through a given

interface (ti,j, where the superscripts i and j denote the regions on either side of the interface)

and the attenuation through a certain thickness of a given material (pi) in terms of the

transverse wavevector(s) and - for the latter case - the thickness of the layer, one can obtain

the total transmission function (or optical transfer function) of an n-layered structure tn by

tn = Π
n−1
i pi ti,i+1 pn. (1)

Details on the implementation of transfer matrices can be found in most standard classical

optics texts Born & Wolf (1997) and will not be elaborated on here. We only mention

that the formalism will, for not too large transverse wavevectors, also be applicable for

subwavelength laterally structured layers (e.g. layers containing split-ring, horse-shoe

shaped, or fractal resonators). In such cases one would need to define suitable effective

anisotropic permittivity and permeability matrices for them, e.g. in a 2D system one may

have a permittivity epsilon(a,b) and permeability mu(a,b)where a and b are the x and z

components required to describe the effective response properties of the structure. The cases

of two polarizations (perpendicular magnetic and electric fields) can be treated separately

by choosing the suitable Fresnel coefficients for the matrix elements of ti,i+1. Alternatively

one can also use a “brute force” approach for not too complicated structures and include the
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complete equations (e.g. as a function) into MATLAB. For example, for the case of a four

layered structure (layers indexed by i, j, k, l) this would be:

r
P(S)
ijkl =

r
P(S)
ij + r

P(S)
jkl exp[2i(ε jµj(ε iµi)

−1 − u2)
1
2 kidj]

1 + r
P(S)
ij r

P(S)
jkl exp[2i(ε jµj(ε iµi)−1 − u2)

1
2 kidj]

(2)

with

r
P(S)
jkl =

r
P(S)
jk + r

P(S)
kl exp[2i(εkµk(ε iµi)

−1 − u2)
1
2 kidk]

1 + r
P(S)
jk r

P(S)
kl exp[2i(εkµk(ε iµi)−1 − u2)

1
2 kidk]

(3)

and

rS
ij =

µj(1 − u2)1/2 − µi[ε jµj(ε iµi)
−1 − u2]1/2

µj(1 − u2)1/2 + µi[ε jµj(ε iµi)−1 − u2]1/2
(4)

rP
ij =

ε j(1 − u2)1/2 − ε i[ε jµj(ε iµi)
−1 − u2]1/2

ε j(1 − u2)1/2 + ε i[ε jµj(ε iµi)−1 − u2]1/2
(5)

where ε i, µi and di are the permittivity, permeability and thickness of the ith layer. The

total wavevector in the ith layer is given by ki =
√

ε iµiω/c where ω is the frequency of

the electromagnetic field and c is the speed of light in vacuum. Also a normalized in plane

wavevector is defined as u = kx/k1, where kx is the in plane wavevector component which is

independent of the layer. The value of ε for the metal will in general be complex and frequency

dependent, and is most easily obtained by fitting a high order polynomial to experimentally

measured data (e.g. Drachev (2008) for silver). Alternatively for not to thin metal layers

one may to a good approximation use a Drude-Sommerfeld model (e.g. Kittel (1995)) where

the parameters can later be systematically varied to account for e.g. changes in temperature

Elsayad and Heinze (2010b).

To determine the dispersion relation and the cut-off energy of a given structure one may

also make use of the natural matrix calculation approaches of MATLAB. To do so one firstly

writes a general expression for the parallel electric fields in each layer. For a layer-i extending

from z = zmin to z = zmax this would be A
(1)
i ekzi(z+zmin) + A

(2)
i e−kzi(z+zmax), where kzi is the

out of plane wavevector in the layer and A
(1)
i & A

(2)
i are at this point arbitrary complex

coefficients. One may then write the corresponding magnetic induction fields for each layer

using Maxwell’s equations (i.e. by taking the normal derivative), so that for each layer one

has two equations with two unknowns. This is done for each layer i = 1, 2...N. Finally

one constructs a 2N × 2N with the coefficients for each layer constituting the entries in

each row. The determinant of this matrix will then give the dispersion relation ω(kx) - see

e.g. Dionne et al. (2008). Since kx is complex one can not simply assign a solver such as

fzero to the task. It is it turns out often necessary to evaluate this by brute force - i.e.

letting MATLAB evaluate the determinant for a given complex transverse wavevector and

checking how close it is to zero. In general it is important to provide a good starting guess

of Re(kx) and Im(kx) for each frequency. For the cases of interest, where the frequencies of

interest are close to the cut-off frequency, a good starting guess for the former is the light-line

