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PV Curves for Steady-State Security 
Assessment with MATLAB 

 Ricardo Vargas, M.A Arjona and Manuel Carrillo 
Instituto Tecnológico de la Laguna 

División de Estudios de Posgrado e Investigación 
México 

1. Introduction 

Most of the problem solutions oriented to the analysis of power systems require the 
implementation of sophisticated algorithms which need a considerable amount of 
calculations that must be carried out with a digital computer. Advances in software and 
hardware engineering have led to the development of specialized computing tools in the 
area of electrical power systems which allows its efficient analysis.  Most of the 
computational programs, if not all of them, are developed under proprietary code, in other 
words, the users does not have access to the source code, which limits its usage scope. These 
programs are considered as black boxes that users only need to feed the required input data 
to obtain the results without knowing anything about the details of the inner program 
structure. In the academic or research areas this kind of programs does not fulfill all needs 
that are required hence it is common the usage of programming tools oriented to the 
scientific computing. These tools facilitate the development of solution algorithms for any 
engineering problem, by taking into account the mathematical formulations which define 
the solution of the proposed problem. Besides, it is also common that most of these 
programs are known as script or interpreted languages, such as MATLAB, Python and Perl. 
They all have the common feature of being high level programming languages that usually 
make use of available efficient libraries in a straightforward way. MATLAB is considered as 
a programming language that has become a good option for many researchers in different 
science and engineering areas because of it can allow the creation, manipulation and 
operation of sparse or full matrices; it also allows to the user the programming of any 
mathematical algorithm by means of an ordered sequence of commands (code) written into 
an ascii file known as script files. These files are portable, i.e. they can be executed in most of 
software versions in any processor under the operating systems Linux or windows.  
The main objective of this chapter consists in presenting an efficient alternative of 
developing a script program in the MATLAB environment; the program can generate 
characteristic curves power vs. voltage (PV curves) of each node in a power system. The 
curves are used to analyze and evaluate the stability voltage limits in steady state, and they 
are calculated by employing an algorithm known as continuous load flows, which are a 
variation of the Newton-Raphson formulation for load flows but it avoids any possibility of 
singularity during the solution process under a scenario of continuous load variation. To 
illustrate the application of this analysis tool, the 14-node IEEE test system is used to 
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generate the PV curves. The code presented allows any modification throughout its script 
file and therefore it can be used for future power system studies and research. 
The formulation of the load flow problem is firstly presented to obtain the PV curves, there are 
some issues that need to be taken into account in the algorithm oriented to the solution of load 
flows such as: mathematical formulation of the load flow, its adaptation to the Newton-
Rhapson method and the implementation of the continuation theory to the analysis of load 
flows. It is also presented the necessary programming issues to the development of the script 
that plots the PV curves, the recommendations that are needed in the creation, manipulation 
and operation of sparse matrices, the use of vector operations, triangular decompositions 
techniques (that used in the solution of the set on linear equations) and finally the reading of 
ascii files and Graphical User Interface (GUI) development are also given. 

1.1 Antecedents 
Nowadays there are commercial programs which have been approved and used for the 
electric utilities in the analysis of electric power systems. Simulation programs as the Power 
World Simulator (PWS) (PowerWorld Corporation, 2010) and PSS (Siemens, 2005) are some 
of the most popular in the control and planning of a power system, and some of them are 
adopted by universities, e.g. PWS, because of its elegant interface and easy usage. Most of 
them have friendly user interfaces. On the other hand, a bachelor or graduate student, who 
want to reproduce or test new problem formulations to the solution of power system 
problems, need a simulation tool suitable for the generation of prototype programs. The 
code reutilization is important for integrating in a modular form, new functions required for 
the power system analysis (Milano, 2010).  Commercial programs does not fulfill these 
requirements and therefore a search for alternatives is usually carry out, such as a new 
programming language or for the scientific language MATLAB.  It is possible to find open 
source projects in several websites, which are usually named as “Toolbox” by their authors, 
and they cover a vast diversity of topics as: load flows, transient stability analysis, nodal 
analysis, and electromagnetic transients. Some of most relevant projects and its authors are: 
PSAT by Federico Milano (Milano, 2006), MatPower by Zimmerman, Carlos E. Murillo-
Sánchez and Deqiang Gan (Zimmerman et al., 2011), PST by Graham Rogers, Joe H. Chow 
and  Luigi Vanfretti (Graham et al., 2009) and MatEMTP by Mahseredjian, J. Alvarado and 
Fernando L. (Mahseredjian et al., 1997).  
Similar projects have been developed at the Instituto Tecnológico de la Laguna (ITL) and 
they have been the basis for several MSc theses which have been integrated into the power 
system program PTL (figure 1). These projects have made possible the incorporation of new 
applications making a more flexible and robust program for the steady-state analysis of an 
electric power system. 

2. Conceptual design of the PTL simulator 

In spite of the foundation of the PTL program, i.e. being an integration of several graduate 
projects at the ITL, its design offers an interface which permits an intuitive user interaction 
and at the same time it has a dynamic performance which is able to solve load flow 
problems for any electric network regardless the node number. It offers the feature of 
showing the information graphically and numerically and besides it generates a report of 
the activities performed and exports files with data for making stability studies. The above 
PTL features make it a simulation program suitable for investigations because it allows 
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Fig. 1. GUI of the PTL program. 

integrating solution algorithms for economic dispatch, calculation and plotting of PV curves,  

testing of methods with distributed slacks, static var compensator (SVC) models, 
transmission lines, generators, etc. It is also an important tool in power system research, 
making the PTL more complete for the analysis or studies oriented to the operation and 
control of electric power systems. 

2.1 Data input details 
As any other simulation program (commercial or free), the PTL requires of information data 
as input, it is needed for the analysis process. The information can be given as a data file that 
contains basic information to generate the base study case: the base power of the system, 
nodal information (number of nodes, voltages, load powers and generation power), machine 
limits, system branches, SVC information (if applies). The simulation program PTL can 
handle two file extensions: cdf (standardized IEEE format) and ptl (proposed PTL format). 

2.2 Simulator description 
The input information for carrying out the search of the solution process, as the related data to 
the problem results of the load flow problem (for generating the base case) are stored in 
defined data structures (e.g. Dat_Vn, Dat_Gen, Dat_Lin, Dat_Xtr). These structures allow 
easily the data extraction, by naming each field in such a way that the programming becomes 
intuitive and each variable can be easily identified with the corresponding physical variable of 
the problem. An example with two structures used in the PTL program is shown in Table 1.  
The MATLAB structures are composed of non-primitive variable types that allow storing 
different data types in a hierarchical way with the same entity (García et al., 2005). They are 
formed by data containers called fields, which can be declared by defining the structure 
name and the desired field considering its value, e.g. Dat_Vn.Amp=1.02. 
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Structure Field Description 

Dat_Vn 
Amp Voltage magnitude 

Ang Phase angle of voltages 

Dat_Gen 

NumNG Generation and load nodes 

Nslack Slack node 

V_Rem_bus Voltage information  

Pgen Generated active power 

Qgen Generated reactive power 

Pmin Minimum limit of generator active power 

Pmax Maximum limit of generator active power 

Qmin Minimum limit of generator reactive power 

Qmax Maximum limit of generator reactive power 

Table 1. Example of the information handled in the PTL. 

2.3 Output information  
The PTL program displays the results obtained from the load flow execution in a boxlist 
(uicontrol MATLAB) with a defined format: nodal information, power flows in branches 
and generators. It gives the option of printing a report in Word format with the same 
information. In addition, it has the option of generating a file with the extension f2s which 
is oriented for stability studies and it contains all necessary information for the 
initialization of the state machine variables by using the results of the current power flow 
solution. 
The definition of the conceptual simulation program PTL is presented as a recommendation 
by taking into account the three basic points that a simulation program must include: to be 
completely functional, to be general for any study case and to facilitate its maintenance; in 
other words it must allow the incorporation of new functions for the solution of new 
studies, such that it allows its free modification as easy as possible. 

3. Load flows 

In a practical problem, the knowledge of the operating conditions of an electric power 
system is always needed; that is, the knowledge of the nodal voltage levels in steady-state 
under loaded and generating conditions and the availability of its transmission elements are 
required to evaluate the system reliability. Many studies focused to the electric power 
systems start from the load flow solution which is known as “base case”, and in some cases, 
these studies are used to initialize the state variables of dynamic elements of a network 
(generators, motors, SVC, etc) to carry out dynamic and transient stability studies. Another 
study of interest, that it also requires starting from a base case, is the analysis of the power 
system security that will be discussed in next sections. 
The mathematical equations used to solve this problem are known as power flow equations, 
or network equations. In its more basic form, these equations are derived considering the 
transmission network with lumped parameters under lineal and balanced conditions, 
similarly as the known operating conditions in all nodes of the system (Arrillaga, 2001). 
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3.1 Power flow equations 
An electric power system is formed with elements that can be represented for its equivalent 

circuit RLC, and with components as load and generating units which cannot be 

represented as basic elements of an electrical network, they are represented as nonlinear 

elements. However, the analysis of an electrical power system starts with the formulation of 

a referenced nodal system and it describes the relationship between the electrical variables 

(voltages and currents) as it is stated by the second Kirchhoff´s law or nodal law.  

