
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322399962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

Signalling Pathways in Development and 
Human Disease: A Drosophila Wing Perspective 

Cristina Molnar, Martín Resnik-Docampo, María F. Organista,  
Mercedes Martín, Covadonga F. Hevia and Jose F. de Celis 
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1. Introduction 

The proteins involved in signalling are organised in several signalling pathways, and both 
these proteins and their molecular interactions are conserved during evolution. In this 
chapter we describe the genetic structure of the main conserved signalling pathways 
identified in multicellular organisms, focusing in those signalling pathways in which the 
activation of cell receptors by proteins with ligand activity is linked to transcriptional 
responses. These pathways play key roles during normal development, and their de-
regulation has been implicated in a variety of human diseases. We will emphasize the 
conservation of the proteins and mechanisms involved in each of these pathways, and 
describe the Drosophila wing imaginal disc as an experimental system to dissect cell 
signalling in vivo. Finally, we will discuss some of the strategies that are been used to 
identify additional components of signalling pathways in Drosophila. Our main aim is to 
underline the general structure of signalling pathways, the relevance of signalling for 
normal development and for the appearance of multitude of human diseases, and describe 
several strategies that Drosophila genetics offers in biomedical research.  

2. General structure of signalling pathways in multi-cellular organisms: 
Ligands, receptors, transducers and transcriptional outputs of the Notch, 

EGFR, InR, Wnt, TGF, BMP, Hippo and JNK pathways 

Signalling pathways are molecular modules used to convey information among cells. Each 
pathway is formed by several components connected by molecular recognition and 
organised in a hierarchical manner, starting with a ligand and ending with a transcription 
factor. The temporal and spatial expression of the ligands determines the domain of 
activation of each signalling pathway. The expression of ligands is subject to transcriptional 
regulation defined by the combination of transcription factors present in the ligand-
producing cell (see for example Bachmann and Knust, 1998; Haenlin et al., 1990; Haenlin et 
al., 1994; Parks et al., 1995; Vargesson et al., 1998). The outcome of each pathway is the 
activation of a specific transcription factor, and consequently, in many respects a signalling 
pathway is a molecular device used to coordinate gene expression programs in cell 
populations. In these roles they are instrumental during multicellular development and 
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adult tissue homeostasis, regulating a variety of cell behaviours including cell division, 
apoptosis, migration and differentiation.  
The components of each signalling pathway can be operationally grouped into ligands, 
receptors, transducers and transcription factors (Table 1).  

Pathway/Organism Fly Human Fly Human Fly Human Fly Human

Argos Argos EGFR EGFR Sos Sos1 Yan ETV

EGF Sevenless ROS1 Grb Grb2 Pointed 1‐2 ETS (ELK1)
HB‐EGF Torso Ras K‐Ras /H‐Ras/N‐RAS AP1

TGF‐a HER 2‐4 Raf SHC SRF

NRG1‐4 dMEK MEK 1/2

Spitz MEKK 1/3

Vein rolled ERK 1/2

Gurken dPI3K PI3K

Keren dPTEN PTEN

EPR dPDK1 PDK1

AKT AKT

DCHS 1 Fat 1‐3 Hippo MST1,2 Yorkie YAP,TAZ

DCHS 2 Fat Fat 4 Salvador hWW45/SAV1

CRB Kibra Kibra

Expanded Willin/FRMD6/Ex2

Merlin MER/NF2

Mats MOBK1B

Warts LAT 1‐2
dRassf1 RASSF1

Dachs

Delta Delta‐4/A‐D Notch1 Su(H) CSL

Serrate Serrate Notch2‐4 Notch‐i NICD

Jagged1‐2
Dll3‐4

Insulin dPI3K PI3K dFOXO FOXO

IGF1‐3 dPTEN PTEN

dPDK1 PDK1

AKT AKT

dRheb Rheb

dTSC1/2 TSC1/2

Leucine Leucine Slimfast dRagA/C RRAG B/C UBF

Glutamine Glutamine pathetic dMAP4K3 hMAP4K3 Tif‐IA TIF‐1A
SLC7AS/SLC3A2 dTOR TOR SL1

draptor Raptor Pol I
drictor Rictor

dS6K S6K

d4EBP1 4EBP1

Eiger TNF Wengen TNFR1 dTRAF1‐2 TRAF1‐2 Jra Jun

PVF PDGF TNFR2 dRac1 Rac1 Kayak Fos

PVR PDGFR Msn

Dsh

MAP4K3 MAP4K3

dTAK1 TAK1

dASK1 ASK1

Slpr

dMekk1 MEKK1/4

Hep MKK4/7

BSK JNK1/2/3

Pelle IRAK1,3 Dif/Dorsal NFKB1

Cactus kinase Deaf1 DEAF1

Tube

Pellino

Myd88 MYD88

Gprk2

TIRAP

IRAK4

TRAF6

TAK1

TAB1

MKK3‐4/6‐7
TBK1

IRF3,7

IFN I (a/b) Dome Hop JAK1/2/3 STAT1a/ b
IFN II (g) Mom TYK2 STAT2

STAT3a/b

STAT4a/b

STAT5A /B/6

JNK

Upd 1‐3 Gp130

EGFR

SWH

dachsous

NOTCH

Notch

InR

Ilp1‐7 InR IGF1R

STAT92EJAK/STAT

Ligands Receptors Transducers Transcription Factors

Spaetzle

TOLL

Toll TLR1,2,4,5,6,11

TOR
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Continuation

Pathway/Organism Fly Human Fly Human Fly Human Fly Human

WNT 1 Frizzled Frizzled Dishevelled Dishevelled

WNT 2‐16 Arrow LRP 5 Axin Axin

LRP 6 Zeste‐White 3 GSK3

ROR2 APC APC

Armadillo b‐Catenin
DVL

Dpp BMP2,4 Tkv BMPR IA,IB Mad Smad1,5,8 Mad Smad1,5,8

BMP5‐8 ALK‐1,2,6 dSmad2 Smad2,3 dSmad2 Smad2,3

Gbb Sax Medea Smad4,4b Medea Smad4,4b

Activinb Activin A,B Wit Dad Smad6,7

TGFb1,2,3 Babo ActRIB/AcvR‐i/ALK4/TbRI
Nodal BMPR‐II/ TGbR‐II/
GDF 5 Put

MIS AMHR

Scw ActR‐II, IIB
Daw

Mav

Myo

Shh Ptc1 Smo SMO Gli‐1
Ihh Ptc2 Costal2 KIF7 Gli‐2,3
Dhh KIF3A

IFT88/IFT172

Fused Fused

Su(Fu) SUFU

MIM

Iguana

FKBP8

SIL

Rab23

PKA PKA

CKI CKI

GSK3 GSK3

Kurtz b‐arrestin‐2
Slimb {beta}TrCP

Gprk2 GRK2

Hh

hh Ptc

Ligands Receptors Transducers Transcription Factors

WNT

Wingless Pangolin LEF/TCF

TGF‐β

Cubitus‐i

 

Table 1. Main components of the principal signalling pathways in Drosophila melanogaster 
and Homo sapiens. 
For references see: EGFR: Kataoka, 2009/Shilo, 2003; SWH:Gruscne et al., 2010/Kango-
Singh and Singh, 2009/Matallanas et al., 2008; Notcn:Bray 2006/Scnwanbeck et al., 2010; 
InR: Ma and Blenis, 2009; TOR: Hietakangas and Cohen, 2009/Rosner et al., 2008/Zoncu et 
al 2011; JNK: Igaki 2009- Toll' So and Oucni 2010/ Valanne et al., 2011; JAK/STAT: Rane and 
Reddy, 2000/Hou et al., 2002/Wright et al., 2011; Wnt: Seto and Bellen, 2004/Chien et al., 
2009; TGF-B: Raftery and Sutherland, 1999/Massague and Wotton, 2000/Waite and Eng, 
2003 and Hh: Ruiz-Gomez et al., 2007/Jacob and Lum, 2007. 