Re(kx) = nω/c of the medium with refractive index n in which the mode becomes unbound,
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and then to progressively search further into the evanescent region, i.e. Re(kx) = nω/c + δ

with δ ∼ 0.01nω/c. For the imaginary part Im(kx) - which diverges at the cut-off - it is most

efficient to employ an algorithm which calculates the gradient of the determinant between

two nearby values of Im(kx) [i.e. taking the difference in the determinant value and dividing
by the difference in Im(kx)], and subsequently search for larger/smaller Im(kx) values if the

determinant is smaller/larger than zero. The stability of the solution should be checked

to assure Limδ→0{ω(kx + δ) − ω(kx − δ) → 0}. The above mentioned approach typically

requires that Im(kx) is well behaved and monotonous in the vicinity of the cut-off, which is

fortunately often the case. Since the equation has to be satisfied for both Re(kx) and Im(kx)
optimizations of both of these have to be performed simultaneously. For completeness an

analysis can also be performed for transverse electric (TE) as well as transverse magnetic

(TM) polarizations, although for the cases of the very thin non-magnetic plasmonic structures

only the latter are usually relevant. For the case of highly asymmetric structures of few

layers, coupling between the interfaces may be negligible and a single plasmonic mode at

one interface can to a good approximation be assumed solely responsible for the dispersion

of the cut-off mode Burke and Stegeman (1986). In this case the cut-off energy can for a

non-magnetic structure be estimated by Ec = h̄cε jεk[ε i(ε j + εk)]
−1, where ε i is the permittivity

of the medium where the cut-off occurs, and ε j and εk are the permittivities on either side of

the interface at which the mode is originally localized.

The principle of MeSuMo requires that the cut-off of the structure falls within the emission

spectrum of the emitter. Since many common fluorophores and dyes have a fairly broad

emission spectrum this criteria can usually be met quite easily and is generally quite robust.

To calculate the change in intensity at a given frequency one firstly defines the change in

the decay rate of a fluorophore as a function of distance and frequency. This may (at not

too small distances) be modeled quite well in the dipole approximation using the classical

Chance-Prock-Silbey (CPS) model Chance (Prock and Silbey). Under these conditions the

decay rate in the +ẑ and −ẑ direction (away from and towards the substrate respectively)

for perpendicular (⊥) and parallel (||) electric dipole like emitters can be obtained by:

Γ̂
⊥
+ = q − 3q

4
Im

∫ 1

0
(I1 + I2) du

Γ̂
⊥
− =

3q

4
Im

(

∫ 1

0
I1du −

∫

∞

1
I2du

)

(6)

Γ̂
||
+ = q − 3q

8
Im

∫ 1

0
(I3 − I4)du

Γ̂
||
− =

3q

8
Im

(

∫ 1

0
I3du +

∫

∞

1
I4du

)

(7)

in which the integrands are

I1 = 2u3 1 − |rP|2

(u2 − 1)
1
2

I2 = u3 rP

(u2 − 1)
1
2

exp[2(u2 − 1)
1
2 k1z]

I3 = u
(1 − |rS|2) + (1 − u2)(1 − |rP|2)

(u2 − 1)
1
2

I4 = 2u
rS + (1 − u2)rP

(u2 − 1)
1
2

exp[2(u2 − 1)
1
2 k1z] (8)
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where q is the quantum yield of the emitter, the superscripts P(S) denote the transverse

electric(magnetic) cases, and the z and ω dependence of Γ̂
⊥(||)
+(−)

is implied. The integrals can in

most cases quite easily be evaluated numerically (e.g. using quad). It may be the case that the

structures have resonances (as can be determined by plotting the integrands as a function of

u), in which case one may want to re-write the integrals to assure one integrates in a complex

plane around them and account for the pole(s) in the conventional fashion. Integration can in

almost all cases safely be cut-off at u ∼ 1000, with the contribution beyond u ≈ 100 becoming

negligibly small for z > 10nm. In what follows we will sometimes make use of the notation

Γij =
1
3 [(Γ

⊥
+ + Γ

⊥
−) + 2(Γ

||
+ + Γ

||
−)]ωij

to signify the isotropic average total decay rate from state

i to j separated in energy by ωij = ωi − ωj. The energy dependence of Γij is understood to be

contained in rS,P = rS,P(ωij), u = u(ωij) and k1 = k1(ωij).
Besides the modification in the decay rate which has been described above, the measured

emission intensity of an emitter will also depend on it’s excitation rate. In particular the

measurable emission intensity for the transition from the excited state a to a lower state b,

which corresponds to a wavelength λab = 2πc/ωab will be given by:

