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1. Introduction 

Stem borers are the most destructive field insect pests of maize (see Plate 1) in sub-Saharan 
Africa (SSA) (Insect Resistant Maize for Africa [IRMA], 2001; Songa et al., 2001). Important 
stem borer species include Busseola fusca Fuller (Lepidoptera: Noctuidae), Chilo partellus 
Swinhoe (Lepidoptera: Crambidae) and Sesamia calamistis Hampson (Lepidoptera: 
Noctuidae) (Overholt et al., 1994).  
 

 

Plate 1. Sesamia calamistis larvae feeding on a maize leaf 

Stem borer control approaches that have been used (with varied degrees of success) fall 
into four broad categories: chemical (application of insecticides); cultural (use of a range 
of farm practices to delay or reduce insect attack); biological (use of natural enemies of 
stem borers); and host plant resistance (the plant offers its own resistance to insects). The 
use of Bt maize (genetically modified maize expressing a δ-endotoxin from Bacillus 
thuringiensis and therefore having an in-built ability to produce pesticidal toxins) has been 
found to be effective in the management of stem borers in other parts of the world 
(Sharma & Rodomiro, 2000). However, this strategy has not been widely employed in 
Africa despite recent efforts to develop Bt maize suitable for different agro-ecological 
zones in the region (Muhammad & Underwood, 2004). Also, there is still significant 
debate regarding the possible risks posed by this technology (Obonyo et al., 2010). Fears 
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that have been raised include; food safety and human health concerns, environmental 
concerns, possible impact on agricultural systems, and socio-economic issues. Regulatory 
decisions on whether or not to adopt genetically modified (GM) crops should therefore 
take all these concerns into consideration. 
Because the Bt toxin is embodied in the plant itself, Bt crops are regulated as pesticides in 

some jurisdictions. For example, the US Environmental Protection Agency (EPA) has for a 

long time regulated Bt crops under the Federal Insecticide, Fungicide, and Rodenticide 

Act (FIFRA) (Frisvold & Reeves, 2010). The Food and Agriculture Organization (FAO) 

defines a pesticide as  “any substance or mixture of substances intended for preventing, 

destroying or controlling any pest, including vectors of human or animal disease, 

unwanted species of plants or animals causing harm during or otherwise interfering with 

the production, processing, storage, transport or marketing of food, agricultural 

commodities, wood and wood products or animal feedstuffs, or substances which may be 

administered to animals for the control of insects, arachnids or other pests in or on their 

bodies”. The term includes substances intended for use as plant growth regulators, 

defoliants, desiccants, agents for thinning fruit or preventing the premature fall of fruit, or 

any substances applied to crops either before or after harvest to protect crop produce 

from deterioration during storage and transport (Food and Agriculture Organization of 

the United Nations [FAO], 2002). 

Used within the context of Integrated Pest Management (IPM), Bt crops offer a number of 

advantages. They are safe and easy to use, requiring only planting seeds of an adapted, 

resistant cultivar (Kennedy, 2008). In general, resistant cultivars have been compatible with 

other IPM tactics, including cultural, biological and chemical controls (Smith, 2005, as cited 

in Kennedy, 2008).  However, it is well established that plant-borne factors that affect 

herbivores also interact with natural enemies and consequently with the biological control 

function they provide. Natural enemies such as predators and parasitoids fulfil an 

important ecological and economic function by helping to keep stem borer populations 

below the economic injury level and thus contributing to sustainable IPM systems (Romeis 

et al., 2008a). Most IPM systems aim to enhance biological control through conservation of 

existing natural enemies (Bale et. al., 2008 as cited in Romeis et al., 2008a). Thus it is 

important to minimize the non-target effects of other components of IPM such as pesticides 

or habitat manipulation (Romeis et al., 2008a). 

Transgenic insecticidal plants can have impacts on natural enemies (Kennedy & Gould, 

2007, as cited in Romeis et al., 2008a); this may stem from changes in either the plant 

structure, or primary/secondary metabolites. Adverse effects may occur, for example, if the 

natural enemy is exposed to, and is susceptible to the plant-borne insecticidal factor. These 

factors can cause population level effects which might lead to changes in the level of 

biological control that natural enemies provide (Kennedy & Gould, 2007, as cited in Romeis 

et al., 2008a). This chapter reviews published literature on impacts of Bt maize on stem borer 

natural enemies, with particular attention to stem borer parasitoids. This is aimed at 

consolidating information pertaining to the potential impacts of Bt maize on the 

development and behaviour of maize stem borers and their natural enemies, with special 

emphasis on stem borer parasitoids such as the larval parasitoids Cotesia flavipes Cameron 

(Hymenoptera: Braconidae), Cotesia sesamiae Cameron (Hymenoptera: Braconidae) and 

Xanthopimpla stemmmator Thunberg (Hymenoptera: Ichneumonidae). However, this is not 
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an environmental risk assessment of Bt maize but an analysis of the possible impacts of Bt 

maize on one category of beneficial organisms in the ecosystem. 

2. Bt maize 

The Bt maize plant has a built-in system that consistently delivers the Bt toxins to the target 
pest throughout the growing season. Bt maize has been used to control a common maize 
stem borer, Ostrinia nubilalis Hübner (Lepidoptera: Pyralidae), in the northern temperate 
region (Matilde et al., 2006). Indeed, Bt maize has been commercially grown in the U.S.A 
since 1995 and the area under its cultivation is increasing (Minorsky, 2001; Sakiko, 2006). In 
Africa, Bt maize is commercially grown only in South Africa, though its cultivation is 
expected to spread to other countries of SSA (James, 2001).  
Bacillus thuringiensis toxins expressed in current commercially available Bt maize hybrids are 

selective in their mode of action (Swadener, 1994). Therefore some authors (e.g., Schuler et 

al., 1999a) claim that the effects of Bt maize on non-target arthropods associated with maize 

should be minimal. However, it was Bt maize that was involved in significant controversy 

(the “monarch butterfly controversy”), following the publication, in Nature, of a preliminary 

study by Losey et al. (1999) (Minorsky 2001). Indeed, Losey et al. (1999) raised serious 

concerns about the ecological safety of Bt maize cultivation to non-target lepidopterans, in 

particular the larvae of the monarch butterfly, Danaus plexipus L. (Lepidoptera: Danainae). 