 BUS BUS BUS= ⋅I Y V  (1) 

where IBUS is a n×1 vector whose components are the electrical net current injections in the n 

network nodes, VBUS  is a n×1 vector with the nodal voltages measured with respect to the 

referenced node and YBUS is the n× n nodal admittance matrix of the electrical network; it has 

the properties of being symmetric and squared, and it describes the network topology. 

In a real power system, the injected currents to the network nodes are unknown; what it is 

commonly known is the net injected power Sk. Conceptually, Sk is the net complex power 

injected to the k-th node of the electrical network, and it is determined by the product of 

voltage (Vk) and the current conjugate (Ik*), where Vk   and Ik  are the voltages and nodal 

currents at the node k, that is, the k-th elements of vectors BUSV y BUSI  in (1). Once the Ik is 

calculated using (1), the net complex power Sk can be expressed as: 

 
,

*

1

V Y V
k m m

n

k k k k
m

S V I ∗

=

 
= ⋅ = ⋅  

 
 , for k= 1,2,…..n (2) 

where 
,

Y
k m

 is the element (k,m) of BUSY matrix in (1). Sk can also be represented for its real 

and imaginary components such as it is shown in the following expression: 

 k k kS P jQ= +  , for k= 1,2,…..n (3) 

where Pk  and Qk are the net active and reactive power injected at node k of the system, 

respectively. They are defined as: 

 Gen Load
k k kP P P= −  (4) 

 
Gen Load

k k kQ Q Q= −  (5) 

where the variables Gen
kP  and Gen

kQ   represent the active and reactive powers respectively. 

They are injected at node k for a generator and the variables Load
kP  and Load

kQ  represent the 

active and reactive Powers, respectively of a load connected to the same node. 
By representing the nodal voltages in polar form, we have: 

 ( )cos sinkjθ
k k k k kV V e V jθ θ= = +  (6) 

and each element of the admittance matrix BUSY  as,  

 
km km kmY G jB= +  (7) 
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Using the above expressions in (2), it results, 

 ( ) ( )( )
* *

1 1

sink m

n n
jθ jθ

k k km km m k m km km km km
m m

S V e G jB V e V V G jB cos jθ θ
= =

   
= ⋅ + = ⋅ + +   

   
    

 for k= 1,2,…..n (8) 

where km k mθ θ θ= − . By separating the real and imaginary parts as it is suggested in (3), it is 

obtained the following, 

 ( )2

1

( ) ( )
n

k k kk k m km k m km k m
m
m n

P V G V V G Cos B Sinθ θ θ θ
=
≠

= + − + −  for k= 1,2,…..n (9) 

 ( )2

1

( ) ( )
n

k k km k m km k m km k m
m
m n

Q V B V V G Cos B Cosθ θ θ θ
=
≠

= − + − − − , for k= 1,2,…..n (10) 

The equations (9) and (10) are commonly known as Power flow equations and they are needed 

for solving the load flow problem (Arrillaga, 2001). By analyzing these equations it can be 

clearly seen that each system node k is characterized for four variables: active power, reactive 

power, voltage magnitude and angle. Hence it is necessary to specify two of them and 

consider the remaining two as state variables to find with the solution of both equations.  

3.2 Bus types in load flow studies 

In an electrical power network, by considering its load flow equations, four variables are 

defined at each node, the active and reactive powers injected at node kP  and kQ , and the 

magnitude and phase voltage at the node kV  y kθ . The latter two variables determine the 

total electrical state of the network, then, the objective of the load flow problem consists in 

determining these variables at each node. The variables can be classified in controlled 

variables, that is, its values can be specified and state variables to be calculated with the 

solution of the load flow problem. The controlled or specified variables are determined by 

taking into account the node nature, i.e. in a generator node, the active power can be 

controlled by the turbine speed governor, and the voltage magnitude of the generator node 

can be controlled by the automatic voltage regulator (AVR). In a load node, the active and 

reactive power can be specified because its values can be obtained from load demand 

studies. Therefore, the system nodes can be classified as follows: 

• Generator node PV: It is any node where a generator is connected; the magnitude voltage 
and generated active power can be controlled or specified, while the voltage phase 
angle and the reactive power are the unknown state variables (Arrillaga, 2001). 

• Load node PQ:  It is any node where a system load is connected; the active and reactive 
consumed powers are known or specified, while the voltage magnitude and its phase 
angle are the unknown state variables to be calculated (Arrillaga, 2001). 

• Slack node (Compensator): In a power system at least one of the nodes has to be selected 
and labeled with this node type. It is a generating node where it cannot be specified the 
generated active power as in the PV node, because the transmission losses are not known 
beforehand and thus it cannot be established the balance of active power of the loads and 
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generators.  Therefore this node compensates the unbalance between the active power 
between loads and generating units as specified in the PQ and PV nodes (Arrillaga, 2001). 

3.3 Solution of the nonlinear equations by the Newton-Rhapson method  
The nature of the load flow problem formulation requires the simultaneous solution of a set 
of nonlinear equations; therefore it is necessary to apply a numerical method that 
guarantees a unique solution. There are methods as the Gauss-Seidel and Newton-Rhapson, 
in the work presented here, the load flow problem is solved with the Newton-Raphson (NR) 
(Arrillga, 2001). 
The NR method is robust and has a fast convergence to the solution. The method has been 
applied to the solution of nonlinear equations that can be defined as, 

 ( ) =f x 0  (11) 

where ( )f x   is a n×1 vector that contains the n equations to be solved ( ) 0if =x , i=1,n, 

 [ ]1 2( ) ( ), ( ), , ( )
T

nf f f=f x x x x  (12) 

and x is a n×1 vector that contains the state variables, ix , i=1,n, 

 [ ]1 2, , ,
T

nx x x=x   (13) 

The numerical methods used to solve (11) are focused to determine a recursive 

formula 1k k+ = + Δx x x . The solution algorithm is based in the iterative application of the 

above formula starting from an initial estimate 0x ,  until a convergence criterion is achieved 

( )max
k

εΔ <x , where ε  is a small numerical value, and the vector kx  is an approximation to 

the solution ∗x  of (11). 
The Newton-Raphson method can be easily explained when it is applied to an equation of a 
single state variable (Arrillaga, 2001). A geometrical illustration of this problem is shown in 
figure 2. 
 

 

Fig. 2. Geometric interpretation of the NR algorithm. 
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From figure 2, it can be established that 1k k kx x x+Δ = −  

 
( ) ( )

k
k

x

f x f x
d

dx x
= −

Δ
 (14) 

where, 

 ( )
1

'( ) ( )k
k kx f x f x

−
Δ = − ⋅  (15) 

As it can be seen in figure 2, the successive application of this correction 1 2, , ...k k kx x x+ +Δ Δ Δ  
leads to the solution ∗x  as nearer as desired. 
To derive the recursive formula to be employed in the solution of the set of equations, and 
by expressing the equation (15) in matrix notation, it is obtained, 

 ( ) [ ]1 1
'( ) ( ) ( ) ( )k

k k k k
− −

Δ = − ⋅ = − ⋅x f x f x J x f x  (16) 

where 

 

1 1 1

1 2

2 2 2

1 2

1 2

( ) ( ) ( )

( ) ( ) ( )
( )

( )

( ) ( ) ( )

n

k
nk

n n n

n

f f f

x x x

f f f

x x x

f f f

x x x

∂ ∂ ∂ 
 ∂ ∂ ∂ 
 ∂ ∂ ∂

∂  
∂ ∂ ∂= =  ∂  

 
∂ ∂ ∂ 
 ∂ ∂ ∂ 

x x x

x x x
f x

J x
x

x x x





   



 (17) 

and the recursive formula is given by, 

 1k k+ = + Δx x x  (18) 

3.4 Application of the NR to the power flow problem 
The equations to be solved in the load flow problem, as it was explained in section 3.1, are 
here rewritten, 

 ( )2

1

( ) ( ) 0
n

esp
k kk k m km k m km k mk

m
m n

P V G V V G Cos B Sinθ θ θ θ
=
≠

 
 

− + − + − = 
 
 

  (4) 

 ( )2

1

( ) ( ) 0
n

esp
k km k m km k m km k mk

m
m n

Q V B V V G Cos B Cosθ θ θ θ
=
≠

 
 

− − + − − − = 
 
 

  (5) 

for k= 1,2,…..n   
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The 2n equations to be solved are represented by (4) and (5). However, for all generator 

nodes, equation (5) can be omitted and for the slack node the equations (4) and (5) 

(Arrillaga, 2001). The resulting set of equations is consistent because for the neglected 

equations, its corresponding state variables espP , espQ  are also omitted from them. All this 

operation gives as a result a set of equations to solve, where its state variables x only 

contain magnitudes of nodal voltages and its corresponding phase angles which are 

denoted by V y θ, which simplifies considerably a guaranteed convergence of the numerical 

method. Therefore, the set of equation can be represented in vector form as,  

 ( )
( )

( )

Δ 
= = Δ 

P x
f x 0

Q x
 (19) 

where ( )ΔP x represents the equation (4) for PV and PQ nodes, ( )ΔQ x  represents the 

equation (5) for PQ nodes and x  denotes the state variables V and θ, which are represented 

in vector notation as: 

 
 

=  
 

θ
x

V
 (20) 

where: 

V =  ncx1 vector.  