In the simplest example, that of steroid hormones, a single protein can recognise a ligand 
molecule and also acts as a transcription factor (Stanisic et al., 2010), but, in general, different 
proteins can be unequivocally assigned to each category in different pathways. Ligands are 
mostly proteins that can be secreted from the cell or directly presented in the cell membrane 
to neighbouring cells (Figure 1). In general, ligands are subject to considerable post-
transcriptional modifications, including ubiquitination (Delta/Serrate in the Notch 
pathway; Le Bras et al., 2011), lipid modifications (Hedgehog family of proteins; Steinhauer 
and Treisman, 2009), proteolytic processing from a larger precursor to form the active 
peptide (TGFß superfamily members and EGF/FGF ligands; Zhu and Burgess, 2001; Urban 
et al., 2002), palmitoylation and glycosylation (Wnt and EGFR ligands; Miura et al., 2006; 
Steinhauer and Treisman, 2009) and glycosylation (JAK/STAT ligands) (Figure 1). These 
modifications are required for the secretion of the ligand and its spreading through the 
tissue, and they also determine their ability to bind and activate their receptors. In addition,  
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Fig. 1. Schematic representation of the ligands and their post-transcriptional modifications. 

Upper panels: EGFR, Notch and Hh ligands, middle panels: Wnt, BMP/TGF and 
JAK/STAT ligands and bottom panels (SWH, Insulin and Toll ligands. 

most secreted ligands display strong interactions with several components of the 
extracellular matrix, which help to establish their diffusion range and to shape the 
concentration of active ligand at a distance from the ligand-producing cells (Jackson et al., 
1997; Baeg et al., 2001; Araujo et al., 2003; Bartscherer and Boutros, 2008). The distribution of 
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the ligands is also affected by interactions with their receptors, as ligand-receptor 
interactions remove the ligand from the extra-cellular milieu and regulate the concentration 
of the ligand through endocytosis and subsequent lysosomal degradation or recycling of 
ligand-receptor complexes (Lecuit and Cohen, 1998; Chen and Struhl, 1996; Funakoshi et al., 
2001; Pfeiffer and Vincent, 1999). 
Receptors are in general transmembrane proteins with two well-differentiated activities. 
Thus, they interact with the ligand through their extra-cellular domain, and recruit different 
components of the transduction machinery in their intra-cellular domain (Figure 2). The cell 
biology of receptors is complex and diverse, but in general includes mechanisms to ensure 
the correct trafficking of the receptor through the Endoplasmic reticulum-Golgi network, 
post-transcriptional modifications during trafficking to synthesize the active form of the 
protein, localization of the receptor to apical domains in the cell membrane, interaction of 
the receptor with different co-receptor molecules, and turn-over mechanisms that regulate 
the number of activated-receptors in the cell membrane and other intracellular 
compartments (Piddini and Vincent, 2003; Hoeller et al., 2005; Mills, 2007; Sorkin and von 
Zastrow, 2009; Bethani et al., 2010). Similarly, the activation of the receptor by binding to 
appropriate ligands uses different mechanisms that rely in the clustering of receptor 
complexes, phosphorylation of receptor molecules after complex formation (EGFR and 
TGFß), or conformational changes that allow the proteolytic processing of the receptor 
(Notch) or its interaction with specific transduction components (Wnt; Figure 2).  
The receptors act on their downstream transducers through a variety of mechanisms that 
include phosphorylation (EGFR/InR and JAK; Arbouzova and Zeidler, 2006; Pfeifer et al., 
2008; Hombria and Sotillos, 2008 Avraham and Yarden, 2011) and TGFß receptor complexes; 
Miyazono et al., 2010), the recruitment of intracellular transducers after conformation 
changes (Wnt receptors; Angers and Moon, 2009), or the indirect modification of the 
phosphorylation state and subcellular localization of its transducer (Hedgehog receptors; 
Ruiz-Gomez et al., 2007). In a particular case (Notch; Bray, 2006), the receptor itself directly 
contributes to modify the composition and activity of transcription complexes (Figure 2).  
The components of the transduction machinery downstream of the receptor are also 
heterogeneous, ranging from the simplest cases in which the receptor itself becomes part of 
a transcription complex (Notch) or directly modifies by phosphorylation a transcription 
factor, triggering a change in its subcellular localization from the cytoplasm to the nucleus 

(Smad and Stat proteins in TGF and JAK pathways, respectively; Miyazono et al., 2010; 
Hou et al., 2002).  In other cases the receptor (Wnt receptors; Angers and Moon, 2009) or a 
transducer regulated by the receptor (Smoothened in the Hh pathway; Ruiz-Gomez et al., 
2007) acts as a scaffold to recruit and sequester different components that prevent the 
accumulation of a transcription factor in the nucleus (ß-catenin and Gli, respectively). 
Finally, in the cases of Sav/Warts/Hippo (SWH; Harvey and Tapon, 2007; Halder and 
Johnson, 2011), Toll (Valanne et al., 2011), and receptors with tyrosin-kinase activity such as 
EGFR (Shilo, 2003) and InR (Brogiolo et al., 2001), the activation of the receptor is 
communicated to the responding transcription factor through a linear cascade of 
phosphorylation (EGFR, InR and SWH) or proteolytic events (Toll) that end in the 
generation of active forms of the transcription factor localised in the nucleus (ETS proteins 
for EGFR and Rel/Dorsal for Toll),  or in the exclusion from the nucleus of the 
transcriptional co-activator Yorki/YAP (SWH) (Table 2).  
By using these mechanisms, the state of the pathway changes the nuclear localization of a 
transcription factor that binds to the DNA with sequence–specificity. In the simplest cases 
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Fig. 2. Schematic representation of the receptors and their mechanisms of activation 

this is accomplished directly by the receptor itself, which re-localise to the nucleus upon 
ligand binding (Notch). In the case of Yorki/YAP (SWH; Harvey and Tapon, 2007) and Foxo 
(InR; Van Der Heide et al., 2004; Greer and Brunet, 2008), pathway activity prevents or 
promote, respectively, their entrance into the nucleus, and in the case of Dorsal/Rel 
(Gerondakis et al., 2006) the pathway triggers the proteolytic processing of a protein that 
sequesters this transcription factor in the cytoplasm (Table 2). In other pathways the 
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transcription factor resides in the nucleus, where it acts as a member of a transcriptional 
repressor complex. In these cases, the transcriptional output of signalling is determined by 
the induction of a transition, regulated by the pathway, from a transcriptional repressor to a 
transcriptional activator (Table 2). This transition is accomplished using different 
mechanisms such as the generation of an intracellular fragment of the receptor (Notch; Bray, 
2006), the phosphorylation of the transcription factors (ETS in EGFR; Baonza et al., 2002 and 
Smads in TGFß; Miyazono et al., 2005) or the inhibition of the proteolytic processing of the 
transcription factor (Gli in Hh and ß-Catenin in Wnt: Nusse, 1999). 
 