I(ωab) ∝ |µ̂a · Eex(ωab)|2 fabΓ
R
abΓ

−1
a (9)

where Eex(ωab) is the excitation field at the frequency ωab, and µ̂a is the dipole moment of the

excited state a. Γ
R
ab and Γa are the radiative decay rate for the transition a → b and the total

decay rate of the state a. fab is the Franck Condon coefficient between a and b, which is related

to the rotational and vibrational configurations of the two energy states relative to each other,

and can be thought of as the intrinsic favourability of the transition. For a realistic emitter

there will in general be many other significant “down transitions” originating from the same

excited state. For the decay of the state a to any other state x, one may thus write:

I(ωax) =
fax

fab

Γ
R
ax

ΓR
ab

I(ωab) (10)

Subsequent decay of all states x (and state b) to a common ground state is assumed to proceed

non-radiatively and at a rate several orders of magnitude larger than the radiative decay

rate. For the case of spontaneous emission we consider it can for all intense and purposes be

assumed to be instantaneous. If we neglect direct resonant energy transfer between emitters

(i.e. assume sufficient dilution), then the total excitation field with a frequency ωab at the

location of the fluorophore will be the sum of the external incident field E0(ωab), the reflection

of this field from the structure re−2(1−u2)1/2k1zE0(ωab) where r is the reflection coefficient, and

the field generated from excitations in the material by all the fluorophores Er(ωab, z), i.e.

Eex(ωab, u, z) = [1 + re−2(1−u2)1/2k1z]E0(ωab) + Er(ωab, u, z) (11)

The polarization for the reflected field can in most cases be taken as that of the incident

excitation field. For the case of a single fluorophore Er(ωab, z) is given by the integrands

of equations (6) and/or (7), which are identical to the reflected field for a given transverse

wavevector component u, and will henceforth be written as E0
r (ωab, u, z). To calculate the

reflected field from all of the fluorophores at various distances from the substrate one can
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proceed in several ways. It is of no practical relevance in our applications if one requires

information on the position and orientation of each and every contributing fluorophore. We

thus can proceed only via an effective medium approximation. We will assume a density ρ of

fluorophores which may only vary in the axial (z) direction. In the case for ρ(0 < z < zmax) =
ρ and ρ(z > zmax) = 0 one obtains by integrating over z ={0, ∞}:

Er(ωab, u, z) = (1 − e−(1−u2)1/2k1zmax)
ρ

(1 − u2)1/2k1

Γab(u, z)

Γa(z)
E0

r (ωab, u, z/2). (12)

Alternatively one may represent the contribution from a collection of fluorophores by

assigning a negative imaginary response function to the top layer (layer-1) in which they are

immersed - i.e. set Im(ε1)< 0 for non-magnetic structures. Whilst this may be computationally

simpler for constant densities, for the case of a non-trivial z dependence the calculations

become significantly more elaborate. We thus proceed with the former method.

For imaginary (1 − u2)1/2k1 the coupling fields are propagating and equation (12) can be

reduced to the result for e.g. the field in a large semi-transparent 1D box filled with emitters.

For real (1 − u2)1/2k1 the field will on the other hand decay rapidly with increasing z as one

would expect. The contribution to I(ωab) from equation (12) will in itself however only be

small even for large ρ (> 0.01nm−1).

There will be an additional second order contribution to the excitation field and hence the
emission intensity at ωab from excited surface modes of energy ωax where x �= b. This

contribution is only significant because the SPP modes have very short decay times - typically

Γ ∼ O(10-100fs), such that their uncertainty broadening is relatively large - O(1 − 10eV). For

ωax ∼ ωab, or more specifically |ωax − ωab| ∼ O(meV), they will contribute significantly

to ER(ωab, z). It follows that when the energy ωab corresponds to mainly real values of

(1 − u2)1/2k1 (evanescent fields) whereas ωax to mainly imaginary values of (1 − u2)1/2k1

(propagating fields) this contribution becomes large near the surface as fluorophores far away

from the substrate can effectively pump those nearby. To the lowest order the contribution

can be written as:

E0
r (ωax, u, z) =

∫

dωα

∫

dωβ faβ

Γaβ(u, z)