θ  = nc+n-1 vector. 
nc = Number of PQ nodes. 
n =  Total number of nodes. 
Considering equation (16), its matrix equation is obtained and it defines the solution of the 
load flow problem: 

 

 

1

( )

( )

k k

k

−
∂Δ ∂Δ 
 Δ Δ   ∂ ∂

= −     Δ ∂Δ ∂Δ Δ    
 ∂ ∂ x f x

J x

P P
θ Pθ V
V Q Q Q

θ V

 (21) 

By applying the recursive equation (18), the state variables (V y θ) are updated every 

iteration until the convergence criterion is achieved max( ( ) ) εΔ ≤P x  or max( ( ) ) εΔ ≤Q x  for 

a small ε  or until the iteration number exceeds the maximum number previously defined 

which in this indicates convergence problems. 
The Jacobian elements in (21) are, 

 
∂Δ

∂

P

θ
 (22) 

They are calculated using (19), however, by taking into account that the specified powers 
esp
kP are constants, we obtain,  

 
∂Δ ∂

= −
∂ ∂

P P

θ θ
 (23) 
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Therefore, equation (21) can be expressed as, 

 

∂ ∂ 
 Δ Δ  ∂ ∂

= ⋅  Δ ∂ ∂ Δ  
 ∂ ∂ 

P P
P θθ V
Q Q Q V

θ V

 (24) 

where the Jacobian elements are calculated using equations (9) and (10), provided equation 
(21) is normalized. 
To simplify the calculation of the Jacobian elements of (24), it can be reformulated as: 

 

Δ 
Δ     = Δ     Δ      

θ
P H N

V
Q J L

V

 (25) 

where the quotient of each element with its corresponding element V allows that some 
elements of the Jacobian matrix can be expressed similarly (Arrillaga, 2001). The Jacobian 
can be formed by defining four submatrixes denoted as H, N, J and L which are defined as, 
If k≠m (off diagonal elements): 

 ( )sin cosk
km k m km km km km

m

P
H V V G Bθ θ

θ

∂
= = −

∂
 (26) 

 ( )cos sink
km k k m km km km km

m

P
N V V V G B

V
θ θ

∂
= = +

∂
 (27) 

 ( )cos sink
km k m km km km km

m

Q
J V V G Bθ θ

θ

∂
= = − +

∂
 (28) 

 ( )sin cosk
km k k m km km km km

m

P
L V V V G B

V
θ θ

∂
= = −

∂
 (29) 

If k=m (main diagonal elements): 

 
2k

kk k kk k
k

P
H Q B V

θ

∂
= = − −

∂
 (30) 

 
2k

kk k k kk k
k

P
N V P G V

V

∂
= = +

∂
 (31) 

 2k
kk k kk k

m

Q
J P G V

θ

∂
= = −

∂
 (32) 

 2k
kk k k kk k

m

P
L V Q B V

V

∂
= = −

∂
 (33) 
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It is important to consider that subscripts k and m are different, km kmL H=  and km kmJ N= − , 

on the contrary, to the principal diagonal elements.  Nevertheless, there is a relationship 
when the following equation is solved: 

 

*

1 11 12 1 1

1 21 22 2 1

1 1

0 0 0 0

0 0 0 0

0 0 0 0

n

n

n n n nn n

V Y Y Y V

V Y Y Y V

V Y Y Y V

      
      
      
      
             

  
  

           
  

 (34) 

By simple inspection of (34), we can see that the operation for kmN−  and kmJ results to be 

the real part of (34), while kmH  and kmL are the imaginary component of it. The variant 

consists that all elements of the principal diagonal are calculated after (34) has been solved 

by subtracting or adding the corresponding kP  or kQ as it can be seen in (30)-(33). 
The Jacobian matrix has the characteristic of being sparse and squared with an order of the 

length of vector X, where its sub-matrixes have the following dimensions: 

H: n-1 x n-1 matrix. 

N: n-1 x nc matrix. 

J: nc x n-1 matrix. 

L: nc x nc matrix. 

4. Voltage stability and collapse 

The terms of voltage stability and collapse are closely related to each other in topics of 

operation and control of power systems. 

4.1 Voltage stability 

According to the IEEE, the voltage stability is defined as the capacity of a power system to 

maintain in all nodes acceptable voltage levels under normal conditions after a system 

disturbance for a given initial condition (Kundur, 1994). This definition gives us an idea of 

the robustness of a power system which is measured by its capability of keep the 

equilibrium between the demanded load and the generated power. The system can be in an 

unstable condition under a disturbance, increase of demanded load and changes in the 

topology of the network, causing an incontrollable voltage decrement (Kundur, 1994). The 

unstable condition can be originated for the operating limits of the power system 

components (Venkataramana, 2007), such as: 

Generators: They represent the supply of reactive power enough to keep the power system in 

stable conditions by keeping the standardized voltage levels of normal operation. However, 

the generation of machines is limited by its capability curve that gives the constraints of the 

reactive power output due to the field winding current limitation. 

Transmission lines: They are another important constraint to the voltage stability, and they 

also limit the maximum power that be transported and it is defined the thermal limits. 

Loads: They represent the third elements that have influence on the stability voltage; they are 

classified in two categories: static and dynamic loads and they have an effect on the voltage 

profiles under excessive reactive power generation. 
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4.2 Voltage collapse 
The voltage collapse is a phenomenon that might be present in a highly loaded electric 

power system. This can be present in the form of event sequence together with the voltage 

instability that may lead to a blackout or to voltage levels below the operating limits for a 

significant part of the power system (Kundur, 1994). Due to the nonlinear nature of the 

electrical network, as the phenomenon related to the power system, it is necessary to 

employ nonlinear techniques for the analysis of the voltage collapse (Venkataramana, 2007) 

and find out a solution to avoid it. 

There many disturbances which contribute to the voltage collapse: 

• Load increment. 

• To reach the reactive power limits in generators, synchronous condensers or SVC. 

• The operation of TAP changers in transformers. 

• The tripping of transmission lines, transformers and generators. 
Most of these changes have a significant effect in the production, consumption and 
transmission of reactive power. Because of this, it is suggested control actions by using 
compensator elements as capacitor banks, blocking of tap changers, new generation 
dispatch, secondary voltage regulation and load sectioning (Kundur, 1994). 

4.3 Analysis methods for the voltage stability 
Some of the tools used for the analysis of stability voltage are the methods based on 
dynamic analysis and those based in static analysis.  
Dynamic Analysis. They consist in the numerical solution (simulation) of the set of 

differential and algebraic equations that model the power system (Kundur, 1994), this is 

similar as transients; however, this kind of simulations need considerable amount of 

computing resources and hence the solution time is large and they do not give information 

about the sensibility and stability degree. 

Static analysis. They consist in the solution of the set of algebraic equations that represent the 
system in steady state (Kundur, 1994), with the aim of evaluating the feasibility of the 
equilibrium point represented by the operating conditions of the system and to find the 
critical voltage value. The advantage with respect to the dynamic analysis techniques is that 
it gives valuable information about the nature of the problem and helps to identify the key 
factors for the instability problem.  The plotting of the PV curve helps to the analysis of the 
voltage stability limits of a power system under a scenario with load increments and with 
the presence of a disturbance such as the loss of generation or the loss of a transmission line. 