Pathway / Organism Fly Human Fly Human Fly Human Fly Human

Gro TLE

MAE ‐

Hh Ci Gli‐1, Gli‐2, Gli‐3 dCBP CBP

InR/TOR dFOXO FOXO

JAK/STAT Stat92E STAT1‐2‐3‐4‐5‐6 Ept TSG101

JNK Jra/Kay Jun/Fos

Mam MANL1‐3
‐ SKIP

Sd TEAD1‐4
Hth Meis1‐3

Shn HIVEP3

dCBP CBP

dSki/dSno SKIL

dCBP CBP

Gro TLE

TAFII60/TAFII110 TAF6

Twi TWIST1

Gro TLE

dCBP CBP

Lgs BCL9L

Brm BRG1

T bl 2

TF

Phosphorylation N/C; R/A

Activation of TF Localization/State of TF

C/N; A

Proteolisis

Proteolisis

Co‐TF

‐

Proteolisis C/N; R/A

Phosphorylation

Proteolisis

C/N; R/A

C/N; R/A

N/C; A

C/N; A

C/N; R/A

C/N; A ‐

EGFR Pnt/Yan ETS/ETV Phosphorylation

Phosphorylation

C/N; R/A

SWH Yki Yap, Taz

β‐catenin‐TCFArm‐PanWNT

TOLL NFκβDif/Dorsal

Phosphorylation

TGFβ DSmad2‐Med/Mad‐Med Smad2‐Smad4/Smad3,Smad5‐Smad4 Phosphorylation

NOTCH Su(H)‐NICD CSL‐NICD

 

Table 2. Transcription factors and their mechanism of activation. Abbreviations: Transcription 
Factor (TF), Pointed (Pnt), Cubitus interruptus (Ci), Signal-transducer and activator of 
transcription protein at 92E (Stat92E), Jun-related antigen (Jra), Kayak (Kay), Suppressor 
Hairless (Su(H)), Notch intracellular domain (NICD), Yorki (Ykl), Mothers against dpp (Mad), 
Medea (Med), Dorsal-related inmmunity factor (Dif), Armadillo (Arm), Pangolin (Pan), 
Groucho (Gro), CREB-bincing protein (CBP), Erupted (Ept), Tumor Susceptibility Gene-101 
(TSG101), Mastermind (Mam), Skl-interacting Protein (SKIP), Scalloped (Sd), Homothorax 
(Hth), Schnurri (Shn), Human immunodeficiency virus type I enhancer binding protein 3 
(HIVEP3), Sno oncogene (Sno), SKI-like oncogene (SKIL), TBP-associated factor “60/110 
(TAF”60/110), Twist (Twi), Legless (Lgs), Brahma (Brm). Localization/State of TF: Citosolic 
(C) and nuclear (N) subcellular localization. Function as a transcriptional activator (A) or 
repression (R). TF that traslocate to the nucleus upon activation (C/N) or from the nucleus to 
the cytoplasm (N/C). For references see: EGFR: Vivekanand et al., 2004/Hassen and Paroush, 
2007; Hn: Akimarti et al., 1997a/Chen et al., 2000; InR/Tor: Ma and Blenis, 2009/Hietakangas 
and Cohen, 2009/Resnik-Docampo and de Celis, 2011; JAK/STAT: Gilbert et al., 2009 ; JNK: 
Igaki, 2009; NOTCH: Zhou et al., 2000/Petcherski and Kimble, 2000/Bray, 2006; SWH: Halder 
and Johnson, 2011; TGFb: Feng et al., 1998/Janknecht et al., 1998/Pouponnot et al., 
1998/Waltzer and Bienz, 1999/Luo et al., 1999/Strochein et al., 1999/Sun et al., 1999a/Sun et 
al., 1999b/Dai et al., 2000/Barrio et al., 2007; Toll: Dubnicoff et al., 1997/Aklkmaru et al., 
1997b/Pham et al., 1999 and Wnt: Waltzer and Bienz, 1998/Roose et al., 1998/Nusse, 
1999/Barker et al., 2001/Hoffmans and Basler, 2004. 
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In all cases, the presence in the nucleus of a transcriptional activator in response to 

signalling modifies the expression of a battery of target genes, leading to changes in cell 

behaviour that are conditioned by the state of the responding cell. In this manner, some 

aspects of the transcriptional landscape of the ligand expressing cells are communicated to 

the receiving cells, where a novel pattern of transcription can be established. Thus, the 

transcription factors regulated by each signalling pathway contribute to the combinatory of 

regulators present in a given cell, and this, combined with the structure of gene regulatory 

sequences, makes the transcriptional responses to a pathway cell type specific (Bonn and 

Furlong, 2008; Chopra and Levine, 2009). At this time, little is known about the number and 

identity of target genes whose expression are directly regulated by signalling and whose 

function contributes significantly to the cellular response to signalling. This is an area of 

intensive research, and the use of chromatin immunoprecipitation techniques coupled with 

microarrays or deep-sequencing, the development of reporter systems for cell culture assays 

and the functional analysis of the identified target genes promise a much better 

understanding of the transcriptional responses to signalling in the near future (Yang et al., 

2004; Miyazono et al., 2005; Friedman and Perrimon, 2006; Mummery-Widmer et al., 2009; 

Bernard et al., 2010; Kim and Marques, 2010).  

3. General aspects of the biological roles play by signalling pathways during 
development 

The development of multicellular organisms relies to a large extent in the spatial and 

temporal generation of gene expression domains (Arnone and Davidson, 1997). In this 

manner, and under the perspective that signalling pathways are mostly elaborate devices to 

regulate transcription, it is no wonder that these pathways play prominent roles during the 

development of all organisms. Their key contribution is mostly based in their ability to 

communicate transcriptional stages between cell populations and generate spatial domains 

of gene expression. Other characteristics that make signalling a powerful system to regulate 

cell behaviour are the quantitative response to signalling, the operation of elaborate feed-

back mechanisms, positive and negative, that modulate the intensity and duration of 

signalling (Perrimon and McMahon, 1999), and the existence of cross-interactions between 

pathways (McNeill and Woodgett, 2010). These cross-interactions occur both at the level of 

transcription, in which one pathway regulates the expression of others pathway ligands, or 

by interactions in which one pathway affects the activity of components belonging to a 

different pathway (Hasson and Paroush, 2007; McNeill and Woodgett, 2010). All these 

characteristics confer a great versatility to the function of signalling during development, 

and also contribute to the disastrous consequences that signalling miss-regulation has in 

different genetic disorders (Harper et al., 2003; Logan and Nusse, 2004; Inoki et al., 2005; 

Bentires-Alj et al., 2006; Jacob and Lum, 2007; Gordon and Blobe, 2008; Rosner et al., 2008; 

Gordon and Blobe, 2008; Table 3). To summarize, we have divided the biological roles 

played by signalling into the following categories: 

1. Cellular responses that directly modify the metabolic state of the cell. This is best 
exemplified by the action of the InR/TOR pathway, which activity is used as a way to 
adjust the growth of the cell to the availability of nutrients (Brogiolo et al., 2001). In 
addition, this pathway is also used to coordinate the growth of different organs during 
development and adult tissue homeostasis (Zoncu et al., 2011). 
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2. Cellular responses that make cells to progress through the cell cycle, acquire migratory 

behaviour, enter into the apoptotic pathway or in general to make a transition between 

cell states. All pathways contribute in different cellular settings to modify a pre-existing 

cellular state (Thompson, 2010). For example, inputs from the BMP and FGF pathways 

regulate the entrance in apoptosis of inter-digital epidermal cells during vertebrate limb 

development (Pajni-Underwood et al., 2007); and TGFß/BMPs also participate in 

regulating epithelial-mesenchymal transitions (Zavadil and Böttinger, 2005). BMP 

together with JNK also promote changes in the cytoskeleton that influence the 

movement of layers of cells during morphogenesis (Fernandez et al., 2007). On the other 

hand, several pathways have direct links with the cell cycle, either promoting the 

transitions between different phases of the cycle or triggering the entrance of cells in 

senescence (Campisi and d'Adda, 2007; Jones and Kazlauskas, 2001).  