Γaβ
LaβEr(ωaβ, u, z)Lβαδ(ωα − ωax) (13)

where

Laβ =
1

2π

Γaβ(u, z)

(ωa − ωβ)2 + [Γaβ(u, z)/2]2
(14)

and Γab(u, z) and Er(ω, u, z) are the corresponding values of the total decay rate and reflected

field as a function of transverse wavevector [i.e. the integrands of equations (2) and (2) &/or

(3)]. We note that equation (13) accounts for the energy overlap between a state of energy

ωb and a continuum of states whose energy is given by the dummy variable ωβ. The ωα

integration is performed over a range of frequencies in the vicinity of the cut-off (typically

corresponding to a wavelength range of 30-80nm), over which the energy range coincides

with the emission spectrum of the fluorophore (i.e. are allowed transitions for the particular

fluorophore). The weighting (Franck Condon) factors fαβ are empirically determined from
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the emission spectrum of an isolated fluorophore scaled so that the value at ωab it is unity.

We note that it is usually practical or necessary to convert this integration into a discrete sum

with an energy spacing of ∆ω ∼ 1meV. Information particular to the type of fluorophore (e.g.

energy level positions/separations and corresponding Franck Condon coefficients) may be
implemented when constructing the summation.

Since we will not focus on single molecule studies we assume an isotropic average of dipole

orientations for all cases. This can most easily be done by setting Eiso
R = (1/3)E⊥

R + (2/3)E
||
R

and/or Γ
iso = (1/3)Γ⊥ + (2/3)Γ|| as appropriate. We also note to calculate the final

measurable emission intensity the integral for Γ
R which appears in equations 9 & 10 (and

is given by equations 6 & 7) should only be performed up to
√

ε i·NA, where NA is the

numerical aperture of the measuring objective. It is possible to now predict the change in the

measurable emission intensity for arbitrary z and fluorophores, near a metamaterial structure.

In figure 1 we outline the basic backbone of a program that calculates the matrix enhan(j,i)

which quantifies the measurable fluorescence enhancement at discrete distances (index j)

and wavelengths (index i). The order of computations (top to bottom) is such that several

independent calculations can depending on available resources be performed in parallel. The

calculation is performed over all transverse wavevectors up to at least |u| ∼ 10z−1 and

summed at the end (with the corresponding weighting factors to mimic integration).

z-range z(j)

j=1,2..100

normalize & fit

determine ω(ab)

and ω range

structure

(d1,epsilon1,

mu1, etc.)

calculate cut-off energy ω(c)

define Ω(i), i=1,2...10 in vicinity of ω(ab) and ω(c)

calculate reflection coefficients

calculate (12)-(14)

fluorophore 

density rho

calculate (11)

excitation field

calculate decay rates

calculate total enhancement for Ω(i) 

total enhancement matrix as function of z(j) and Ω(i)

enhan(i,j)  

define reflection coeff. & decay rates

i+1

j+1

fluorophore emission

& absorption spectrum metal

dispersion

Fig. 1. Structure of program for calculating a matrix that predicts fluorescence enhancement

We now show how to implement equations 6 &7 (with the integrands defined by equation 9)

in MATLAB, which are required for solving equation 10. To focus on the most relevant part

of the code, we expect the reader to have some familiarity with basic MATLAB programming

syntax (i.e. definition of functions and vector-based MATLAB notation). An example code for

calculating the reflection coefficients [2 - 5] and subsequently performing the integration may

look like:
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Listing 1. Numerical integration

1 function main()

2 % -- material permittivities

3 sio2 = 2.13; glass = 2.46;

4 water = 1.78; si3n4 = 4.15;

5 % -- ranges for frequency & wavevectors

6 w_vec = 0 : 0.01 : 4;

7 kx = 0 : 0.000001 : 0.02*pi;

8

9 % -- permittivities & permeabilities &

10 % -- thicknesses for each layer

11 mu = [1 1 1 1];

12 d = [1e6 15 15 1e6];

13 e = [ sio2 permitivity_silver(w,d(2)) si3n4 glass];

14

15 % -- integrate Integrand_1

16 lower = 0; % limits for integrals

17 upper = 1;

18 b_up_a = quad(@(u) integrand_I1(u),lower,upper) );

19

20 function [I1] = integrand_I1(u)

21 [r_S,r_P] = r_1234_vec = r_1234_PS(u,’P’);