On the basis of laboratory assays, the authors concluded that monarch larvae reared on 

milkweed (Asclepias syriaca) leaves dusted with pollen from Bt maize ate less, grew more 

slowly, and suffered higher mortality than those reared on leaves dusted with non-

transformed maize or on leaves without pollen. The conclusions of Losey et al. (1999) were 

challenged by other scientists on three grounds. First, the pollen doses used by Losey et al. 

(1999) were not quantitatively measured but were gauged by eye to match pollen dustings 

on milkweed leaves collected in the field. This raised concerns about subconscious biases on 

the part of the researchers. Secondly, concerns were raised as to the validity of extrapolating 

from the results of Losey at al. (1999), which considered only one type of pollen, to all types 

of Bt maize pollen. Lastly, the soundness of extrapolating from laboratory assays to the field 

was uncertain, although a subsequent field study by Jesse & Obrycki (2000) did seem to 

confirm the fears raised by the Losey et al. (1999) study (Minorsky, 2001). However, it 

should be emphasised that the continuous expression of the Bt toxins in the plant tissues 

throughout the growing period (Baumgarte & Tebbe, 2005) increases the chances and degree 

of exposure to non-target insects of ecological and economic importance. Hence, there are 

concerns about the possible adverse impacts of this novel pest control technology on the 

higher trophic level non-target arthropods (such as pollinators, pollen feeders and natural 

enemies of pests) through crop plant-based food chains. 

2.1 Bacillus thuringiensis and genetic engineering technology 

Bacillus thuringiensis is a soil-dwelling bacterium that produces large amounts of insecticidal 

δ-endotoxin when it sporulates into a resting stage. This bacterium, abundantly found in 

grain dust from silos and other grain storage facilities, was discovered in Japan in 1901 by 

Ishawata (Baum et al., 1999). Bt is related to two other important spore-forming bacilli, B. 

cereus and B. anthracis and is differentiated largely on the basis of containing several 

plasmid-encoded protoxin genes (Aronson & Shai, 2001). There are hundreds of Bt 
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subspecies and most produce, primarily during sporulation, one or more parasporal 

inclusions each comprised of either one or several related insecticidal protoxins, the so-

called δ-endotoxins (Schnepf et al., 1998). These endotoxins are biologically inactive protein 

toxins that crystallize into characteristic shapes. In bacteria, the endotoxins are mixtures of 

several specific crystalline protein toxins (hence referred to as Cry proteins, Ostlie et al., 

1997) that are divided into several numbered classes; these are in turn subdivided into 

subclasses (Andow & Hilbeck, 2004). The mode of action of B. thuringiensis toxins (each of 

which is active on a subset of insect larvae from at least three orders of insects - Coleoptera, 

Lepidoptera, and Diptera, Gould and Keeton, 1996) involves ingestion followed by crystal 

solubilisation and proteolytic activation of protoxin in the insect midgut. Activated toxin 

binds to receptors in the midgut epithelial membrane and inserts into the membrane, 

leading to cell lysis and death of the insect (Schnepf et al., 1998). Because of unique but 

overlapping specificity profiles, Bt subspecies are generally effective against a broad range 

of insects, usually within a particular order of insects (Aronson & Shai, 2001). Also, many 

produce, during growth, less well characterized insecticidal proteins, the so-called 

vegetative insecticidal proteins (Estruch et al., 1996) as well as other pathogenic factors 

(Agaisee et al., 1999).  

Researchers have isolated the δ-endotoxin gene from different strains of Bt, and have 

expressed it in several crops in order to control lepidopteran and coleopteran pests (Groot & 

Dicke, 2002). Several of the isolated proteins have selective insecticidal properties against 

specific insect species (Andow & Hutchison, 1998). Therefore not all commercial Bt maize 

hybrids express the same insecticidal protein. Moreover, Bt maize plants may not express 

the protein uniformly throughout the plant, nor continuously throughout the crop season. 

Bt maize hybrids containing and expressing one of four proteins Cry1Ab, Cry1Ac or Cry9C, 

and Cry1F have been developed and made available since 1996.  Cry genes from B. 

thuringiensis are randomly inserted into plant chromosomes at different insertion sites via 

microprojectile bombardment using a particle gun technique (Bohorova et al., 1999). A 

promoter, a DNA sequence that regulates where, when, and to what degree an associated 

Cry gene is expressed (Ostlie et al., 1997), is attached to a Cry gene before it is inserted into a 

maize chromosome. A successful insertion of the new genetic package containing the 

modified Bt gene into a plant is called a transformation event (Rice & Pilcher, 1998). 

Different transformation events (in maize) provide varying levels of resistance to insect pest 

targets (Williams et al., 1997).  