3. Regulation of alternative cell fates within populations of competent cells. Many 

pathways are engaged in the allocation of cell fates during development. The Notch and 

EGFR pathways fall in this class, regulating neural fates within proneural clusters in a 

process that employs Notch signalling to prevent neural fate and EGFR to promote this 

fate (Lage et al., 1997; Bray, 2006; Axelrod, 2010). 

4. Regulation of spatial domains of gene expression within growing epithelia. The 

patterning of epithelial tissues is generally organised with respect to signalling centres. 

These centres operate as the source of ligands belonging to the EGFR, TGFß/BMP, Wnt 

and Hh signalling pathways. Because these ligands act in a concentration-dependent 

manner at a distance from the cells expressing them, they can set adjacent domains of 

gene expression that partition the epithelium into different territories with specific gene 

expression patterns. This process is used reiteratively during the development of all 

multicellular organisms, and some examples are the patterning of segments in the 

embryonic epidermis and the subdivision of the imaginal discs into different territories 

in flies (Moussian and Roth, 2005), the generation of cell diversity in the vertebrate 

neural tube (Lupo et al., 2006), the establishment of the antero-posterior patterning in 

the vertebrate limbs and many others (Kumar, 2001; Duboc and Logan, 2009; Towers 

and Tickle, 2009; Arnold and Robertson, 2009).  

5. Interactions between independent layers of cells. The development of tridimensional 

structures implies the coordination of cellular fates between cell layers of independent 

origin. This type of information transfer is at the base of the chains of inductive 

processes that pervade vertebrate development, and also contribute to set temporal and 

spatial patterns of cell migration during neurogenesis and myogenesis (Carmena et al., 

1998; Kimelman, 2006; Lupo et al., 2006; Wackerhage and Ratkevicius, 2008; Steventon 

et al., 2009; Mok and Sweetman, 2011). 

The correct regulation of cell proliferation, differentiation and survival is essential for the 
proper development and homeostasis of all organisms. The key roles that signalling plays in 
these processes are likely behind the multitude of human diseases caused by genetic 
alterations in the components of most signalling pathways. We outlined in Table 3 some 
examples illustrating human pathologies associated to defects in signalling, showing that 
changes in the activity of almost any component of different pathways, from the ligands to 
the transcription factors, lead to specific pathologies. In this manner, both loss and gain of 
function mutations in different pathways have been described as potential causes of 
developmental disorders and disease. For example, the loss of TGFß and SWH function, as 
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well as increase in JAK/STAT and EGFR, Wnt and Hh signalling are linked to tumour 
formation and progression in a variety of cell types (Massague et al., 2000; Waite and Eng, 
2003; Harvey and Tapon, 2007), the miss-regulation of Toll signalling is related with defects 
in the immune response (O'Neill, 2003), and is associated to the increase in the susceptibility 
of immune diseases such as Lupus and arthritis (Constantinescu et al., 2008; Schindler, 
2002). Mutations in Hh, TGFß and Notch pathways have also been related with blood and 
circulatory system diseases such as hypertension or CADASIL, and defects in JNK pathway 
to neurodegenerative diseases including Parkinson and Alzheimer. Similarly, the mTOR 
pathway is implicated in metabolic diseases including diabetes and obesity as well as in 
ageing (Inoki et al., 2005). Finally, many developmental disorders, including Noonan 
syndrome, Cleft palate, Pallister Hall syndrome, Polydactyli or Tetra-Amelia, have been 
found associated to EGFR, TGFß, Hh, and Wnt de-regulation (Tartaglia and Gelb, 2005). 
 

 
 

Pathway   Component   Disease References 

EGFR 

  
Receptors 

EGFR  

Most carcinomas (including 
Breast, Ovarian and 
Stomatch) 

Downward, 2003; 
Mendelsohn and Baselga, 
2000; Kuan et al., 2001 

HER2 Breast cancer Downward, 2003 

 

Transducer 

B-Raf 
 

Cardio-fascio-cutaneus 
syndrome, Colorectal cancer, 
Melanoma 

Downward, 2003;  
Schubbert et al., 2007; 
Bentires-Alj et al., 2006 

 
Sos1 

 
Noonan syndrome,  
JMML Schubbert et al., 2007 

 
K-Ras  

AML, JMML, Noonan, 
Myelodysplastic, Cardio-
fascio-cutaneus and Leopard 
syndromes, Lung 
adenocarcinoma, Bladder, 
Colorectal, Kydney, Liver, 
Pancreas, and Thyroid 
tumors, Seminoma, 
Melanoma 

Schubbert et al., 2007;  
Tartaglia and Gelb, 2005; 
Bentires-Alj et al., 2006; 
Downward, 2003; Bos, 1989 

 
H-Ras 

 

AML, Costello and 
Myelodysplastic syndromes, 
Rhabdomyosarcoma, Neuro 
and Ganglioneuroblastoma, 
Adenocarcinoma, Bladder, 
Colorectal, Kydney, Liver, 
Lung, Pancreas and Thyroid 
cancers, Seminoma, 
Melanoma 

Schubbert et al., 2007; Aoki 
et al., 2005; Bentires-Alj et 
al., 2006; Downward, 2003 

 
MEK 1/2  

Cardio-fascio-cutaneus 
syndrome 

Schubbert et al., 2007; 
Bentires-Alj et al., 2006 

 
C-Raf 

 

AML Zebisch et al., 2006; Kim 
and Choi, 2010 
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Pathway   Component   Disease References 

Hh 

Ligand Shh  Basal cell carcinoma Beachy et al., 2004 

 
Receptor Ptc1 

 

Basal cell carcinoma, 
Medulloblastoma, Rhabdo 
and Fibrosarcoma 

Taipale and Beachy, 2001; 
Peacock et al., 2007; 
Wechsler-Reya and Scott, 
2001;  
Jacob and Lum, 2007 

 

Transducer 

SUFU  
Basal cell carcinoma, 
Medullobastoma Beachy et al., 2004 

 
Smo 

 

Basal cell carcinoma, 
Sporadic tumours, 
Medulloblastoma 

Taipale and Beachy, 2001;  
Beachy et al., 2004;  
Peacock et al., 2007 

 
TF Gli  Glioma, GCPS, PHS, PAP-A 

Ruiz i Altaba et al., 2002; 
Beachy et al., 2004; 
Ruiz-Gomez et al., 2007;  
Zhu and Lo, 2010 