22

23 A = 1 - abs(r_P).^2;

24 B = sqrt(u.^2 - 1);

25 I1 = 2.*u.^3.*A./B;

26 end

27

28 function r_1234 = r_1234_PS(u,polariz)

29 global d; global e; global k; global mu;

30

31 exp_term = exp(2i.*sqrt(e(2).*mu(2).*(e(1).*mu(1)).^(-1)-u.^2).*k(1).*d(2));

32 r_12_P = r_ij_PS(u,1,2,"P");

33 r_12_S = r_ij_PS(u,1,2,"S");

34 r_234_P = r_234_PS(u,"P");

35 r_234_S = r_234_PS(u,"S");

36

37 switch(polariz)

38 case {"P"}

39 num = r_12_P + r_234_P.*exp_term;

40 den = 1 + r_12_P .* r_234_P.*exp_term;

41 r_1234 = num ./ den;

42 case {"S"}

43 num = r_12_S + r_234_S.*exp_term;

44 den = 1 + r_12_S .* r_234_S.*exp_term;

45 r_1234 = num ./ den;

46 end

47 end

48

49 function r_234 = r_234_PS(u,polariz)

50 global d; global e; global k; global mu;

51
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52 exp_term = exp(2i.*k(1).*d(3).*sqrt(e(3).*mu(3).*(e(1).*mu(1)).^-1-u.^2));

53

54 switch(polariz)

55 case {"P"}

56 r_23_P = r_ij_PS(u,2,3,"P");

57 r_34_P = r_ij_PS(u,3,4,"P");

58 num = r_23_P + r_34_P.*exp_term;

59 den = 1 + r_23_P .* r_34_P.*exp_term;

60 r_234 = num ./ den;

61 case {"S"}

62 r_23_S = r_ij_PS(u,2,3,"S");

63 r_34_S = r_ij_PS(u,3,4,"S");

64 num = r_23_S + r_34_S.*exp_term;

65 den = 1 + r_23_S .* r_34_S.*exp_term;

66 r_234 = num ./ den;

67 end

68 end

69

70 function r_ij = r_ij_PS(u,i,j,polariz)

71 global e; global mu;

72

73 A = (1 - u.^2).^0.5;

74 B = ( e(j).*mu(j).* (e(i).*mu(i)).^-1 - u.^2).^0.5;

75

76 switch(polariz)

77 case {"S"}

78 num = mu(j).*A - mu(i).* B;

79 den = mu(j).*A + mu(i).* B;

80 r_ij = num ./ den;

81 case {"P"}

82 num = e(j).*A - e(i).* B;

83 den = e(j).*A + e(i).* B;

84 r_ij = num ./ den;

85 end

86 end

3. Fitting the experimental data to the model

Data can be acquired using a standard scanning epifluorescence microscope with a

spectrometer and photomultiplier tubes. It is generally most practical to save images as .lsm

files which can be directly read into MATLAB [In our setup each file contains a scanned image

of the sample at ten different wavelengths (e.g. bins centered at λ = 490nm, 500nm, 510nm,

etc.)]. For dynamic studies images at different time intervals can also be stored in a single

.lsm file. Many spectrometers come with MATLAB drivers which allow for acquisition

to also be controlled easily through MATLAB. Else for real time (video type) imaging it is

necessary to save the data incrementally into a directory accessible to MATLAB. The spectral

profile of the fluorophores of interest on an uncoated substrate immersed in a similar refractive

index medium as the actual samples should also be available. The area under this spectrum

should be normalized and extrapolated to a discrete matrix [e.g. fitted to a high order
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polynomial and evaluated at the discrete wavelengths indexed by i], and saved as a 1 × 10

matrix Ilambda0(i).

Data analysis is performed on a pixel by pixel basis. For each pixel the spectrum

area is normalized, fitted with a high order polynomial, evaluated at i discrete
wavelengths, and written into a 1 × 10 matrix data(i). The ratio enhanobserved(i)

= data(i)/Ilambda0(i) is then calculated. A 1 × j matrix zn(j) is defined which will

represent the fraction of the emitters in the studied area at a distance corresponding to the

index j from the interface. The task is now to solve enhan*zn-enhanobserved=0, which

is in principle straight forward using a function such as e.g. linsolve. The result is best

presented in a plot of zn as a function of z for each or a collection of pixels, which will show

the distribution of fluorophore distances from the substrate at this particular lateral position.

Depending on the sample studied and the information of interest this may be fitted with a

suitable distribution function to obtain an average and spread in distances of emitters from

the substrate within the analyzed region.