2.2 Plant-Insect tritrophic systems and Bt crops 

Natural enemies have an important role to play in the co-evolution of plants and insects 

(Romeis et al., 2008a). “The third trophic level must be considered part of a plant’s battery of 

defences against herbivores” (Price et al., 1980 as cited in Romeis et al., 2008a). Plant 

protection by natural enemies is well documented and has been manipulated in the 

development of biological control strategies in many crops (Dicke & Sabelis, 1988; Whitman, 

1994). Plants are well placed to influence the efficiency of parasitism and predation and they 

mediate numerous interactions between entomophagous arthropods and herbivores. Their 

structures and products often supply essential resources for parasitoids and predators. In 

addition, chemical and morphological plant attributes may affect the efficacy of biological 

control agents by influencing their abundance, survival, development time, fecundity and 

www.intechopen.com



 
Transgenic Pesticidal Crops and the Environment: The Case of Bt Maize and Natural Enemies 

 

325 

rate of attack (De Moraes et al., 2000). Moreover, plants influence the quality of parasitoids’ 

herbivorous hosts by determining the quality of the host’s nutrient intake (Vinson & 

Barbosa, 1987). Several studies show that secondary compounds ingested by the host affect 

parasitoids, either negatively or positively (De Moraes et al., 2000). Toxins and low 

nutritional quality may weaken the herbivore’s immune system thus affecting its capacity to 

defend itself against parasitoid eggs (Benrey & Denno, 1997; Van den Berg & Van Wyk, 

2007; Vinson & Barbosa, 1987). 

In order to exploit arthropod herbivores, natural enemies must be able to locate small, 

highly dispersed targets within a complex spatial and chemical environment (De Moraes 

et al., 2000). Besides, herbivores have evolved numerous adaptations to avoid being 

discovered and attacked (Vet & Dicke, 1992). Plants provide both olfactory and visual 

signals used as foraging cues by parasitic and predaceous arthropods (Ma et al., 1992; 

Powell & Wright, 1991; Turlings et al., 1995). Some parasitoids use volatiles emitted by 

undamaged plants to locate the habitat and possibly microhabitat of their host (Ma et al., 

1992; Ngi-Song et al., 1996). Plant volatiles released in response to mechanical damage by 

herbivores are known to be attractive to various parasitoids (Mattiaci et al., 1994; 

Steinberg et al., 1993). Volatiles released in response to herbivore feeding are generally 

reliable indicators of herbivore presence and can potentially bring parasitoids in close 

proximity to their hosts (De Moraes et al., 2000). Indeed, plants are actively involved in 

the production and release of chemical cues that guide foraging parasitoids (Turlings et 

al., 1995). Therefore Bt maize may affect, negatively or otherwise, host finding through the 

volatile emissions. 

Extensive research has been published on the impacts of Bt plants on natural enemies within 
the context of agro-ecosystems (O' Callaghan et al., 2005; Romeis et al., 2006). Long-term, 
large scale field studies have indicated no meaningful impacts of Bt maize on predator 
populations even when the predator has acquired the toxin by feeding on intoxicated prey 
(Hellmich et al., 2005, as cited in Shelton et al., 2008). In addition, studies in which Bt crops 
were compared to conventional crops treated with insecticides have demonstrated the latter 
to be far more harmful to predators (Shelton et al., 2008). The situation, however, appears to 
be more complex for parasitoids. While an insect predator is characterised by feeding on 
multiple and various hosts during its lifetime, a parasitoid usually completes its entire 
lifetime within a single host and derives all its nutritional requirements by feeding on the 
host tissues. This intimate relationship between a parasitoid and its host would put the 
parasitoid at greater risk to any hazard its host encounters (Shelton et al., 2008).  Parasitoids 
inside dead lepidopteran larvae that are exposed to B. thuringiensis usually suffer the same 
fate as the larvae. Thus, death of herbivore larvae caused by B. thuringiensis toxins may be 
detrimental to populations of parasitoids. Indeed, studies have found that herbivore larvae 
that were exposed to B. thuringiensis, but were themselves resistant to its effects, supported 
the normal development of parasitoids (Chilcutt & Tabashnik, 1999; Schuler et al., 1999a). 
Because the strains of B. thuringiensis currently in use are largely specific to Lepidoptera, 
there may be no direct consequences of B. thuringiensis on predators and parasites of 
herbivores (Agrawal, 2000). However, B. thuringiensis may have indirect negative effects on 
the populations of natural enemies of herbivores through the consumption of sick, dead, or 
dying herbivores (Agrawal, 2000). Critical questions that need to be considered in assessing 
the effect of Bt on natural enemies include: Do predators and parasitoids of herbivores avoid 
Bt exposed prey? Could behavioural mechanisms in parasitoids potentially reduce the 
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indirect negative effect of Bt? Because the feeding of susceptible caterpillars on Bt plants is 
severely reduced, and plant damage attracts parasitoids, parasitoids may preferentially be 
attracted to either resistant larvae or susceptible larvae on Bt plants (Schuler et al., 1999b). 
Thus, a potential tri-trophic benefit of employing B. thuringiensis in agriculture is that 
parasitoids may act as agents for minimizing the evolution of resistance to B. thuringiensis in 
pests (Agrawal, 2000). 
Bt toxins may have indirect effects on beneficial insects such as parasitoids either by killing 

the intoxicated host (Schuler et al., 1999a), or rendering the host nutritionally unsuitable 

(Down et al., 2000). In turn, parasitoids’ host quality may be influenced by host plants, 

giving rise to tri-trophic interactions (Price et al., 1980). For example, Ashouri et al. (2001) 

reported reduced weight of adult Aphidius nigripes Ashmead (Hymenoptera: Braconidae) 

developing on Macrosiphum euphorbiae Thomas (Homoptera: Aphididae) that was feeding on 

Bt potato. Other studies (e.g. Atwood et al., 1997a,b; Liu et al., 2004) showed that when host 

larvae were fed on a diet containing Bt protein, larval duration, pupal weight, body weight 

of the newly emerged adult, parasitoid emergence rates and adult longevity were negatively 

affected. Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae) developing inside 