InR 

Ligand 

IGF1 Colorectal neoplasia Jacobs, 2008 

 
IGF2  

Colonic  
adenocarcinoma Jacobs, 2008 

 
Receptor IGF2R 

 

Breast and Hepatocellular 
carcinomas Jacobs, 2008 

Transducer 

PKD1  Polycystic kidney disease Rosner et al., 2008 

 
PTEN 

 

Bannayan-Riley-Ruvalcaba 
and Proteus syndromes, 
Cowden and Lhermitte-
Duclos diseases 

Inoki et al., 2005 

 
TSC 1/2  

Tuberous sclerosis and 
Lymphangiomatosis 

van Slegtenhorst et al., 
1997;  
Rosner et al., 2008 

 
STK11 

 
Peutz-Jeghers  
syndrome Hernan et al., 2004 

 
AMPK  

Cardiac  
hypertrophy Blair et al., 2001 

 
VHL 

 

Angiomas, 
Hemangioblastomas,  
Renal carcinoma Rosner et al., 2008 

TOR Transducer 

MAP4K3  Pancreas cancer Zoncu et al., 2011 

mTORC1 Obesity Zoncu et al., 2011 

S6K1-IRS1  Diabetes type 2 Zoncu et al., 2011 

NF1 Neurofibromatosis Zoncu et al., 2011 

 
p14  

Growth defects, 
Inmunodeficiency Zoncu et al., 2011 
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Pathway   Component   Disease References 

JAK/ 
STAT 

Receptor 

IL-2Rgc X-linked SCID O'Sullivan et al., 2007 

IL-7Ra  SCID O'Sullivan et al., 2007 

 
IFNgRI 

 

Susceptibility to 
Mycobacterial infection O'Sullivan et al., 2007 

Transducer 

JAK2  ALL, AML, MPDs, PV, Constantinescu et al., 2008 

 
JAK3 

 

SCID Schindler, 2002; O'Sullivan 
et al., 2007 

 

TF 

STAT1  

ALL, AML, CLL, Brain, 
Breast, Lung, Head and Neck 
tumours, Erytroleukemia, 
Susceptibility to 
Mycobacterial infection 

Bromberg, 2002;  
O'Sullivan et al., 2007 

 
STAT3 

 

AML, CLL, LGL, Crohn's 
disease, Brain, Breast,  
Head, Lung, Neck,  
Ovarian, Pancreas, Prostate 
and Renal tumours,  
Mycosis fungoides,  
Burkitt's, Hodgkins and 
Anaplastic large cell 
lymphomas, Myeloma, 
Melanoma 

Bromberg, 2002; O'Sullivan 
et al., 2007 

 
STAT4  

Chronic obstructive 
pulmonary disease O'Sullivan et al., 2007 

 
STAT5 

 

ALL, AML, CML,  
Crohn's disease, 
Erytroleukemia 

Bromberg, 2002; O'Sullivan 
et al., 2007 

JNK Transducer 

JNK1  Diabetes type 2 Waeber et al., 2000 

JNK2 
 

Atherosclerosis Ricci et al., 2004;   
Sumara et al., 2005 

JNK3  Parkinson Disease Resnick and Fennell, 2004 

p38 Alzheimer Disease Smith et al., 2006 

MKK4  
Breast, Biliary and Pancreatic 
carcinomas Su et al., 1998 

Notch 

Ligand 
Dll-3 Spondylocosta dysotosis Harper et al., 2003 

Jagged-1  Alagille Syndrome Harper et al., 2003 

 

Receptor 

Notch-1 
 

ALL Ellisen et al., 1991; Harper 
et al., 2003 

Notch-3  CADASIL Harper et al., 2003 

 
Notch-4 

 

Lung Cancer, 
Esquizophrenia and 
Aloppecia aerata 

Dang et al., 2000;  
Wei and Hemmings, 2000;  
Ujike et al., 2001; 
Tazi-Ahnini et al., 2003 
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Pathway   Component   Disease References 

TGF 

 

Ligand 

TGF  
Mammary, Prostate and 
Renal cancers Rooke and Crosier, 2001 

TGF1 Camurati-Englemann disease Gordon and Blobe, 2008 

 
GDF-5  

Hunter-Thompson and 
Grebe-type 
chondrodysplasias, 
Brachydactyly type C, 
Symphalangism, Hereditary 
chondrodysplasia 

Massague et al., 2000; 
Gordon and Blobe, 2008 

BMP-15 Premature ovarian failure Gordon and Blobe, 2008 

 
MIS  

Persistent Müllerian duct 
syndrome 

Massague et al., 2000;  
Gordon and Blobe, 2008 

NODAL Situs Ambiguus Gordon and Blobe, 2008 

TGF-2,3  Cleft palate Gordon and Blobe, 2008 

 

Receptor 

TGFBRI 
 

Breast cancer, Loeys-dietz, 
Marfan and Furlong 
syndromes, Familial thoracic 
aortic aneurysm 

Rooke and Crosier, 2001;  
ten Dijke and Arthur, 2007; 
Gordon and Blobe, 2008 

 
BMPRII  PAH, TADD 

Massague et al., 2000; 
Waite and Eng, 2003;  ten 
Dijke and Arthur, 2007; 
Gordon and Blobe, 2008 

 
TGFBRII 

 

CML, Colorectal, Gastric, 
Head and Neck tumours, 
Small cell lung cancer and 
Hereditary non-polyposis 
colorectal cancers, Loeys-
dietz, Marfan and 
Sphrintzen-Goldberg 
syndromes, B and T-cell 
lymphoma, Retinoblastoma, 
Glioma, TADD 

Rooke and Crosier, 2001;  
Gordon and Blobe, 2008 

 
BMPRI  

Brachydactyly type A2, JPS, 
Bannayan-Riley-Ruvalcaba 
and Cowden syndrome, 
TADD 

Waite and Eng, 2003 ; 
Gordon and Blobe, 2008 

 
ALK1 

 
HTT2 

Massague et al., 2000; 
Waite and Eng, 2003; ten 
Dijke and Arthur, 2007; 
Gordon and Blobe, 2008 

 
AMHR2  

Persistent Müllerian duct 
syndrome 

Massague et al., 2000 ; 
Gordon and Blobe, 2008 

 
Transducer/TF 

Smad4 
 

Pancreatic, Colorectal and 
Ovarian cancers, JPS, HHT 

Massague et al., 2000; 
Waite and Eng, 2003; ten 
Dijke and Arthur, 2007; 
Gordon and Blobe, 2008 

Smad2  Colorectal cancer Rooke and Crosier, 2001 

Smad3 CML Rooke and Crosier, 2001 
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Pathway   Component   Disease References 

SWH 

Receptor Fat4  Breast cancer Qi et al., 2009; Pan, 2010 

 

Transducer 

MST 1/2 
 

Soft tissue sarcoma Seidel et al., 2007;  
Pan, 2010 

 
RASSF1  

Lung and Kidney cancers Kango-Singh and Singh, 
2009 

 
NF2 

 

NF2, Schwanomas Evans et al., 2000;  
Jiang et al., 2006;  
Pan, 2010;  
Bao et al., 2011 

 
Lat 1/2  

Breast tumours Turenchalk et al., 1999; 
Zeng and Hong, 2008 

    

 

 

 
TF YAP TAZ

 

Breast, Colorectal, 
Hepatocellular, Lung, 
Ovarian, Pancreatic and 
Prostate carcinomas 