4. Optimizing the model and code

In many cases the initial fluorophore-concentration, metamaterial or coupling parameters

may not be the best or correct parameters for the fit. This is usually evident when the results

show an unexpected distribution for zn. Distances less than 10nm should be ignored as

the approximations of the models (dipole approximation and local dielectric functions) are

no longer valid at such small distances. The most significant source of uncertainty is the

predefined and assumed constant value of the fluorophore concentration rho. To account

for this one may redefine rho as being proportional to the integrated area of zn over z, and

repeat the calculation of zn. Also to account for an axial variation in rho - as would be relevant

for samples where the fluorophore density varies strongly with distance z - one may define

rho(j) = rho*(a + zn(j)/norm(zn)), where a is normalization constant chosen so

that on summation over the distances (i) one recovers the total intensity. In this case all

subsequent calculations have to explicitly account for the additional distance dependence in

rho (j), which significantly increases the computational time. This may be efficiently achieved

by defining rho(j) in a smaller parameter space indexed by n that corresponds to dividing

rho into components where rho(j) is constant and non-zero only over a specified region.

Once zn is calculated in this manner the optimization may be repeated for the new rho until

the the calculation of the distribution of zn is stable and smooth or varies on the expected

scale.

5. Example

Whilst elaborate custom substrates may be designed with effective parameters which yield the

desired cut-off energy and dispersion relation, it is often possible to use combinations of no

more than 3-4 layers with no lateral structuring to achieve satisfactory results. Here we give

an example where we use a sample consisting of a thin silver film2 (15nm) deposited on a thick

quartz substrate (ε = 2.13), which is subsequently coated with a high permittivity dielectric

film (ε = 4.15). The sample is immersed in a medium with a refractive index larger than that of

2 Smoothness of the silver is guaranteed by using a Germanium wetting layer and is less than 0.4nm
RMS as measured by Atomic Force Microscopy.
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the quartz (ε = 2.4). The cut-off energy can be shown to occur within the emission spectrum of

Alexa488 - a standard fluorescent marker with an emission spectrum peaking at a wavelength

of around 528nm and extending all the way up to >550nm. To demonstrate the accuracy

of the technique, fibroblast cells were grown on the laminin (thickness < 2nm, ε ≈ 2.15)
coated substrate and a particular protein found at adhesion sites close to the substrate called

Paxillin Schaller (2001) was stained with Alexa488. The protein Paxillin has recently been

shown to be separated from the substrate matrix by a distance of around 20-40nm using a

3D version of a technique based on Fluorescence Photoactivatable Localization Microscopy

(FPALM) - known as interference-PALM or iPALM Kanchanawong (2010). In our study

similar cells were used and the separation from the substrate surface can be expected to be

comparable. In figure 2 we show a confocal fluorescence image of the cell we subsequently

analyze (excitation wavelength = 488nm, emission filter ≈500-550nm). We focus on a region

marked by the red box. A spectral analysis of the signal in this region shows an enhancement

at longer wavelengths as expected. Using the procedure outlined in the previous sections

we are able to calculate zn for the pixels in this box over the range z = 1...130. The

fluorophore concentration (rho) was initially taken to be constant up to 2.4µm and the

presented histogram in figure 2 is the result following four iterations of redefining rho

according to the calculated zn in a n=5 parameter space (see previous section). The size

of the bin width for the spectral analysis was 9.7nm. As can be seen in figure 2 where

the distance distribution (zn is plotted as a function of z), the fluorophores and hence the

Paxillin are indeed localized at around the expected distance from the substrate (20-40nm).

We note that compared to the iPALM setup used for these studies our technique is, once

optimized, very simple and straight forward to implement. The analysis is sufficiently fast

to allow for fast real-time studies (which is often impossible with e.g. iPALM) and also

more versatile since there is no requirement for special photoactivatable fluorophorescent

markers. We are currently using it to study the dynamics of other labeled proteins found in

the vicinity of cell-substrate adhesion sites including the zinc-binding phosphoprotein Zyxin

and the microfilament associated protein VASP.

Fig. 2. Left: Axial distance profile of the protein paxillin (zn versus z) as inferred from
∆λ =9.7nm resolution spectrum (λ =480→800nm) of pixels at adhesion site. Right: image of
cell. Red square shows pixels over which the spectrum was analyzed to obtain image on the
left. [NIH 3T3 fibroblast with Alexa488 stained paxillin, scanning confocal microscope image
at λ =519(±9.7nm), with 1.4 NA objective and λ =465nm excitation. Scale-bar = 10µm].
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6. Modifications & extensions

A natural extension to the presented nano-sectioning method would be to combine it with

a different technique which allows for lateral (xy) superresolution. One such technique that

is relatively straight forward to implement is FPALM which was already alluded to above.