Pseudoplusia includens Walker (Lepidoptera: Noctuidae) larvae that was feeding on Bt cotton 

suffered reduced longevity, and females had fewer ova (Baur and Boethel, 2003). Cotesia 

flavipes larval emergence was lower in Bt fed C. partellus larvae (23%), compared with non-Bt 

fed C. partellus, (83%) (Prütz & Dettner, 2004). Cocoon numbers and cocoon weight of 

parasitoids were decreased when Helicoverpa armirgera Hubner (Lepidoptera: Noctuidae) 

larvae fed on diet containing transgenic cotton leaf powder containing Cry1A plus CpT (Ren 

et al., 2004). Liu et al. (2005a), in studies on the effects of transgenic cotton on Campoketis 

chloridae Uchida (Hymenoptera: Ichneumonidae) observed that the body weight of larvae of 

the parasitoids were significantly reduced when parasitized hosts fed on transgenic cotton 

leaves compared to those fed on traditional cotton. Duration of egg and larvae stage were 

significantly prolonged while pupal and adult weight of C. chloridae was decreased when 

the host larvae fed on transgenic cotton leaves longer than 48 hours. Development of the 

larval parasitoid, Microplitis mediator Haliday (Hymenoptera: Braconidae) was negatively 

affected when the host, H. armirgera, larvae were reared on a diet containing Cry1Ac toxin 

(Liu et al., 2005b).  

Nonetheless, a number of investigations show that Bt toxins are not pathogenic to 

parasitoids developing in infected hosts. For example, Orr & Landis (1997) observed that 

parasitism of European corn borer larvae by Eriborus terebrans Gravenhorst and Macrocentrus 

grandii Goidanich (Hymenoptera: Braconidae) was not significantly different in transgenic 

and non-transgenic plots. Schuler et al. (2004) observed that Cotesia plutellae Kurdjumov 

(Hymenoptera: Braconidae) eggs laid in Bt resistant Plutella xylostella Linnaeus (Lepidoptera: 

Plutellidae), fed on Bt oilseed rape leaves, developed to maturity and there was no effect of 

Bt plants on percentage parasitism, time to emergence from hosts, time to adult emergence, 

and percentage adult emergence from cocoons. Parasitoids reared on Bt susceptible hosts 

hatched, although premature host mortality did not allow the C. plutellae larvae to complete 

their development. This may support the thesis that the Bt toxin has no direct impacts on 

parasitoids, but rather that the impacts may be due to reduced host quality. Data so far 

indicate that parasitoids, in general, may be more susceptible to host quality and host-

mediated impacts of GM crops compared with to predators (Lovei & Arpaia, 2005).  
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From the foregoing, it is apparent that Bt plants may affect natural enemies either directly 

or indirectly. For the insecticidal proteins of insect resistant GM plants to directly affect an 

individual natural enemy, the organism has to not only be exposed to the toxin but also be 

susceptible to it. Thus, an organism is not affected by the GM plant when either exposure 

or sensitivity (hazard) does not occur. However, for an effect to be of ecological relevance 

it must result in changes in population or community processes. Similarly, direct or 

indirect effects of the GM plant on individual natural enemies, natural enemy species or 

groups/guilds of natural enemies might not lead to a decreased biological control 

function (Romeis et al., 2008a). Moreover, natural enemies may be affected indirectly by 

the GM plant when they feed on sublethally impaired herbivores (sick prey). Such effects 

appear to be caused by declines in nutritional quality of the host/prey organism. These 

prey/host quality mediated effects appear to account for most (if not all) of the Bt plants’ 

effects on natural enemies that have been reported from laboratory and glasshouse 

studies (Romeis et al., 2006). It is well established that parasitoids are especially 

vulnerable to changes in their hosts’ quality, since they usually complete their 

development in a single host (Godfray, 1994). Therefore this review lays particular 

emphasis on the potential impacts of Bt maize on stem borer parasitoids. Bt maize are 

deployed to control Lepidoptera, which implies that lepidopteran parasitoid hosts would 

(as a direct consequence of being affected by the Bt toxin) invariably be less suitable for 

parasitoid development. Thus it is not surprising that parasitoid life-table parameters are 

significantly affected when the host suffers (Romeis et al., 2006). In extreme cases, 

parasitoids attack sublethally affected hosts that die before the parasitoid offspring 

completes development (Davidson et al., 2006; Schuler et al., 2004). Sections 2.2.1 to 2.2.5 

provides a review of the potential impacts of Bt maize on stem borers and their natural 

enemies (specifically parasitoids).  