Overholtzer et al., 2006; 
Zender et al., 2006;  
Dong et al., 2007; 
Steinhardt et al., 2008 

Toll 

 

Receptor 

TLR1  
Colon cancer Gram-positive 
sepsis So and Ouchi, 2010 

 
TLR2 

 

Colon, Gastric and 
Hepatocellular  
carcinomas So and Ouchi, 2010 

 
TLR3  

Breast, Colon and 
Hepatocellular  
cancinomas,  
Melanoma 

So and Ouchi, 2010 

 
TLR4 

 

Atheroesclerosis,  
Arthritis, Breast,  
Colon, Gastric, 
Hepatocellular,  
Lung and Ovarian  
cancers, Carcinoma, 
Melanoma, 
Chronic inflamation 

So and Ouchi, 2010; Zhu 
and Mohan, 2010 

 
TLR5  

Gastric and Cervical 
squamous cell carcinomas So and Ouchi, 2010 

TLR6 Hepatocellular carcinoma So and Ouchi, 2010 

 
TLR7  

CLL, Lupus So and Ouchi, 2010;   
Zhu and Mohan, 2010 

 
TLR9 

 

Breast, Cervical, Gastric, 
Hepatocelular and Prostate 
and Aquamus cell 
carcinomas, Glioma Diabetes 
type 1 

So and Ouchi, 2010 ; 
Meyers et al. 2010 

TF NF-KB  Diabetes type 2 Baker et al. 2011 
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Pathway   Component   Disease References 

Wnt 

Ligand WNT 3 Tetra-amelia Logan and Nusse, 2004 

 Receptor 
LRP 5  

Bone density defects, OPPG, 
FEVR Logan and Nusse, 2004 

FZD 4 FEVR Logan and Nusse, 2004 

 

Transducer 

APC  
Colon, Adeno and Basal cell 
carcinoma, Turcot's 
syndrome, FAP 

Peifer and Polakis, 2000; 
Wechsler-Reya and Scott, 
2001; Beachy et al., 2004; 
Logan and Nusse, 2004 

Axin Adenocarcinoma Beachy et al., 2004 

 
Axin-2  

Tooth agenesis, 
Predisposition to Colon 
cancer Logan and Nusse, 2004 

b-catenin Adenocarcinoma 
Beachy et al., 2004 

 
TF TCF  

Susceptibility to Diabetes 
type 2 Jin, 2008 

Table 3. Genetic diseases associated to signalling pathways. Abbreviations: Acute 
lymphoblastic leukemia (ALL), Acute myeloid leukemia (AML), Chronic lymphocytic 
leukemia (CLL), Chronic myeloid leukemia (CML), Familial adenomatous polyposis (FAP), 
Familial exudative vitreoretinopathy (FEVR), Familial thoracic aortic aneurysm syndrome 
(TADD), Greig cephalopolysyndactyly syndrome (GCPS), Hereditary hemorrhagic 
telangiectasia (HHT) or Rendu-Osler-Weber syndrome, Juvenile myelomonocytic leukaemia 
(JMML), Juvenile polyposis syndrome (JPS), Large granular lymphocyte leukemia (LGL), 
Myeloproliferative diseases (MPDs), Osteoperosis-pseudoglioma syndrome (OPPG), 
Primary pulmonary arterial hypertension (PAH), Postaxial polydactyly type A (PAP-A), 
Pallister–Hall syndrome (PHS), Polycythemia vera (PV), Severed combined 
immunodeficiency (SCID). 

4. Drosophila as a model organism to analyse the genetic and cellular 
biology of signalling 

Because of the prominent roles that signalling plays during development, and its relevance in 
maintaining adult homeostasis and normal physiology (see Table 3), the analysis and 
experimental manipulation of signalling pathways has a central role in biomedical research. In 
this context, a key aspect in the analysis of signalling is the use of experimental systems 
allowing the identification of novel components of the different pathways, the manipulation of 
their activity by genetic and pharmacological approaches and the understanding of the 
mechanisms by which they regulate cell behaviour. Not surprisingly, the organisms that most 
have contributed to the analysis of signalling are those allowing a robust and efficient genetic 
approach to unravel gene function, in particular Caenorhabditis elegans and Drosophila 
melanogaster. In fact, many known components of all signalling pathway were identified in 
these organisms through genetic screens. The rationale of these experiments is 
straightforward: mutations affecting the same signalling pathway result in a similar phenotype 
and in general display genetic interactions. Thus, exhaustive genetic screens aimed to identify 
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genes regulating embryonic segmentation in flies were instrumental to identify many 
components of the Notch, BMP, Hh and Wnt pathways (Nusslein-Volhard and Wieschaus, 
1980), and genetic screens carried out in sensitized genetic backgrounds resulted in the 
identification of additional components of these pathways and also of the EGFR and InR 
pathways (Greaves et al., 1999; Rebay et al., 2000; Huang and Rubin, 2000; Guichard et al., 
2002; Mahoney et al., 2006). More recently, mosaic screens in adult structures of the fly 
uncovered the SWH pathway, because of its contribution to the regulation of cell proliferation, 
competition and apoptosis (Cho et al., 2006; Harvey and Tapon, 2007 Tyler et al., 2007).  
Signalling in C. elegans and D. melanogaster has been analysed in many different 
developmental settings, including the formation of the gonads (Horvitz and Sternberg, 
1991), the development of the imaginal discs (Sotillos and de Celis, 2005; de Celis, 2003) and 
the patterning of the embryonic segments (Irish and Gelbart, 1987; Wesley, 1999), among 
many others. In general these studies rely in a good cellular description of the tissue and its 
development, the possibility of directly monitoring the domains of signalling using specific 
reporter assays, and the availability of sophisticated techniques to manipulate the activity of 
any pathway component and analyse its phenotypic consequences. We will describe in what 
follows and from the perspective of signalling some relevant aspects of the development of 
the Drosophila wing imaginal disc, one experimental system that has been instrumental in 
the analysis of cell signalling during the development of epithelial tissues.  

5. The wing imaginal disc of Drosophila as a developmental model to analyse 
the structure, interactions and biological outcomes of signalling pathways 