4.4 PV curves 
The PV curves represent the voltage variation with respect to the variation of load reactive 
power. This curve is produced by a series of load flow solutions for different load levels 
uniformly distributed, by keeping constant the power factor. The generated active power is 
proportionally incremented to the generator rating or to the participating factors which are 
defined by the user. The P and Q components of each load can or cannot be dependant of 
the bus voltage accordingly to the load model selected. The determination of the critical 
point for a given load increment is very important because it can lead to the voltage collapse 
of the system. These characteristics are illustrated in figure 3. 
Some authors (Yamura et al, 1998 & Ogrady et al, 1999) have proposed voltage stability 
indexes which are based in some kind of analysis of load flows with the aim to evaluate the 
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stability voltage limits. However, the Jacobian used in the load flows, when the Newton-
Raphson is employed, becomes singular at the critical point, besides the load flow solutions 
at the points near to the critical region tend to diverge (Kundur, 1994). These disadvantages 
are avoided by using the method of continuation load flows (Venkataramana et al, 1992). 
 

 

Fig. 3. PV curve 

4.5 Application of the continuation method to the power flow problem 
The continuous load flow procedure is based in a reformulation of the equations of the load 

flow problem and the application of the continuation technique with a local 

parameterization which has shown to be efficient in the trajectory plotting of PV curves.  

The purpose of continuous load flows is to find a set of load flow solutions in a scenario 

where the load is continuously changing, starting from a base case until the critical point. 

Thereafter, the continuous load flows had been applied to understand and evaluate the 

problem of voltage stability and those areas that are likely to the voltage collapse. Besides, 

they have also been applied in other related problems like the evaluation of power transfer 

limits between regions. 
The general principle of continuous load flows employs a predictor-corrector scheme to find 
a trajectory of solutions for the set of load flow equations (4) and (5) which are reformulated 
to include the load parameter λ. 

 ( ) 0esp
i Gi Li i iiP λ P P P λP PΔ = − − = − =  (35) 

 ( ) 0esp
i Gi Li i iiQ λ Q Q Q λQ QΔ = − − = − =  (36) 

 1 críticλ λ≤ ≤  (37) 
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The process is started from a known solution and a predictor vector which is tangent to the 
corrected solutions is used to estimate the future solutions with different values of the load 
parameter. The estimation is corrected using the same technique of the Newton-Rhapson 
employed in the conventional load flow with a new added parameter: 

 ( ), , λ =f θ V 0  (38) 

The parameterization plays an important role in the elimination of the Jacobian non-
singularity. 

4.5.1 Prediction of the new solution 
Once the base solution has been found for λ=0, it is required to predict the next solution 
taking into consideration the appropriate step size and the direction of the tangent to the 
trajectory solution. The first task in this process consists in calculating the tangent vector, 
which is determined taking the first derivative of the reformulated flow equations (38).  

 ( , , ) 0Vd d d dθ λλ λ= + + =f θ V f θ f V f  (39) 

where F is the vector [ΔP, ΔQ, 0] that is augmented in one row; in a factorized form, the 
equation is expressed as, 

 [ ] 0

d

d

dλ
λ

 
 

= 
  

Ff f f Vθ

θ

 (40) 

The left hand side of the equation is a matrix of partial derivatives that multiplies the 

tangent vector form with differential elements. The matrix of partial derivatives is known as 

the Jacobian of the conventional load flow problem that is augmented by the column Fλ, 

which can be obtained by taking the partial derivatives with respect to λ (35) and (36), which 

gives: 

 
esp

esp

d

P d

Q

dλ

 
  Δ −   =   Δ   −      

θ
H N P V

VJ L Q
 (41) 

Due to the nature of (41) which is a set of nc+n-1 equations with  nc+n unknowns and by 

adding λ  to the load flow equations, it is not possible to find a unique and nontrivial 

solution of the tangent vector; consequently an additional equation is needed. 

This problem is solved by selecting a magnitude different from zero for one of the 
components of the tangent vector.  In other words, if the tangent vector is denoted by: 

 0, 1k

d

d t

dλ

 
 

= = = ± 
  

t V

θ

 (42) 

which leads to: 
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1

esp

esp

k

 −
   

⋅ = −  ±  
 

H N P
0

J L tQ

e

 (43) 

where ek  is a vector of dimension m+1 with all elements equal to zero but the k-th one, 
which is equal to 1. If the index k is correctly selected, tk = ±1 impose a none zero norm to 
the tangent vector and it guarantees that the augmented Jacobian will be nonsingular at the 
critical point (Eheinboldt et al, 1986). The usage of +1 or -1 depends on how the k-th state 
variable is changing during the trajectory solution which is being plotted. In a next section 
of this chapter, a method to select k will be presented. Once the tangent vector has found the 
solution of (43), the prediction is carried out as follows: 

 

d

d

λ dλ

σ

λ

∗

∗

∗

          
= +               

V V V

θ θ θ

 (44) 

where “*” denotes the prediction for a future value of λ (the load parameter) and σ is a 
scalar that defines the step size. One inconvenient in the control of the step size consists in 
its dependence of the normalized tangent vector (Alves et al, 2000), 

 
0σ

σ =
t

 (45) 

where  |tk| is the Euclidian norm of the tangent vector and σ0 is a predefined scalar. The 
process efficiency depends on making a good selection of σ0, which its value is system 
dependant. 

4.5.2 Parameterization and corrector 
After the prediction has been made, it is necessary to correct the approximate solution. 
Every continuation technique has a particular parameterization that gives a way to identify 
the solution along the plotting trajectory. The scheme here presented is referred as a local 
parameterization. In this scheme, the original set of equations is augmented with one extra 
equation, which has a meaning of specifying the value of a single state variable. In the case 
of the reformulated equations, this has a meaning of giving a unity magnitude to each nodal 
voltage, the phase angle of the nodal voltage or the load parameter λ. The new set of 
equations involves the new definition of state variables as: 

 

λ

 
 

=  
  

x V

θ

 (46) 

where, 

 kx η=  (47) 
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where kx ε x  and η  represent the appropriate k-th element of x. Therefore, the new set of 

equations that substitute (38) is given by, 

 
( )

0
kx η

 
= − 

F x
 (48) 

After an appropriate index k has been selected and its corresponding value of η , the load 

flow is solved with the slightly modified Newton Raphson method (48).  In other words, the 

k index used in the corrector is the same as that used in the predictor and η is equal to the 

obtained xk from the corrector (44), thus the variable xk is the continuation parameter. 
The application of the Newton-Raphson to (38) results in, 

 

0

esp

esp

k

H N

M L

λ

 − Δ Δ   
     

Δ = Δ −    
     Δ    

P P

V QQ

e

θ

 (49) 

where ek is the same vector used in (43), and the elements ΔP and ΔQ are calculated from 

(35) and (36). Once the xk is specified in (48), the values of the other variables are dependant 

on it and they are solved by the iterative application of (49). 

4.5.3 Selection of the continuation parameter 
The most appropriate selection corresponds to that state variable with the component of the 

tangent vector with the largest rate of change relative to the given solution. Typically, the 

load parameter is the best starting selection, i.e.  λ=1. This is true if the starting base case is 

characterized for a light or normal load; in such conditions, the magnitudes of the nodal 

voltages and angles keep almost constants with load changes. On the other hand, when the 

load parameter has been increased for a given number of continuation steps, the solution 

trajectory is approximated to the critical point, and the voltage magnitudes and angles 

probably will have more significant changes. At this point,  λ has had a poor selection as 

compared with other state variables. Then, once the first step selection has been made, the 

following verification must be made: 

 11 2

1 2

max
1

m m
k

m

t tt t
x

x x xm x
−  

←  
−  

  (50) 

where m is equal to the state variables; including the load parameter and k corresponding to 
the maximum t/x component. When the continuation parameter is selected, the sign of the 
corresponding component of the tangent vector must be taken into account to assign  +1 or -
1 to tk in (42) for the subsequent calculation of the tangent vector. 

5. MATLAB resources for electrical networks  

The reason why MATLAB is frequently chosen for the development of academic or research 

tools is because its huge amount of mathematical operations as those related to vectors and 

matrixes. In addition, it also has several specialized libraries (toolboxes) for more specific 

areas as control, optimization, symbolic mathematics, etc. In the area of power systems, it is 
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possible to point it out several advantages considered as key points for the development of a 

script program, which are discussed below.  

5.1 Sparse matrix manipulation 
The electrical networks are studied using nodal analysis, as it was presented in section 3.1. 
In this frame of reference, the network matrixes as Ybus or Jacobian (1) and (21) have a 
sparse structure, considering that a node in an electrical network is connected to about 2.4 
nodes in average. To illustrate this issue, if we consider the creation of a squared matrix 
with order 20, i.e. the matrix has 200 elements which 256 are zeros and the remaining are 
different from zero that are denoted as nz, as it is shown in figure 4. The sparsity pattern is 
displayed by using the MATLAB function spy.  
 

 

Fig. 4. An example of a sparse matrix. 