2.2.1 Effect of Bt maize on stem borer oviposition preference 

One of the major risks associated with the use of transgenic pesticidal crops is that pests can 
develop resistance which could reduce the efficacy of such crops as plant protection tools 
(Wolfenbarger & Phifer, 2000). Furthermore, if larvae developed resistance to the Bt toxin, 
there could be greater chances of natural enemies getting host-mediated exposure to the 
toxin (Obonyo et al., 2008a). When the US EPA reviewed the first registration for Bt plants, 
there was considerable concern in some sectors that resistance to the plants would rapidly 
occur and that not only would this be a concern to growers of Bt crops but also to organic 
farmers who relied on Bt as a foliar spray (Shelton et al, 2008). The high dose/refuge 
strategy (the use of high doses of one or more toxins, combined with a refuge of non-Bt 
plants) has been proposed as a likely means to delay the development of resistance by 
insects against transgenic plants (Bates et al., 2005). This strategy emphasises the presence of 
susceptible insect populations; these may slow down the evolution of resistance (Bentur et 
al., 2000; Shelton et al., 2000; Tang et al., 2001). The premise is that susceptible insects, if 
present in sufficient numbers, would mate with resistant insects and dilute resistance genes. 
However, several biological factors that influence the number of insects exposed to Bt toxin 
may substantially affect the success of the high dose/refuge strategy (Ives & Andow, 2002). 
One such factor is oviposition preference. Preference for Bt maize would require more 
refuge plants to counter an increased selection pressure. However, preference for refuge 
plants could have the opposite effect. From a resistance management perspective, an ideal 
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plant, in addition to killing larvae, should repel adult oviposition (Hellmich et al., 1999). 
This would reduce selection for resistance because fewer larvae would be exposed to plant 
toxins. Potential effects of Bt transgenic maize on stem borer natural enemies could therefore 
partly depend on the oviposition preferences of stem borers, either for Bt or non-Bt maize.  
Various studies have been conducted on effects of Bt maize on stem borer oviposition 
behaviour. In field tests, the number of eggs laid by susceptible European corn borer 
females did not differ between Bt corn (containing Cry1Ab) and non-Bt corn (Orr & Landis, 
1997). Pilcher & Rice (2001) observed that O. nubilalis females did not show any oviposition 
preference towards non-Bt or Bt maize (using Event 176 and Bt11). Van den Berg & van Wyk 
(2007) reported that S. calamistis adults did not differentiate between Bt and non-Bt maize 
plants in oviposition choice experiments. More recently, Obonyo et al. (2008a) observed that 
C. partellus and S. calamistis moths did not discriminate between Bt and non-Bt maize plants 
for egg laying. This non-discriminatory oviposition behaviour could be due to the fact that 
the ratios of caterpillar-induced odour emissions of Bt maize plants are identical to those of 
non-Bt plants (Turlings et al., 2005) since genetic modification does not alter the volatile 
profile of undamaged maize plants (Dean & De Moraes, 2006). These results have important 
implications for pest resistance management and monitoring. Because oviposition is not 
affected by the Bt toxin, and females are exposed equally to Bt maize and non-Bt maize 
refuges, it can be assumed that eggs will be distributed equally between Bt and non-Bt 
maize hence there will always be a pool of insects on susceptible crops, which is necessary 
for resistance management and hence ensuring that the development of resistance is 
delayed as much as possible. Furthermore, since the development of resistance against Bt 
toxins requires the survival and development of at least two exposed larvae into a male and 
a female (Kumar, 2004) and since Bt maize causes up to 100% mortality (Obonyo et al., 
2008a) the possibility of resistance development would be further restricted.  

2.2.2 Effect of Bt maize on stem borer development and mortality 

An understanding of the effect of Bt toxins on development of herbivorous insects is 

important because host development time could have a direct effect on natural enemies by 

influencing the ‘window of vulnerability’, the period during which the host is exposed to 

natural enemies (Schoenmaker et al., 2001; Schuler et al., 1999a; Wallner et al,. 1983). Also, 

the combined effects of developmental delays may result in temporal asynchrony of moths 

emerging from Bt and non-Bt maize- resulting in susceptible individuals mating before 

resistant adults emerge (Horner et al., 2003). Since the success of the refuge strategy requires 

that any resistant individuals mate with susceptible ones, such asynchrony in emergence 

from Bt and non-Bt maize plants could compromise the strategy and hence weaken the 

potential of Bt maize as an option for stem borer control. Furthermore, effects of Bt plants on 

host development could impact on the biology of a natural enemy developing in such a host 

(Walker et al., 2007; Weseloh, 1984).  

Obonyo et al. (2008b) observed that Bt maize had significant effects on stem borer 

development time. Feeding of stem borer larvae on Bt plant tissue at the 3rd and 4th instars 

significantly lengthened the duration of the respective instars (but not the subsequent 

ones) while overall larval development time was not affected probably because the larvae 

were exposed to Bt for a relatively short duration. Schoenmaker et al. (2001) suggested 

that ingestion (by lepidopteran larvae) of sublethal doses of Bt toxin prolonged 

development time by temporarily inhibiting feeding. Continuous exposure to Bt toxin 
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prolonged development of Spodoptera littoralis Boisduval (Lepidoptera: Noctuidae) while 

exposure to toxin for shortened durations had no significant effects on larval development 

time (Dutton et al., 2005a). Therefore it seems that larvae may recover from the effects of 

the Bt-toxin, following transient exposure. Other lepidopteran larvae that ingest sublethal 

doses of Bt also resume normal development after a few days (Moreau and Bauce, 2003; 

Siegfried et al., 2001). Dutton et al. (2005a) reported that there were no significant effects 

on overall larval development when 3rd instars of S. littoralis larvae were exposed to Bt 

sprayed plants because the effect of the toxin did not persist for long due to rapid 

degradation of the Bt spray (Haddad et al., 2005). In contrast, significant effects, attributed 

to long toxin persistence, were reported when larvae were reared for four days on Bt 

maize (Haddad et al., 2005). Huang et al. (2006) observed larval development inhibition of 

O. nubilalis, D. grandiosella and Diatraea saccharalis F. (Lepidoptera: Pyralidae) fed on a diet 

prepared from Cry1Ab protein (extracted from Bt corn leaves). Similarly, transgenic maize 

containing Cry1Ab delayed larval development of H. zeae (Horner et al., 2003; Stewart et 

al., 2001) and D. plexippus (Dively et al., 2004). Development time of the 5th instar of C. 

partellus larvae subjected to transient feeding on Bt maize at the same growth stage was 

not affected (Obonyo et al., 2008b), possibly because pupation follows shortly after the 5th 

larval stage in this species at which time the larvae are relatively inactive and do not feed 

much (Tettamanti et al., 2007); and their large sizes enable them to tolerate more toxin 

(Huang et al., 1999). Overall, larval development time in these larvae was significantly 

longer as a consequence of Bt exposure (Obonyo et al., 2008b). This indicates a 

disturbance to the "normal" development cycle, from which the larvae may eventually 

recover. The increase in larval development time therefore increases the window of 

vulnerability during which stem borer parasitoids can get host mediated exposure to the 

Bt toxin. This in itself may not be cause for concern but rather the consequences of such 

exposure. Possible consequences of host-mediated exposure to Bt toxins are discussed in 

subsequent sections of this chapter. 