Imaginal discs are epithelial structures that give rise to most of the adult external structures 
of the fly. The wing imaginal disc starts its development as a group of about 20 embryonic 
ectodermal cells (Cohen et al., 1993). These cells proliferate during larval development to 
form the mature third instar disc, composed by approximately 50000 cells primed to 
differentiate during metamorphosis the fly wing and part of the thorax (Figure 3) (de Celis, 
2003). Cell signalling pervades the development of the wing imaginal disc; from the initial 
step of primordium specification to the last stages of cellular differentiation. In this manner, 
the cells that constitute the wing disc primordium are determined by the combined actions 
of the BMP, EGFR and Wnt signalling pathways, which regulate the expression of the 
transcription factors specifying the group of wing disc precursor cells (Cohen et al., 1993; 
Goto and Hayashi, 1997). From this point onwards, the primordium enters a developmental 
program that involves cell division and different stages of territorial organization by which 
all cells acquire their individual genetic specification (Zecca and Struhl, 2002).   
Territorial subdivisions in the wing disc are regulated by coordinate signalling events 
involving the EGFR, BMP, Notch, Hh and Wnt pathways (Figure 3). First, the wing 
primordium is subdivided into anterior and posterior compartments, which correspond to 
independent cell lineages of polyclonal origin. The posterior compartment is the source of the 
ligand Hh, which signalling contributes to the maintenance of the anterior-posterior 
compartment boundary and sets specific domains of gene expression in anterior cells from this 
early stage onwards (Tabata and Kornberg, 1994) (Figure 3). The subdivision into anterior-
posterior compartments is followed later in development by patterning along the proximo-
distal axes of the disc, a process that relies in the establishment of complementary domains of 
signalling by the EGFR pathway in proximal cells and by the Wnt pathway in distal cells 
(Zecca and Struhl, 2002). These two complementary signalling centers determine the 
expression of transcription factors such as Apterous, the Iroquois gene complex and Spalt in 
proximal cells, defining what will become the thorax of the mature wing disc (Cavodeassi et 
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al., 2002). The establishment of the domain of apterous expression also triggers the initiation of 
the wing region, which will appear centred along the boundary between apterous expressing 
cells, the future dorsal compartment, and apterous non-expressing cells, corresponding to the 
ventral compartment. This boundary corresponds to the future dorso-ventral compartment 
boundary of the wing, and is the place where Notch signalling is activated to regulate the 
expression of the co-factor Vestigial, which labels the primordium of the wing blade (Figure 3). 
The establishment of the wing blade territory as a domain of cells expressing vestigial along 
the dorso-ventral boundary also requires wingless function, which expression in distal cells is 
also regulated by the transcription factors defining the proximo-distal axes of the wing disc 
(Wu and Cohen, 2002; Whitworth and Russell, 2003; Zirin and Mann, 2007). At this stage, 
which corresponds to the second instar larvae, the wing disc already contains the future thorax 
and wing territories, and the wing is already subdivided into anterior-posterior and dorso-
ventral compartments. The subsequent development of the wing disc epithelium involves the 
generation of the wing hinge, originated in the proximal part of the wing blade and specified 
by two novel rings of wingless expression (Perea et al., 2009), and the establishment of smaller 
domains of expression in both the thorax and wing regions (Figure 3). 
 

 

Fig. 3. Schematic representation of the wing disc during the second (upper panels), mid-
third (middle panel) and late-third (bottom panel) larval instard, showing the expression of 
ligands in coloured stripes. 
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The global subdivision of the wing disc into large territories described above is followed by 

the regional specification of the pattern elements characteristic of the wing and thorax.  

These elements, the sensory organs decorating the thorax and wing margin and the 

longitudinal veins running along the proximo-distal length of the wing blade and hinge, 

differentiate from fields of competent cells, the proneural clusters and the provein 

territories, respectively. As it happened with the earlier territorial subdivisions, the 

positioning of each proneural cluster and provein territory also relies on the function of 

different signalling pathways, mainly the Wnt, Hh and BMP pathways for the proneural 

clusters and the BMP and Hh pathways for the proveins (Tomoyasu et al., 1998; Sato et al., 

1999; de Celis et al., 1999; Cavodeassi et al., 2001; de Celis, 2003). These pathways now 

regulate the expression of several transcription factors that control the expression of the 

proneural and provein genes, constituting a landscape of transcriptional regulators that has 

been named the “pre-pattern” (Stern, 1954; Cavodeassi et al., 2001). At this stage, all 

patterned elements are genetically specified in the form of groups of cells with a competence 

to differentiate individual cell types. The last stage before cell differentiation is the 

assignation of cell fates within proneural clusters and provein territories. This process relies 

in a complex set of cell interactions mediated by the Notch and EGFR pathways and 

generally named “lateral inhibition”. During lateral inhibition, the EGFR pathway promotes 

the acquisition of the sensory organ precursor and vein fates and the Notch pathway 

prevents other competent cells from following these fates. In this manner, the end result is 

that only one cell from the proneural clusters will acquire the sensory organ precursor fate 

and enter a particular pattern of cell divisions (Pi and Chien, 2007). A similar process 

operates in the provein fields using the same two pathways, but in this case the maintenance 

of stripes of cells ready to differentiate as veins during pupal development also requires the 

activity of the BMP pathway, which ligand becomes expressed at this stage in the 

developing veins (de Celis, 2003). 

The patterning of the disc is accompanied by a continuous increase in its size (Baker, 2007). 

Wing disc growth occurs mainly by cell proliferation, with cells taking about 10 hours to go 

through the cell cycle (González Gaitán et al., 1994; Milan et al., 1996; Neufeld et al., 1998). 

Several pathways such as the EGFR, Wnt, SWH, Notch and TGF play key roles in 

promoting cell division. In this manner, a reduction (EGFR, Wnt, Notch and TGFor 

increase (SWH) in the activity of these pathways results in the formation of smaller adult 

structures, and this reduction in size is caused by the generation of a lower than normal 

number of cells (see Figure 4). Interestingly, these effects have a strong component of 

territorial specificity, because the reduction of each pathway activity affects each territory of 

the wing disc to different extents. For example, the Wnt pathway is particularly required to 

promote cell proliferation in the wing hinge (Dichtel-Danjoy et al., 2009), whereas the Notch 

pathway is mostly required in the wing blade (de Celis and Garcia-Bellido, 1994). As 

mutations affecting the activity of the EGFR, Wnt, BMP and Notch pathways also affect 

territorial specification, the defects in cell proliferation are accompanied by changes in the 

general organization of the disc and its patterning. Cell division is coupled with cell growth 

in a manner that wing disc cells maintain a similar size during their proliferative phase. 

From the perspective of cellular growth, the most relevant pathway operating in the wing 

disc is the InR/Tor signalling system (Hietakangas and Cohen, 2009). The activity of 

InR/Tor is mostly required as a sensor to translate nutritional and humoral signals into  
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Fig. 4. Upper panel: Pictures of a wild type wing (wt, left) and third instar imaginal discs 
showing the domains of Notch, Hh, EGFR, Wg and Dpp signalling. Bottom panel: Pictures 
of mutant wings in which the activity of the InR/Tor, Notch, Hh and EGFR (left two 

columns), and Wg, dpp/BMP, TGF- and SWH (right two columns) is either increased 
(Pathway activation columns) or decreased (Pathway inhibition columns) 

adequate rates of protein synthesis, but also provides survival signals for the cell and 

stimulates cell division (Hietakangas and Cohen, 2009). In general, mutations reducing 

InR/Tor signalling result in the formation of adult structures smaller than normal, due to 

both a reduction in cell size and a diminution in the number of cells (see Figure 4).   

Although the wing disc is probably one of the best understood biological systems, there are 

still many caveats regarding the molecular mechanisms that drive cell division during the 

growth of the disc. Similarly, it is not entirely understood how the progress through the cell 

cycle is coordinated with cellular growth, and what makes the disc stop its proliferative 

phase when it reaches a particular size. In this manner, the molecular mechanisms ensuring 

the formation of patterned structures of the appropriate dimensions are still elusive. Despite 

of this, the current knowledge about imaginal disc development is robust enough to use this 

system as a model to unravel the intricacies and roles played by signalling pathways during 

development, and to model human diseases, using the advantages of fly genetics. There are 

two key aspects of the analysis of signalling in the wing disc that favours this system as an 

experimental model. First is the facility by which mutant phenotypes can be assigned to 

specific failures in particular signalling pathways. This simplifies the identification of 
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additional components of each signalling pathway by the phenotype caused by mutations in 

the corresponding genes (Figure 4), and also allows the design of genetic screens aimed to 

identify novel elements of the pathway. Secondly, the spatial and temporal domains of 

signalling can be precisely described by monitoring the expression of target genes in the 

disc, and this allows the visualization of receptor activity both in normal conditions and 

under experimental manipulations (Figure 4).  