The operation on this type of matrices with conventional computational methods leads to 
obtain prohibited calculation times (Gracia et al, 2005). Due to this reason, there have been 
adopted special techniques for deal with this type of matrixes to avoid the unnecessary 
usage of memory and to execute the calculation processes on the nonzero elements. It is 
important to point it out that this kind of matrixes is more related to a computation 
technique than to a mathematic concept. 
MATLAB offers mechanisms and methods to create, manipulate and operate on this kind of 
matrixes. The sparse matrixes are created with the sparse function, which requires the 
specification of 5 arguments in the following order: 3 arrays to specify the position i, the 
position j – row and column-  and the element values x that correspond to each position (i,j), 
and the two integer variables to determine the dimensions mxn of the matrix, for example: 
>> A = sparse(i, j, x, m, n) 
In MATLAB language, the indexing of full matrixes is equal to the sparse matrixes. This 
mechanism consists in pointing to a set of matrix elements through the use of two arrays 
that makes reference to each row and column of the matrix, e.g. B = A[I, J] or by simply 
pointing to each element o elements of the matrix to be modified, e.g. A[I, J] = X. 
where A is a mxn spare matrix, I and J are the arrays that point to the rows and columns and 
X is the array that contains each element corresponding to each ordered pair (Ik, Jk).  All 
mentioned arrays are composed for a number of k elements, such as k < n and  k < m. 
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MATLAB has a function called spdiags that is intended for the direct operation on any 
diagonal of the matrix, e.g. to make uniform changes on the elements of the diagonal “d” of 
matrix A: 
>> A = spdiags(B, d, A) 
A mechanism frequently used to form matrixes from other defined ones is called the 
concatenation.  Even more, to form sparse matrixes by using other arrays of the same type 
but with specified dimensions in such a way that there is a consistency to gather into a 
single one, i.e. the concatenating is horizontal, the matrix rows must be equal to those of B 
matrix, e.g.  C = [A B]. On the other hand, if the concatenating is vertical, then the columns 
of both matrices must be equal, e.g. C = [A; B]. 

5.2 The LU factorization for solving a set of equations  

In electrical network applications, to find a solution of the algebraic system =Ax b in an 

efficient way, one option is to use the triangular decomposition as the LU factorization 
technique. 
The triangular factorization LU consists in decomposing a matrix (A) such that it can be 
represented as the product of two matrixes, one of them is a lower triangular (L) while the 

other is an upper triangular (U), = ⋅A L U . This representation is commonly named explicit 

factorization LU; even though it is very related to the Gaussian elimination, the elements of 
L and U are directly calculated from the A elements, the principal advantage with respect to 
the Gaussian elimination (Gill et al., 1991) consists in obtaining the solution of an algebraic 
system for any b vector, if and only if the “A” matrix is not modified.  

5.3 Sparse matrix ordering using AMD 
The Approximate minimum degree permutation (AMD) is a set of subroutines for row and 
column permutation of a sparse matrix before executing the Cholesky factorization or for the 
LU factorization with a diagonal pivoting (Tim, 2004). The employment of this subroutine is 
made by using the function “amd” to the matrix to be permuted, e.g. P = amd(A). 

5.4 Sparse matrix operations 
Care must be taken with a several rules in MATLAB when operations are carried out that 
include full and sparse matrixes, for example, the operation eye(22) + speye(22) gives a full 
matrix. 

5.5 Vector operations 
An approach to develop the script programs in MATLAB to be executed faster consists in 
coding the algorithms with the use of vectors within the programs and avoiding the use of 
loops such as for, while and do-while. The vector operations are made by writing the symbol 
“.” before the operation to be made, e.g. .+, .-, .*, ./. This discussion is illustrated by 
comparing two MATLAB script programs to solve the following operation: 

1 1 1

2 1 2

n n n

C A B

C A B

C A B

⋅   
   ⋅   =
   
   

⋅   

 
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Script program with the loop 
command 

Script program with vector operations. 

for k = 1:1000 
        C(k,1) = k*k; 
 end 

A = 1:1000; 
B = 1:1000; 
C = A.*B; 

Execution time: 0.002086 s Execution time: 0.000045 s 
It is evident that the use of the for-loop command to carry out the described operation gives a 
larger computation time than by using the vector operation A.*B. 

6. MATLAB application for plotting the PV curves 

The program for plotting the PV curves is integrated with four specific tasks: 

• Reading of input data 

• Generation of the flow base case 

• Calculation of points for the PV curves at each node. 

• Graphical interface for editing the display of PV curves. 
Afterwards, the complete application code is listed. In case the code is copied and pasted 

into a new m-file, this will have the complete application, i.e. there is no necessity to add 

new code lines. 

 
function main() 

%% **************    READING OF INPUT DATA    ************** 

 

% -> The filename and its path are obtained: 

    [file, trayectoria] = uigetfile( ... 

        { '*.cdf;','Type file (*.cdf)'; '*.cf', ... 

        'IEEE Common Format (*.cf)'}, 'Select any load flow file'); 

 

    if file == 0 & trayectoria == 0 

        return; 

    end 

    archivo = [trayectoria file]; 

 

% -> the code lines are stored in the following variable: 

    DATA = textread(archivo,'%s','delimiter','\n','whitespace',''); 

 

% -> Reading of nodal data: 

    X_b = DATA{1}; 

    Sbase = str2double(X_b(32:37)); % Base power (MVA): Sbase 

 

    X_b = DATA{2}; 

    N_Bus = findstr(X_b,'ITEMS'); 

    N_Bus = str2double(fliplr(strtok(fliplr(X_b(1:N_Bus-1))))); 

    Nnod  = N_Bus;  % Total number of buses  

    N_Bus = 2+N_Bus; 

    DN    = strvcat(DATA{3:N_Bus}); 
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    No_B = str2num(DN(:,1:4));      % Number of buses: No_B 
    Tipo = str2num(DN(:,25:26));    % Bus type: Tipo 

 
    Nslack = find(Tipo == 3);   % Slack bus 

    NumNG  = find(Tipo >= 2);   % Index of PV nodes 
    NumNC  = find(Tipo == 0);   % Index of PQ nodes 

    NumCG  = find(Tipo <= 2);   % Index of all nodes except slack 
     

    Vabs = str2num(DN(:,28:33));    % Magnitude of nodal voltages. 
    Tetan = str2num(DN(:,34:40));   % Phase angle of nodal voltages (degrees) 

    Tetan = Tetan*pi/180;           %  Degrees to radians conversion 
  

    Pload = str2num(DN(:,41:49));   % Demanded active power (MW) 
    Qload = str2num(DN(:,50:59));   % Demanded reactive power (MVAr) 

  
    Pgen = str2num(DN(:,60:67));    % Generated active power (MW) 

    Qgen = str2num(DN(:,68:75));    % Generated reactive power (MVAr) 
    Pgen = Pgen(NumNG);     % PV nodes are selected 

    Qgen = Qgen(NumNG);     %PV nodes are selected  
    Gc    = str2num(DN(:,107:114)); % Compensator conductance 

    Bc    = str2num(DN(:,115:122)); % Compensator susceptance 
    NumND = find(Bc~=0);    % Indexes of all compensating nodes. 

    Bcomp = Bc(NumND);      % Susceptance of all compensating nodes  NumND 
  

% -> Branch data is read: 
    X_b = DATA{N_Bus+2}; 

    N_Bra = findstr(X_b,'ITEMS'); 
    N_Bra = str2double(fliplr(strtok(fliplr(X_b(1:N_Bra-1))))); 

    N_Bra1 = N_Bus+3; 
    N_Bra2 = N_Bus+N_Bra+2; 

    XLN = strvcat(DATA{N_Bra1:N_Bra2}); 
  

    X_b    = str2num(XLN(:,19)); 
    NramL  = find(X_b == 0);    % Indexes of transmission lines (LT) 

    NramT  = find(X_b >= 1);    % Indexes of transformers (Trafos) 

    PLi    = str2num(XLN(NramL,1:4));   % Initial bus for the transmission lines 
    QLi    = str2num(XLN(NramL,6:9));   % Final bus for the transmission lines 

    PTr    = str2num(XLN(NramT,1:4));   % Initial bus for the transformers 
    QTr    = str2num(XLN(NramT,6:9));   % Final bus for the transformers 

  
    RbrL =  str2num(XLN(NramL,20:29));  % Resistance of transmission lines (pu) 

    XbrL =  str2num(XLN(NramL,30:40));  % Reactance of transmission lines (pu) 
    Blin = str2num(XLN(NramL,41:50))/2; % Susceptance of transmission lines (pu) 

  
    RbrX =  str2num(XLN(NramT,20:29));  % Resistance of transmission lines (pu) 

    XbrX =  str2num(XLN(NramT,30:40));  % Reactance of transmission lines (pu) 
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     TAP  = str2num(XLN(NramT,77:82));   % TAP changers of transformers 

  

% -> Admittance matrix: 

  

    Ylin =1./(RbrL+1j*XbrL);        % Series admítanse of transmission lines 

    Yxtr =(1./(RbrX+1j*XbrX))./TAP; % Series admítanse of transformers 

%   Mutual admittances: 

    Ynodo = sparse([  PLi;   PTr;   QLi;   QTr ],... 