2.2.3 Effect of Bt maize on the ability of parasitoids to locate hosts 

The success of biological control agents depends on their efficiency to search for, and locate 
target hosts (Nordlund et al., 1988). Parasitoid host finding behaviour is complex and 
influenced by many factors (Ngi-Song et al., 1996; van Leerdam et al., 1985). One important 
factor is volatiles emitted by the host plant. There are significant quantitative (Turlings et al., 
2005) and qualitative (Dean and De Moraes, 2006) differences in volatile emissions between 
Bt and non-Bt plants. Both the quantity and composition of emitted volatiles influence host 
finding by Cotesia species (Steinberg et al., 1993). Host species odours are also used by 
parasitoids for host location and hence any change in host physiology may alter parasitoids’ 
host location behaviour (Takasu & Lewis, 2003). 
Bt maize may influence host species odours and thus parasitoid host finding behaviour. 

Obonyo (2009) showed that damaged but uninfested Bt and non-Bt maize were similarly 

attractive to females of the larval parasitoids C. flavipes and C. sesamiae, and that both were 

also more attractive than the control air flow from a plantless cage. Females of C. flavipes and 

C. sesamiae were equally attracted to stem borer infested maize plants (irrespective of Bt 

status). This suggests that females of C. flavipes and C. sesamiae do not distinguish among 

plant- and host-derived cues from Bt and non-Bt maize when searching for stem borer hosts. 

Therefore the presence of Bt toxin in maize plants apparently did not affect the host location 
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process of these parasitoids. Similar findings have been reported elsewhere (Ngi-Song and 

Overholt, 1997; Potting et al., 1997). Also, Cotesia marginiventris Cresson (Hymenoptera: 

Braconidae) and Microplitis rufiventris Kokujev (Hymenoptera: Braconidae), which are 

important larval parasitoids, were not able to distinguish between the odours of a Bt maize 

event and its near-isogenic line (Turlings et al., 2005). This indicates that growing Bt maize is 

not likely to affect host finding by stem borer larval parasitoids.  

Furthermore, plant volatiles may act as cues for host location by pupal parasitoids (Obonyo 
2009). Chemical analyses of collected odours between Bt and non-Bt maize revealed 
significant quantitative differences (Turlings et al., 2005); this could possibly affect host 
location by pupal parasitoids such as X. stemmator. Indeed, Obonyo (2009) found that X. 
stemmator parasitoids preferred host plant odours compared to odours from a blank control. 
However, volatiles from Bt plants were deterrent to X. stemmator. Oviposition preference of 
insects has been predicted to correlate with host suitability for offspring development 
(preference – performance hypothesis) (Jaenike, 1978). This hypothesis (known as the 
'mother knows best' principle) (Johnson et al., 2006) was developed for herbivorous insects 
but is assumed to play an important role in parasitic Hymenoptera as well (Vinson and 
Iwantsch, 1980). According to this preference – performance hypothesis, X. stemmator avoids 
the Bt plants because potential hosts have a lower quality when feeding on Bt maize. In 
parasitoids, host organisms are the only source of nutrients for the immature stages 
(Sequeria & Mackauer, 1992), and thus parental fitness depends on the accurate assessment 
of host sites for their potential to sustain the development of their larvae (Meyling & Pell, 
2006). Therefore adaptation to reliable cues, enabling the evaluation of the quality of 
potential hosts, is a selective advantage for ovipositing females. Chemical cues may not only 
attract but also deter parasitoids from entering host sites. Naive females of the solitary 
ectoparasitoid, Lariophagus distinguendus Forster (Hymenoptera: Pteromalidae) which 
parasitizes immature stages of several stored-product infesting beetle species avoid odours 
from mouldy grains which are unsuitable for the development of their larvae (Steiner et al., 
2007).  
Considering that Bt maize has an adverse effect on the host location behaviour of X. 
stemmator, it could possibly compromise the biocontrol potential of this parasitoid, hence 
impacting negatively on the use of Bt maize as part of IPM strategies. 

2.2.4 Effect of Bt maize on parasitoid biology 

Changes in host plant chemistry may negatively affect natural enemy fitness through 

reducing survivorship, clutch size, body size and/or fecundity (Ode, 2006). Such negative 

impacts may occur either directly (when the natural enemy encounters the toxin in its host 

or prey) or indirectly (when natural enemy fitness is reduced due to lower prey/host size or 

quality). A number of studies have found variable results on effects of Bt toxins on 

parasitoid life history parameters; these include no apparent negative effect (Obonyo, 2009;  

Schuler et al., 1999a), synergism between the transgenic plants and parasitoids (Tounou et 

al., 2007), lower parasitoid survival (Blumberg et al., 1997), or emergence rates (Atwood et 

al., 1997b; Liu et al., 2005a), increased parasitoid development times (Liu et al., 2005a; Liu et 

al., 2005b; Vojtech et al., 2005), reduced longevity (Baur & Boethel, 2003), reduced body mass 

(Ashouri et al., 2001; Liu et al., 2005a), and altered parasitoid sex ratios (Wallner et al., 1983). 