In FPALM photoactivatable fluorophores are stochastically turned on by a weak activations

source so that individual molecules separated by distances larger than the diffraction limit can

consecutively be localized provided one has knowledge of their point spread function and

the instrument and detector response. Numerous algorithms exist for such 2D localization

purposes most of which rely on fitting a normal 2D (Gaussian) intensity distribution to a

region of interest surrounding each molecule. Several such routines have been made available

in the form of MATLAB codes. For densely labelled samples it is often desirable to be able to

fit multiple overlapping Gaussians so that the isolated single-molecule activation/excitation

condition can be slightly relaxed. This is particularly useful where even a very weak activation

signal is sufficient to activate a significant portion of fluorophores - which we have found to be

the case for photoactivatable fluorophores near the metallic structures of interest. A MATLAB

code capable of fitting “overlapping intensity distributions” may be written employing a

Levenberg-Marquardt based multi Gaussian least squares optimization algorithm. The result

of a multiple Gaussian fit is demonstrated in figure 3 for the distribution from two nearby

molecules. We note that such algorithms are also conducive to parallel processing and

thus in principle fast dynamic studies. Considering the fact that typical amount of data

needed to be processed for each microscopy experiment is in the order of several hundreds of

megabytes; the possibility to use acceleration power of modern GPUs to enable near real-time

observation of reconstruction is welcomed. At this moment MATLAB allows us to develop

our implementations for several image processing and optimization routines and possibly
validate the results from our experimental parallel implementations. In following text we will

focus on the use of Image processing and Optimization toolboxes to outline our framework

for detection regions of interest around sparsely activated fluorophores. We expect that reader

is familiar with basics of image processing and numerical optimization methods and so we

only propose possible solution for stated problem. For further details about mathematical

background regarding image analysis we suggest Sonka et al. (2001).

Current work is underway in our laboratory on combining this with the optical

nanosectioning technique outlined above. A current obstacle appears to be the difficulty

in rapidly photo-bleaching of the emitters - which is an essential feature of performing fast

FPALM - near the substrates. This is a well known feature of fluorophores near metallic

substrates and is understood to be due to the relative suppression of the triplet decay path,

which is associated with the majority of the photobleaching. FPALM based nanosectioning

as mentioned above is however still possible but at the price of lowered signal to noise

ratio, and with properly designed image segmentation we are able extract regions aimed

for further processing. The code shown below represents the necessary steps of the image

processing required for detection of relevant fluorophores. This is based on dilation functions

from the mathematical morphology toolset and subsequent segmentation with experimentally

adjusted thresholding values.
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Listing 2. Fluorophore segmentation based on thresholding and morphology

1 img = lsm_read(fileName);

2 img_dbl = im2double(img);

3 se = strel("disk" , 5);

4 img_dil = imdilate(img_dbl,se);

5 img_dil_bw = im2bw(img_dil,threshold);

Depending on the sample studied, one may observe an uneven background signal which

systematically introduce errors into the model fitting which may prove detrimental. For

these reasons we estimate the background intensity map based on uniform filtering over large

region, e.g.:

Listing 3. Fluorophore segmentation with background correction

1 corrected_bg = img_dbl - imfilter(img_dbl,fspecial("average",50));

2 img_corr_bg_closed_bw = im2bw(corrected_bg,0.60);

3 img_corr_bg_closed_bw_dil = imdilate(img_corr_bg_closed_bw,strel("disk",2));

Fig. 3. a. sample of activated fluorophores with noisy background b. segmented fluorophores
after background correction c. overlay of fluorophores positions and corrected background

The main algorithm framework for detection and precise position localization of activated

fluorophores consists of two parts. Lines (1)-(9) set the size of the region of interest around

the detected fluorophore candidates, upscale f actor determine up to a certain level precision

for the fitting (with higher values at the expense of increased computational resources). The

following lines are for loading of the acquired data-stack and the rescaling to the MATLAB

native double format (images with scales from 0 to 1). The subsequent section is based on the

code presented in listings 4 or 3 to detect local maxima and translate them to (x,y) coordinates.