                    [  QLi;   QTr;   PLi;   PTr ],... 

                    [-Ylin; -Yxtr; -Ylin; -Yxtr ], Nnod, Nnod); 

 

 %  Self admittances: 

    Ynodo = Ynodo + ... 

    sparse([         PLi;          QLi;       PTr;       QTr;    NumND],... 

           [         PLi;          QLi;       PTr;       QTr;    NumND],... 

           [Ylin+1j*Blin; Ylin+1j*Blin; Yxtr./TAP; Yxtr.*TAP; 1j*Bcomp],... 

            Nnod, Nnod); 

 

%%  *******************   CASE BASE GENERATION    ******************** 

 

    Tol_NR   = 1e-3;    % Tolerance error  . 

    Max_Iter = 60;      % Maximum number of possible iterations. 

 

%  -> Initialization:     

    Vabs(NumNC) = 1.0;  % Voltage magnitude of PQ nodes 

    Tetan       = zeros(Nnod,1);    % Phase angles in all nodes 

     

 %  -> Calculation of specified powers: 

 %  Active power: 

    PLg = Pload(NumNG); 

    QLg = Qload(NumNG); 

    Pesp(NumNG,1)  = (Pgen-PLg)/Sbase;      % for PV nodes 

    Pesp(NumNC,1)  = (-Pload(NumNC))/Sbase; % for PQ nodes 

%  Reactive power: 

    Qesp  = -Qload/Sbase;   % for PQ nodes 

  

    Ndim = Nnod + length(NumNC) - 1;    % Jacobian dimension. 

    iter = 0;   % Initialization of iteration counter. 

    tic 

     

    while iter <= Max_Iter  % Limit of the number of iterations     

%   -> Calculation of net active and reactive powers injected to each node:         

        [Pnodo Qnodo] = scmplx(); 

         

%   -> Calculation of  misadjustment of reactive and active powers: 
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        DelP  = Pesp(NumCG) - Pnodo(NumCG); 

        DelQ  = Qesp(NumNC) - Qnodo(NumNC); 

        Pmismatch = [DelP; DelQ]; 

         

%  -> Check the convergence method.        

        if max(abs(Pmismatch)) < Tol_NR 

            tsol = toc; 

            fprintf( 'The case has converged: %d iterations \n', iter); 

            fprintf( 'in: %f seg. \n', tsol); 

            break; 

        end 

         

%   -> Jacobian calculation:  

        JB = Jacob(); 

         

%   -> Solution of the set of equations:  

        DeltaX = linear_solver(JB, Pmismatch);   

         

%   -> Update of magnitudes and angles of nodal voltages:  

        Vabs(NumNC)  = Vabs(NumNC).*(1 + DeltaX(Nnod:Ndim)); 
        Tetan(NumCG) = Tetan(NumCG) + DeltaX(1:Nnod-1); 
         
        iter = iter + 1; 
    end 
  
%% ******   CALCULATION OF POINTS OF PV CURVES AT EACH NODE    ****** 
  
    Ndim = Nnod + length(NumNC); % Augmented Jacobian dimension. 
     
    sigma0    = 0.3966;     % Predictor step. 
    Vpredict  = [Vabs];     % Predicted voltage values.  
    Vexact    = [Vabs];     % Corrected voltage values. 
    Carga     = [0];        % Load increment. 
    lambda    = 0;          % Initial value of lambda. 
    b(Ndim,1) = 1;          % Column vector of equation (43). 
    Ix = Ndim;              % Index that indicates the continuation parameter. 
     
 % Flag to indicate state before the critical point: 
    Superior  = true; 
     
 % Counter used to calculate exactly the number of points alter the critical point: 
    Inferior  = 0; 
     
    while(Superior == true) || (Inferior > 0) 
%   -> After the critical point has been reached, only more 14 points are obtained.    
        if (Superior == false) Inferior = Inferior - 1; end 
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%   -> Calculation of the augmented Jacobian as in equation (43): 

        JB = Jacob(); 

        JB(Ndim,Ix) = 1; 

        JB(1:Ndim-1,Ndim) = [-Pesp(NumCG); -Qesp(NumNC)]; 

         

%   -> Calculation of the tangent vector as in equation (43) 

        t = linear_solver(JB, b);    

  

%   -> The critical point has been reached: 

        if b(end) < 0 

            if Superior == true; 

                sigma0   = 0.25;    % Decrement of the predictor step 

                Inferior = 14;      %  Calculation of additional 14 points. 

                Superior = false; 

  

                Carga(end-1:end)       = []; 

                Vpredict(:, end-1:end) = []; 

                Vexact(:, end)         = []; 

            end 

        end 

  

%   -> Selection of the continuation parameter: 

        x  = [Tetan(NumCG); Vabs(NumNC); lambda]; 

        [xk Ix] = max(abs(t)./x);   % As in equation (50) 

         

%   -> Calculation of the predictor step as in equation (45): 

        sigma = sigma0/norm(t); 

  

%   -> Calculation of predictor: 

        Vabs(NumNC)  = Vabs(NumNC).*(1 + t(Nnod:Ndim-1)*sigma); 

        Tetan(NumCG) = Tetan(NumCG) + t(1:Nnod-1)*sigma; 

        lambda = lambda + sigma*t(end); 

  

        Vpredict = [Vpredict Vabs]; % Calculated values with the predictor 

        Carga  = [Carga lambda];    % Load increment 

  

%   -> Calculation with the corrector: 

        iter = 0; 

        while iter <= Max_Iter 

 

            [Pnodo Qnodo] = scmplx();   % Computation of the complex power 

%       -> Calculation of misadjustment  in active and reactive powers as in: 

            DelP = Pesp(NumCG)*(1 + lambda) - Pnodo(NumCG); % Equation (35) 

            DelQ = Qesp(NumNC)*(1 + lambda) - Qnodo(NumNC); % Equation (36) 

            Pmismatch = [DelP; DelQ; 0]; 
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            if max(abs(Pmismatch)) < Tol_NR     % Convergence criterion 

                break; 

            end 

%       -> Calculation of the augmented Jacobian. 

            JB = Jacob(); 

            JB(1:Ndim-1,Ndim) = [-Pesp(NumCG); -Qesp(NumNC)]; 

            JB(Ndim,Ix) = 1; 

 

%       -> Calculation of the set of equations as in (49). 

            DeltaX = linear_solver(JB, Pmismatch); 

 

%       -> Checking if the critical point has been found. 

            if DeltaX(end) < 0 && Superior == true 

                b(Ndim,1) = -1; 

                break; 

            end 

 

 %       -> Update state variables in the corrector: 

            Vabs(NumNC)  = Vabs(NumNC).*(1 + DeltaX(Nnod:Ndim-1)); 

            Tetan(NumCG) = Tetan(NumCG) + DeltaX(1:Nnod-1); 

            lambda       = lambda + DeltaX(end); 

  

            iter = iter + 1; 

        end 

  

        Vexact   = [Vexact Vabs]; 

        Vpredict = [Vpredict Vabs]; 

        Carga    = [Carga lambda]; 

  

    end 

     

%% **    GRAPHICAL INTERFACE FOR DISPLAYING THE PV CURVES    ** 

    PV_PRINT( Carga, Vpredict, Vexact ); 

     

%% ***********************    Nested functions   *********************** 

    function [P Q] = scmplx() 

 

        Vfasor = Vabs.*exp(1j*Tetan);       % Complex form of nodal voltage using Euler. 

        Scal =   Vfasor.*conj(Ynodo*Vfasor);    % Calculation of complex power as in (8). 

        P = real(Scal); % Net active power injected to each node as in (9). 

        Q = imag(Scal); % Net reactive power injected to each node as in (10). 

    

 end 

 

    function Jac = Jacob() 
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        Jac = sparse(Ndim, Ndim); 

 
        Vdiag = sparse(1:Nnod, 1:Nnod, Vabs.*exp(1j*Tetan)); 

        J2    = Vdiag*conj(Ynodo*Vdiag);    % Computation of equation (34) 
        P = sparse(1:Nnod, 1:Nnod, Pnodo); 

        Q = sparse(1:Nnod, 1:Nnod, Qnodo); 
  

        H = ( imag(J2(NumCG, NumCG)) - Q(NumCG, NumCG));    % Equations  (26) and (30) 
        N = ( real(J2(NumCG, NumNC)) + P(NumCG, NumNC));    % Equations (27) and (31) 

        J = (-real(J2(NumNC, NumCG)) + P(NumNC, NumCG));    % Equations (28) and (32) 
        L = ( imag(J2(NumNC, NumNC)) + Q(NumNC, NumNC));    % Equations (29) and (33) 

  
        Jac = horzcat( vertcat(H, J), vertcat(N, L) );  % Submatrix concatenation as indicated in 

(25) 
  

   end 
  

    function x = linear_solver(A, b) 

 
        P = amd(A);             % Ordering of matrix A (Jacobian). 