6. Genetic approaches to identify additional components of signalling 
pathways 

Some of the main reasons to choose Drosophila for the study of signalling are the 
availability of sophisticated genetic techniques to manipulate gene activity and the 
knowledge of the Drosophila genome (Adams et al., 2000; Matthews et al., 2005). First, there 
is a strong conservation between Drosophila proteins involved in signalling pathways and 
their human counterparts (Reiter et al., 2001; Chien et al., 2002 see Table 1). Second, 
Drosophila genes involved in signalling are generally represented in single copies, reducing 
the possibility of redundancy and facilitating the characterization of gene functions (Adams 
et al., 2000). Third, loss- and gain-of-function conditions in genes coding for signalling 
proteins of all pathways usually result in complementary phenotypes, allowing the 
assignation of genes to pathways based on mutant phenotypes (Molnar et al., 2006; Cruz et 
al., 2009 see Figure 4). The phenotypes observed upon hyper-activation of the pathways also 
allow the design of gain-of-function screens, which have the potential to uncover genes not 
found in loss-of-function screens due to functional redundancy (Rorth et al., 1998). Finally, 
mutations in different elements of each signalling pathway generally display gene-dose 
dependent phenotypic interactions in genetic combinations, allowing the hierarchical 
ordering of pathway components through genetic analysis. 
There are two main ways in which genetic screens have been used to identify the 
components of different signalling pathways. In a first approach, newly induced mutants 
are tested for a phenotype in a particular structure which development depends on the 
normal activity of specific signalling pathways. In these cases, the mutants can be induced 
by chemical mutagenesis or by mobilizing transposable elements, and they can be analyzed 
either in homozigosity in the entire animal, or in mosaics in adult tissues using a 
combination of the Gal4/UAS and FRT/FLP systems. A recent example of this approach is 
the search for novel components of the Notch signalling pathway, in which a large collection 
of interference RNAs is expressed in the wing disc to systematically reduce the expression of 
the endogenous genes, resulting in the identification of Notch pathway candidates based on 
the resulting mutant phenotypes (Mummery-Widmer et al., 2009). In addition, whereas 
chemical mutagenesis and the expression of interference RNA result in loss of gene 
function, the use of transposable elements with UAS sequences allows the generation of 
gain-of-function conditions, which can be restricted to the tissue of interest (Rorth et al., 
1998). Complementary to these approaches, the search for novel components of signalling 
pathways has also relied in the design of “modifier” screens, in which both loss- and gain-
of-function mutants are tested in particular mutant backgrounds. In these cases, the screen 
aims to identify genes belonging to a pre-determined set of interacting genes. Some 
examples of successful screens aiming to identify members of known signalling pathways 
are those targeting the Sevenless and EGFR (Karim et al., 1996; Huang and Rubin, 2000; 
Taguchi et al., 2000; Rebay et al., 2000), Notch (Verheyen et al., 1996; Go and Artavanis-
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Tsakonas, 1998; Muller et al., 2005a), Dpp (Raftery et al., 1995; Chen et al., 1998; Su et al., 
2001), JAK/STAT (Bach et al., 2003; Mukherjee et al., 2006), Hh (Haines and van den Heuvel, 
2000; Collins and Cohen, 2005), TNF (Geuking et al., 2005) and Wnt (Greaves et al., 1999; 
Cox et al., 2000; Desbordes et al., 2005) pathways.  
Although the use of genetic screens in vivo has many advantages, they are time-consuming 
and difficult to escalate genome-wide. For these reasons, and based on the knowledge of the 
Drosophila genome, several techniques using Drosophila cells in culture and interference 
RNA have been adopted in the search for novel signalling components. These screens allow 
the identification of genes affecting the expression of reporter constructs that reveal the 
activity of specific signalling pathways (Clemens et al., 2000; Flockhart et al., 2006). This 
approach has been used to search for novel components of the Hh (Lum et al., 2003; 
Nybakken et al., 2005), and of the Wnt (DasGupta et al., 2005), JAK/Stat (Muller et al., 
2005b), TNF (Kleino et al., 2005), Tor (Lindquist et al., 2011) and ERK (Friedman and 
Perrimon, 2006) signalling pathways. 

7. Drosophila models of genetic diseases 

It is clear that the main advantage of the Drosophila model from a biomedical perspective is 
the possibility of designing genetic screens aimed to the identification of genes involved in a 
particular phenotypic outcome. In this context, it is worth noticing that an estimated 60% of 
genes related to human diseases have orthologs in Drosophila, and this category includes all 
genes involved in cell signalling (Chien et al., 2002; Reiter et al., 2001). The possibility of 
generating transgenic flies expressing modified non-Drosophila proteins is allowing the 
design of “humanized” fly models for a variety of human genetic diseases such as Multiple 
Endocrine Neoplasia Type 2 (Read et al., 2005), cardiomyopathies (Vu Manh et al., 2005) and 
Adenomatous Polyposis Coli (APC; Bhandari and Shashidhara, 2001) and several 
neurodegenerative diseases (Fernandez-Funez et al., 2000; Crowther et al., 2004; Sang and 
Jackson, 2005; Botas, 2007; Branco et al., 2008; Cukier et al., 2008; Miller et al., 2010). The aim 
of these experiments is to recreate in a fly tissue some of the cellular aspects of the pathology 
caused by the human protein, and to use this genetic background as a platform to search for 
genes affecting the phenotype caused by the miss-expression of this protein (Botas, 2007). In 
the long term, it is expected that the identification of additional genes involved in a 
particular phenotypic outcome will allow the search for chemotherapeutic agents with 
therapeutical value. In addition to genetic searches, Drosophila also permits to recapitulate 
the biology of particular diseases in vivo systems, an approach that is been applied to the 
study of tumorigenesis using among other tissues the imaginal discs (Janic et al., 2010). In 
this manner Drosophila tissues can be used not only to track down the steps leading to 
tumour initiation, progression and metastasis in vivo, but also to manipulate in genetic 
mosaics the activity of genes leading to tumoral growth and to assay therapeutic drugs 
(Kango-Singh and Halder, 2004; Vidal and Cagan, 2006; Jang et al., 2007; Januschke and 
Gonzalez, 2008; Read et al., 2009; Caldeira et al., 2009; Das and Cagan, 2010; Bina et al., 2010; 
Wu et al., 2010). This approach is contributing to dissect the effects of tumour-promoting 
and tumour-suppressing genes in the regulation of proliferation, apoptosis, cell-adhesion, 
trafficking and cell polarity, and revealed the importance of cellular interactions in the 
outcome of tumoral progression.  Finally, the modelling of specific cancers, such as type 2 
multiple endocrine neoplasia (MEN2, caused by hyper-activation of RET; Read et al., 2005b) 
has allowed the design and use of pharmacological approaches to modify the phenotype 
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caused by oncogenic forms of dRET (Das and Cagan, 2010). In addition, a similar approach 
prove successful in interfering with the activation of the EGFR (Aritakula and Ramasamy, 
2008), suggesting that Drosophila has also the potential to be a robust model system for the 
screening of anticancer drugs in vivo. 
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