Changes in host plant chemistry may also affect acceptance of the plants by their hosts, with 

consequences on associated natural enemies. Obonyo (2009), however, showed that there were 
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no significant differences in host acceptance ratio between Bt exposed and non-Bt reared 

larvae. Turlings et al. (2005) observed that braconid parasitoids did not distinguish between 

odours of Bt and non-Bt maize plants in olfactometer experiments. Although a number of 

studies have found no significant differences in oviposition choice between hosts fed on 

transgenic and non-transgenic diets (Bell et al., 1999, Schoenmaker et al., 2001; Schuler et al., 

1999b), there are  cases where parasitoids seem to distinguish by host quality (reviewed in 

Steidle and van Loon, 2003; Overholt et al., 1994; Sallam et al., 1999). More recently, Obonyo 

(2009) reported a higher host acceptance ratio of C. flavipes for C. partellus compared with S. 

calamistis. These contrasting results could be due to the different dietary material (plant 

material and microbial formulations) used in the various studies. However, it is more likely 

that the lack of significant effects of Bt was due to the transient feeding of the host on Bt maize 

(Obonyo, 2009). Negative effects of Bt toxins on parasitoids are often indirect, occurring via 

reduced host quality (Chen et al., 2008; Vojtech et al., 2005; Walker et al., 2007) but larvae 

exposed to the Bt toxin and subsequently transferred to a Bt-free diet may recover by replacing 

damaged mid-gut cells and excreting the toxin (Tounou et al., 2007). 

As already mentioned, host quality directly impacts on parasitoid development. Ingestion 
of Bt toxins by stem borer larvae could therefore affect parasitoid developing within these 
larvae. Temerak (1980), Salama et al. (1991) and Atwood et al. (1997b) observed that 
incorporation of microbial Bt formulations in host food decreased the emergence of 
parasitoids larvae. Wanyama (2004) found that Bt contaminated diets significantly 
increased C. partellus cocoon development time. Bernal et al. (2002) found a longer 
development time of Parallorghas pyralophagus Marsh (Hymenoptera: Braconidae) on Bt 
fed hosts. In contrast, Obonyo (2009) and Prutz & Dettner (2004) observed no effects of 
host ingested Bt toxins on the mortality of C. flavipes inside cocoons. Also, Prutz & Dettner 
(2004) found no significant effects of Bt-contaminated diets on C. flavipes pre-cocoon 
development time.  
Besides, the proportion of female parasitoids produced in each generation is an important 
factor in the success and survival of parasitoid populations (Godfray, 1994). A female 
biased sex ratio is an important characteristic of a biocontrol agent, especially parasitoids, 
because only females contribute to pest mortality upon release (Waage, 1982). In fact, the 
failures of numerous biological control projects have been attributed to male biased sex 
ratios (Stouthamer et al., 1992). A number of studies (e.g., Bernal et al., 2002; Obonyo, 
2009, Prutz & Dettner, 2004; Walker et al., 2007) have reported no effect of Bt toxin on sex 
ratios of parasitoid progeny. Therefore adoption of Bt maize is not likely to impact on 
larval parasitoid sex ratios and/or parasitoid populations. It is clear though that Bt maize 
may have variable effects on the biology (and hence the effectiveness) of stem borer 
parasitoids. 

2.2.5 Effect of Bt maize on fluctuating asymmetry of parasitoids and parasitoid size 

Environmental or genetic stress can cause an increase in the fluctuating asymmetry (FA) of 
bilaterally morphological traits (Parsons, 1990) and hence may be used as a measure of the 
ability of individuals to cope with different kinds of environmental stresses (Jones, 1987; 
Leary and Allendorf, 1989; Parsons, 1990). FA refers to random deviations from symmetry 
of otherwise bilaterally symmetric traits; it occurs when an individual is unable to undergo 
identical development on both sides of a bilaterally symmetrical trait (Liu et al., 2005c). 
Environmental stress, including extreme temperatures (Mpho et al., 2002; Sciulli et al., 1979), 
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pesticides (Hoffmann & Parsons, 1990), and qualitative and/or quantitative food deficiency 
(Liu et al., 2005c; Parsons, 1990) may cause FA in morphological traits during development. 
For example, the FA value of the third segment of antenna in aphids was significantly 
higher on Bt cotton compared to control cotton (Liu et al., 2005c). Generally, there is a 
negative correlation between the degree of FA and the fitness of populations (Moller, 1997). 
For instance, the lifespan of Malacosoma disstria Hubner (Lepidoptera: Lasiocampidae) 
shortened as the degree of FA of the first segment of foreleg tarsi increased (Naugler and 
Leech, 1994). Wing asymmetry, in contrast, may influence flight ability and hence the ability 
of parasitoids to reach hosts (Bennet & Hoffmann, 1998). 
There have been variable results on effects of exposure to Bt toxins on FA values. Obonyo 

(2009) observed that transient feeding of hosts on Bt maize had a number of effects on FA 

depending on the trait under consideration as well as the host and parasitoids species. 

Transient feeding of C. partellus and S. calamistis hosts on Bt maize adversely affected C. 

sesamiae and C. flavipes parasitoids, respectively; this was reflected in the higher FA values 

for antennal length and wing length in C. sesamiae and C. flavipes, respectively that were 

developing on hosts subjected to transient feeding on Bt maize. In contrast, C. sesamiae 

exposed to S. calamistis hosts that had been subjected to transient feeding on Bt maize 

showed lower FA values. The lower FA values could be due to the improved performance 

of C. sesamiae on Bt exposed S. calamistis thus indicating that there could be instances 

where Bt maize could actually enhance parasitoid performance. Similarly, Tounou et al. 

(2007) observed positive effects of Bt intoxicated S. calamistis larvae on C. sesamiae. Such 

positive effects (on exposure to Bt) could be attributed to the weakening of the immune 

system of the host, resulting in lower encapsulation rate of the parasitoids eggs by the 

host larva (Tounou et al., 2007). Encapsulation of C. sesamiae eggs has been reported in S. 

calamistis (Gitau et al., 2007; Hailemichael, 1998). It is possible that this encapsulation 

reaction could affect parasitoid development. The success of the encapsulation reaction 

depends on the vigour of the herbivore (Siva-Jothy & Thompson, 2002) which may be 

reduced by host plant induced stresses (Blumberg, 1997, Souissi & Le-Ru, 1998, Turlings 

& Benrey, 1998). The parasitoid Cotesia kazak Telenga (Hymenoptera: Braconidae) has 

more success on its host Helicoverpa armigera Hubner (Lepidoptera: Noctuidae), fed on less 

toxic Bt-amended diets (Walker et al., 2007) compared with Tranosema rostrale rostrale 

Brishke (Hymenoptera: Ichneumonidae) developing on Bt fed spruce budworm 

Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae) (Schoenmaker et al., 2001). 