Here the for loop iterates over the range of all (x,y) fluorophore coordinates, and the code

is built from 2 parts, extraction of the image region of interest around the position of the

fluorophore and fitting to the image data model (a Gaussian function based on a nonlinear

iterative least-squares fitting). For the main algorithm of Levenberg-Marquard, interested

readers are referred to Marquardt (1963)
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Listing 4. Fluorophore segmentation based on thresholding and morphology

1 win_W = 8; % -- moving window size

2 win_H = 8;

3 upscale_factor = 5;

4 abs_dif_fit_values = [];

5

6 stack = lsm_read("1.lsm"); % -- load LSM stack

7 img = stack(1).data;

8 img = im2double(img); % -- change to 0-1 scale

9 [M,N] = size(img);

10

11 % -- find relevant positions of fluorophores

12 [pos] = find_local_maxima(img, 0.7);% -- detect fluorophore positions

13 [y,x] = find(pos == 1); % -- get their coordinates

14 [x,y] = remove_bound(x,y,win_W,win_H,M,N);% -- remove spots near the boundary

15

16 % -- preallocated upscaled ROI

17 upscaled_window = zeros(M*upscale_factor,N*upscale_factor);

18

19 for k = 1 : 1 : length(x) % -- iterate over all fluorophore positions

20 % -- get corners of the window from low-res image

21 % -- where molecule was detected

22 [win,corner_x,corner_y] = getROI(img,[y(k),x(k)],win_width,win_height);

23

24 % -- rescale the window with nearest neighborhood interpolation

25 % & prepare the meshgrid of the same size for Gaussian 2d fitting

26 [Mw,Nw] = size(win);

27 ups_win = imresize(win,[upscale_factor*Mw,upscale_factor*Nw],"nearest");

28 [ny,nx] = size(ups_win);

29 [px,py] = meshgrid(1:nx,1:ny);

30

31 % -- prepare guess estimates for Gaussian fitting

32 A = 10; z0 = 0;

33 x0 = ny / 2; y0 = nx / 2;

34 sx = 0.2 * upscale_factor;

35 sy = 0.2 * upscale_factor;

36 param0 = [A, x0, sx, y0, sy, z0];

37

38 % -- optimize parameters based on image data and gaussian model

39 % params_fit = lsqnonlin(@(x) gaussian_fit_fun(x, px, py,window),param0);

40 params_fit = lev_marq_gaussian2d(ups_win,px,py,[A,x0,sx,y0,sy 0]’, ...

41 1500,0.01,1e-6,0.01);

42 % -- calculate goodness of fit for possible discarding of

43 % -- incorrect values

44 [F,Yfit, D] = gaussian_fit_fun(params_fit, px, py, ups_win);

45

46 % -- calculate distance measure of model and image data

47 abs_dif_fit_values = [abs_dif_fit_values; sum(abs(D(:))];

48 fprintf("Absolute Difference of Fit : %.3f \n", sum(abs(D(:)) );

49 end
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Fig. 4. a. Extracted ROI from raw microscopy data b. Initial shape of Gaussian model c.
Fitted model

Fig. 5. Fitting two overlapping Gaussians to data using a Levenberg-Marquardt based
routine. Left: raw data. Center: Gaussian Fits. Right: Wellness of fit as a function of number
of iterations.

7. Concluding remarks

In summary we have outlined the data analysis protocol for a novel fluorescent imaging

technique capable of performing sub-wavelength scale optical sectioning in the vicinity

of metamaterial coated substrates - MeSuMo fluorescence microscopy. An outline of the

approach one would take for analyzing the response properties of particular materials and

how to go about fitting data to the model is explained from a perspective that may be

readily implemented into MATLAB routines. Whilst the calculation can be performed by
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most software and self written codes, the intuitive matrix approach of MATLAB makes it well

suited for the required tasks. Certain toolboxes may prove useful,3 however no toolboxes

are essential or required. The presented technique is likely to find a range of applications in

the lifesciences related to studying membrane traffic or indeed any events that can be made
to occur near a coated substrate and nanoscale axial dynamics are of interest. In practice a

fundamental limitations of the technique is the rate and accuracy with which the spectral

information over a give region can be acquired. Whilst the use of multiple photodetectors

combined with fast scanning of the sample may be the most accurate and best suited for not

so bright samples, one can in principle perform the spectral separation optically using dichroic

mirrors & filters and an array of sensitive CCD cameras (or several with split chips). The latter

would remove the need for scanning, with the imaging rate now limited primarily by photon

statistics.
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