        [L, U]  = lu(A(P, P));  % Application of LU factorization. 
    % The set of equations (b=A*x) are solved using the LU factorization: 

        y       = L\b(P); 
        x(P, 1) = U\y; 

 
    end 

  
end 

 
As it was shown above, the four specific tasks of this application are integrated around the 
principal function: main(), which function is the sequential integration of these tasks. Even 
though the first three tasks are described in a set of continuous code lines, each task 
represents one independent process from each other; hence it is possible to separate them as 
external functions, such as the function PV_PRINT, which executes the four tasks. 
Additionally, it can be seen that the calculation tasks, flow case base and the points of PV 
curves use nested functions within the main function that are common to both tasks. The 
following nested functions are: 
Scmplx: This function computes the net complex power injected to each node of the system 

and it returns its real and imaginary components. 
Jacob: This function computes the Jacobian of the conventional load flow problem. 

Linear_solver: This function solves the set of linear equations ⋅ =A x b  by using the LU 

factorization with previous reordering of A matrix. 

6.1 Reading of input data 

A program based on the solution of load flows requires of some input data that describes 

the network to be analyzed. The information can be included in a text file with a 
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standardized format with the extension cdf (Common Data Format) (University of 
Washington electrical engineering, 1999). The reading of the complete information is 

achieved by using the MATLAB function textread. The reading includes the use of a 
standard uicontrol of MATLAB to locate the file path. This information is stored in a data 

matrix of string type, and it can be interpreted by using functions that operate on the 
variables of string type. There is basic information that is used in the developed program; 

the variables can be divided into two categories: 
Nodal information: 

Sbase : Base power of the system. 

Nnod : Number of system nodes. 

No_B : nx1 vector with the numbering of each system bus. 

Name_B : nx1 vector with the name of each bus system. 

Tipo : nx1 vector with the node type of the system. 

Nslack : The number of the slack node. 

Vn : nx1 vector with voltage magnitudes at each system node. 

Vbase : nx1 vector with base values of voltages at each system bus. 

Tetan : nx1 vector with phase angles at each nodal voltage. 

PLoad and QLoad : nx1 vector with the active and reactive load powers, respectively. 

Pgen and Qgen : (n-nc)x1 vector with the active and reactive power of generators, 

respectively. 

Gc and Bc : nx1 vector with conductance and susceptance of each compensating element, 

respectively. 

Branch information (transmission lines and transformers), where l denotes the total number 

of transmission lines and t is the number of transformers in the electrical network: 

PLi and PTr : Vectors with dimensions lx1 y tx1, that indicate one side of transmission lines 

and transformers connected to the P node, respectively. 

QLr and QTr : They are similar as PL and PT with the difference that indicates the opposite 

side of the connected branch to the Q node. 

RbrL and RbrX : They are similar as the above two variables with the difference that 

indicate the resistance of each transmission line and transformer. 

XbrL and XbrX : They are similar as the above with the difference that indicate the 

reactance of each transmission line and transformer. 

Blin : lx1 vector with the half susceptance of a transmission line. 

TAP : tx1 vector with the current position of the TAP changer of the transformer. 

After reading the input data, the admittance matrix Ynode, and a series of useful pointers 

are created to extract particular data from the nodal and branch data: 

• NumNG: An array that points to the PV nodes. 

• NumNC: An array that points to the PQ nodes. 

• NumCG: An array that points to all nodes but the slack node. 
Tol_NR – the maximum deviations in power are lower to this value in case of convergence - and 

Max_Iter –is the maximum number of iterations – these variables are used to control the 

convergence and a value is assigned to them by default after reading of input data. 

The program does not consider the checking of limits of reactive power in generator 

nodes neither the effect of the automatic tap changer in transformers, nor the inter-area 
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power transfer, etc. Therefore the input data related to these controllers is not used in the 

program.  

6.2 Graphical interface for editing the display of PV curves 

In the last part of the program, a graphical user interface (GUI) is generated for the plotting 

of PV curves from the points previously calculated in the continuous load flows program. 

Even though the main objective of this interface is oriented to the plotting of PV curves, its 

design allows the illustration continuation method process, i.e. it has the option of 

displaying the calculated points with the predictor, corrector or both of them, for example, it 

can be seen in figure 5 the set of points obtained with the predictor-corrector for the nodes 

10,12,13, and 14 of the 14-node IEEE test power system. This is possible by integrating the 

MATLAB controls called uicontrol´s into the GUI design, the resultant GUI makes more 

intuitive and flexible its use. 

The numbers 1-12, that are indicated in red color in figure 5, make reference to each 
uicontrol or graphical object that integrates the GUI. The graphical objects with its uicontrol 
number, its handle and its description are given in table 1. 
 
 
 

 
 

 

Fig. 5. GUI for plotting the PV curves for any node. 
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Uicontrol number handle Description 

1 hPV Graphical object known as figure 

2 hPanel_print Panel located to the left of hPV 

3 hAxes_Curve Object for 2D graphs known as axes 

4 hPanel_control Panel located to the right of hPV 

5 hPanel 
Panel located in the upper part of 

hPanel_control 

6 hlb_log Graphical object known as listbox 

7 hlb_txt Graphical object known as textbox 

8 hChoice_PV Set of objects known as radio buttons 

9 opt0 Graphical objects known as radiobutton 

10 opt1 Graphical objects known as radiobutton 

11 opt2 Graphical objects known as radiobutton 

12 - without handle- Graphical objects known as pushbutton 

Table 1. Description of each graphical object used in the GUI shown in figure 5. 

The complete code of the function that generates the GUI is presented below, where the 

code lines for creating each graphical object mentioned in table 1 are fully described. 
 

function PV_PRINT(lambda, predictor, corrector ) 

 

    [Nodos columnas] = size(predictor); 

    clear columnas; 

    etiqueta = {}; 

 

% Variable for registering the elements of listbox that relates the system nodes, which can 

have plotted its PV curve 

    for ii = 1:Nodos 

        etiqueta{ii, 1} = ['Node ' num2str(ii)]; 

    end 

 

 % Variables for configuring the graphical object, color and screen size. 

    BckgrClr = get(0, 'defaultUicontrolbackgroundColor'); 

    Sc_Sz = get(0, 'ScreenSize'); 

    wF = 0.85; 

    hF = 0.85; 

    wF_Pix = wF*Sc_Sz(3); 

    hF_Pix = hF*Sc_Sz(4); 

 

 % Creation of the object type figure: main window.  

    hPV = figure(... 

            'Name', 'Graphic tool', ... 

            'units', 'normalized', 'Color', BckgrClr,... 
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            'MenuBar', 'figure', 'numbertitle', 'off',... 
            'visible', 'on', 'Position', [0.05 0.05 wF hF]); 
    delete(gca); 
 
% Generation of the left panel included in hPV.      
    hPanel_print = uipanel('Parent', hPV, ... 
            'Units', 'normalized', 'BackgroundColor', BckgrClr, ... 
            'BorderType', 'etchedout', 'BorderWidth', 1,... 
            'visible', 'on', 'Position', [0.005 0.01 0.75 0.98]); 
         
% Declaration of axes object where the curves are to be plotted and it is located in 
hPanel_Print.  
    hAxes_Curve = axes('Parent', hPanel_print, ... 
            'units', 'normalized', 'Position',[0.07 0.07 0.88 0.88], ... 
            'Box', 'on', 'Tag', 'hAxes_Curve', 'Visible', 'off'); 
         
% Generation of the right panel in hPV.      
    hPanel_control = uipanel('Parent',hPV, ... 
            'Units', 'normalized', 'BackgroundColor', BckgrClr, ... 
            'BorderType', 'etchedout', 'BorderWidth', 1,... 
            'visible', 'on', 'Position', [0.76 0.01 0.235 0.98]); 
         
% Declaration of a panel inside the hPanel_control  and it contains the listbox and textbox.     
    hPanel = uipanel('Parent', hPanel_control, ... 
            'Units', 'normalized', 'BackgroundColor', BckgrClr, ... 
            'BorderType', 'etchedout', 'BorderWidth', 3,... 
            'visible', 'on', 'Position', [0.05 0.18 0.9 0.45]); 
         
% Listbox located in hPanel and it is used for selecting the node or desired nodes for 
displaying its curves. 
    hlb_log = uicontrol('Parent', hPanel, ... 
            'Units', 'normalized', 'BackgroundColor', [1 1 1], ... 
            'FontName', 'Lucida Console', 'HorizontalAlignment', 'left',... 
            'Tag', 'hlb_log', 'Position', [0 0 1 0.85], 'fontsize', 12,... 
            'Enable', 'on', 'Style', 'listbox', 'String', etiqueta, ... 
            'Max', Nodos, 'Min', 0, 'Clipping', 'off', 'Visible', 'on'); 
         
% Textbox located in hPanel and it is used for displaying any string. 
    hlb_txt = uicontrol('Parent', hPanel,... 
            'Units', 'normalized', 'HorizontalAlignment', 'center',... 
            'style', 'text', 'fontname', 'Comic Sans MS',... 
            'BackgroundColor', 'w', 'string', 'Select the node',... 
            'fontsize', 12, 'fontweight', 'bold', 'visible', 'on',... 
            'Position', [0.0 0.85 1 0.15]); 
         
% Uicontrol of type optionbutton, and it is located in hPanel_control.        
   hChoice_PV = uibuttongroup('Parent', hPanel_control, ... 
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            'Units', 'normalized', 'Position', [0.05 0.7 0.9 0.25], ... 
            'BackgroundColor', BckgrClr, 'FontName', 'Lucida Console', ... 
            'FontSize', 10, 'FontWeight', 'bold', 'Tag','hChoice_PV',... 
            'Title', 'Plots', 'visible', 'off'); 
         
 % Optionbutton located in hChoice_PV which is used for ploting the points obtained with 
the corrector. 
    opt0 = uicontrol('Parent', hChoice_PV, ... 
            'Units', 'normalized', 'pos', [0.1 0.68 0.8 0.25], ... 
            'BackgroundColor', BckgrClr, 'FontName', 'Lucida Console', ... 
            'FontSize', 9, 'FontWeight', 'bold', 'Style', 'Radio',... 
            'String', 'Predictor', 'HandleVisibility', 'off'); 
         
 % Optionbutton located in hChoice_PV and it is used for plotting the points calculated with 

the corrector. 

    opt1 = uicontrol('Parent', hChoice_PV, ... 

            'Units', 'normalized', 'pos', [0.1 0.4 0.8 0.25], ... 

            'BackgroundColor', BckgrClr, 'FontName', 'Lucida Console', ... 

            'FontSize', 9, 'FontWeight', 'bold', 'Style', 'Radio',... 

            'String', 'Corrector', 'HandleVisibility', 'off'); 

 % Optionbutton located in hChoice_PV  and it is used for plotting the points obtained with 

the predictor + corrector. 

    opt2 = uicontrol('Parent', hChoice_PV, ... 

            'Units', 'normalized', 'pos', [0.1 0.125 0.8 0.25], ... 

            'BackgroundColor', BckgrClr, 'FontName', 'Lucida Console', ... 

            'FontSize', 9, 'FontWeight', 'bold', 'Style', 'Radio',... 

            'String', 'Predictor + Corrector', 'HandleVisibility', 'off'); 

 

 % Configuration of the graphical object hChoice_PV. 

    set(hChoice_PV, 'SelectionChangeFcn', @selcbk); 

    set(hChoice_PV, 'SelectedObject', opt0); 

    set(hChoice_PV, 'UserData', 0); 

    set(hChoice_PV, 'Visible', 'on'); 

 

% Generation of the command button which calls the function that generates the selected 
graphs for the set of optionbutton located in hChoice_PV. 

    uicontrol('Parent', hPanel_control, ... 
            'Units', 'normalized', 'style', 'pushbutton',... 

            'FontName', 'Comic Sans MS', 'visible', 'on',... 
            'fontsize', 9, ... 

            'callback', {@RefreshAxes, hChoice_PV, hAxes_Curve, hlb_log, lambda, predictor, 
corrector},... 

            'FontWeight', 'bold', 'string', 'Plot', ... 
            'Position',[0.05 0.05 0.9 0.08]); 

         
end 
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function selcbk(source, eventdata) 

 

    switch get(eventdata.NewValue, 'String') 

        case 'Predictor' 

            set(source, 'UserData', 0); 

        case 'Corrector' 

            set(source, 'UserData', 1); 

        otherwise 

            set(source, 'UserData', 2); 

             

    end 

 

end 

  

function RefreshAxes(source, eventdata, hChoice_PV, hAxes_Curve, hlb_log, lambda, 

predictor, corrector) 

 

   Nodos = get(hlb_log, 'Value');      % It is obtained the node(s) whose PV curves will be 

plotted 

    switch get(hChoice_PV, 'UserData') % Option selection for the object uibuttongroup 

 

        case 0  % The points obtained with the predictor are plotted for the selected nodes. 

            plot(hAxes_Curve, 1 + [lambda(1), lambda(2:2:end)], [predictor(Nodos, 1), 

predictor(Nodos, 2:2:end)]); 

            title(hAxes_Curve, 'Plot the points of predictor', 'FontSize', 14); 

 

        case 1  % The points obtained with the corrector are plotted for the selected nodes. 

            plot(hAxes_Curve, 1 + lambda(1:2:end), corrector(Nodos,:)); 

            title(hAxes_Curve, 'Plot the points of corrector ', 'FontSize', 14); 

        otherwise 

       % The points stored in the variable predictor are plotted for the selected nodes. 

            plot(hAxes_Curve, 1 + lambda, predictor(Nodos, :)); 

            title(hAxes_Curve, ' All points ', 'FontSize', 14); 
 

    end 
 

     if length(Nodos) > 1 

     % If there are more than one node, they are labeled for marking the shown curves 
        etiqN = get(hlb_log, 'String'); 

        legend(hAxes_Curve, etiqN{Nodos}); 
    end 

 
% The grid are shown in the plot. 

    grid(hAxes_Curve, 'on'); 
 

% Automatic numbering of axes (selection of maximum and minimum limits for x-y axes) 
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    axis(hAxes_Curve, 'auto');  
 
% Labeling of X and Y axes. 
    xlabel(hAxes_Curve, 'Load increment (% PU)', 'FontSize', 10); 
    ylabel(hAxes_Curve, 'Nodal voltage (PU)', 'FontSize', 10); 
 
% The object becomes visible with the handle hAxes_Curve. 
    set(hAxes_Curve, 'Visible', 'on'); 
 
end 
 
Since the function PV_PRINT is external to the function main, the created variables within 
main cannot be read directly for the function PV_PRINT, hence it is required to declare 
arguments as inputs for making reference to any variable in main. The main advantage of 
using external functions consists in the ability to call them in any application just by giving 
the required arguments for its correct performance. In order to reproduce this application, it 
is necessary to copy the code in an m-file which is different from the main. 

7. Conclusion 

An electrical engineering problem involves the solution of a series of formulations and 
mathematical algorithm definitions that describe the problem physics. The problems related 
to the control, operation and diagnostic of power systems as the steady-state security 
evaluation for the example the PV curves, are formulated in matrix form, which involves 
manipulation techniques and matrix operations; however the necessity of operating on 
matrixes with large dimensions takes us to look for computational tools for handling 
efficiently these large matrixes.  The use of script programming which is oriented to 
scientific computing is currently widely used in the academic and research areas. By taking 
advantage of its mathematical features which are normally found in many science or 
engineering problems allows us solving any numerical problem. It can be adapted for the 
development of simulation programs and for illustrating the whole process in finding a 
solution to a defined problem, and thus makes easier to grasp the solution method, such as 
the conventional load flow problem solved with the Newton-Raphson method. 
MATLAB has demonstrated to be a good tool for the numerical experimentation and for the 
study of engineering problems; it provides a set of functions that make simple and 
straightforward the programming. It also offers mechanisms that allow dealing with 
mathematic abstractions such as matrixes in such a way that is possible to develop 
prototype programs which are oriented to the solution methods by matrix computations. 
The development of scripts or tools can be considered to be a priority in the academic area 
such that they allow achieving a valid solution. It is also advisable to take advantage of the 
MATLAB resources such as: vector operations, functions and mechanisms for operating on 
each matrix element without using any flow control for the program, i.e. for loop; this offers 
the advantage of decreasing the number of code lines of the script program. These 
recommendations reduce the computation time and allow its easy usage and modification 
by any user. Finally, MATLAB offers powerful graphical tools which are extremely useful 
for displaying the output information and to aid interpreting the simulation results. In this 
chapter, the plotting of the corrector points (PV curve) has been presented for a given load 
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that can be considered as critical point or voltage collapse of the power system. The 
technique for continuous load flow has been applied to determine the PV curves of the 14-
node IEEE test system, and it has been shown that a 4.062% load increment can lead to the 
instability of the system, and it also has been determined that the node 14 is the weaker 
node of the system. 
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