Transient feeding of hosts on Bt maize apparently had no significant effects on FA of 

antennae and wing lengths in the other host parasitoid combinations (Obonyo, 2009). This 

was possibly because the levels of toxin ingested were not high enough to affect these 

traits in these host-parasitoid combinations or alternatively because these traits are not 

sensitive to the effects of the Bt toxins. Transient feeding of S. calamistis on Bt maize did 

not adversely affect C. flavipes development.  However, C. sesamiae developing on C. 

partellus subjected to transient feeding on Bt maize had greater FA values compared with 

those developing on C. partellus exclusively reared on non-Bt maize. Similarly, Wanyama 

(2004) did not detect any significant effects of transient feeding of host on Bt toxins on 

parasitoid development time. Even though a significant difference was not detected in the 

percentage of dissected pupae that contained immature parasitoids, they were much 

fewer on pupae from larvae exposed to transient feeding on Bt maize. Wanyama (2004) 

found a significantly higher proportion of dead parasitoids in pupae of Bt fed hosts. 
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Female parasitoids are usually able to control the proportion of fertilized eggs, which they 

oviposit, depending on host size and quality (Charnov and Stevens, 1988). The strong 

male bias in Bt fed hosts could indicate inferior host quality.  Obonyo (2009) and Liu et al., 

(2005d) showed that longevity of adult parasitoid wasps was unaffected by transient 

feeding on Bt maize, indicating that adoption of Bt maize may not have significant effects 

on parasitoid longevity and may therefore not adversely impact on parasitoid biocontrol 

potential.  

Therefore it is clear that where transient feeding of hosts on Bt maize increases FA, it does 
so in a trait-specific way. The lack of consistency in FA responses across traits may reflect 
variation between trait types in their susceptibility to environmental stress (Woods et al, 
1999). We conclude that the FA of some traits (and consequently parasitoid fitness) in the 
parasitoids may be affected by transient feeding of their hosts on Bt maize. Thus in 
assessing the risk posed to non-target organisms by transgenic plants it may be necessary 
to ascertain the relationship between fitness parameters and the FA values of the non-
target organisms. 
In addition to FA, parasitoid size may also have an impact on parasitoid fitness. Many 

studies have established positive associations between adult body size and standard 

laboratory and field fitness measures (e.g., Godfray, 1994; Bennet & Hoffmann, 1998). 

Increase in hind tibia length increased the fitness of Trichogramma carverae Oatman and Pinto 

(Hymenoptera: Trichogrammatidae) (Bennet and Hoffmann, 1998). Parasitoid size may be 

determined indirectly by measuring hind tibia length (Bennet & Hoffmann, 1998; Kazmer & 

Luck, 1995; West et al., 1996), antennal length and wing length.  Studies (e.g., Obonyo, 2009) 

show that transient feeding of hosts on Bt maize has various effects on trait sizes depending 

on the trait, host and parasitoid species. For example, transient feeding of C. partellus on Bt 

maize adversely affected C. flavipes by reducing their antennal length. In contrast, antennal 

length was significantly increased in C. sesamiae developing on S. calamistis hosts subjected 

to transient feeding on Bt maize. The longer antenna lengths in C. sesamiae on S. calamistis 

subjected to transient feeding on Bt maize could be due to the improved performance of C. 

sesamiae on Bt exposed S. calamistis.  

The effect of Bt toxins on wing length and hind tibia length of parasitoids have been 
reported in a number of studies. Obonyo (2009) showed that wing length of some parasitoid 
species were affected by feeding of hosts on Bt maize. He also found that hind tibia length 
were significantly reduced on C. flavipes developing on S. calamistis hosts subjected to 
transient feeding on Bt maize, and C. sesamiae developing on C. partellus subjected to 
transient feeding on Bt maize. In contrast, hind tibia lengths of C. sesamiae were not 
significantly affected following transient feeding of their S. calamistis hosts on Bt maize 
(Obonyo, 2009). Similarly, Obonyo (2009) did not observe significant effects on parasitoid 
hind tibia lengths following exposure of X. stemmator to hosts that had been subjected to 
transient feeding on Bt maize. This indicates that Bt toxins probably had no significant effect 
on parasitoid size. Therefore it is expected that X. stemmator emerging from hosts subjected 
to transient feeding on Bt maize would perform equally well in the field as those emerging 
from non-Bt fed hosts. Also, the lack of significant differences in FA values between 
parasitoids reared on Bt fed and non-Bt maize fed hosts may suggest that the Bt toxin did 
not provide a stressful environment for the developing parasitoids. Although exposure of X. 
stemmator to hosts subjected to transient feeding on Bt maize did not affect the biology of X. 
stemmator, it significantly reduced the proportion of female progeny (Obonyo, 2009). A 
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female biased sex ratio is important for biocontrol agents, especially parasitoids because 
only females contribute to pest mortality upon release (Waage, 1982).  
It is clear from the foregoing that Bt maize may impact on parasitoid fitness as well as sex 
ratios and hence could possibly affect parasitoid biocontrol potential. 

3. Conclusion 

It is difficult to determine, from existing literature, whether the observed host mediated 
effects of Bt maize on parasitoids are direct or indirect. Parasitoid performance can be 
affected as a result of the Bt toxin reducing host’s biomass (Farrar and Ridgeway, 1995; 
Deml et al., 1998), or changing the host hemolymph-pH, hemolymph ion concentration, and 
nutrient concentration (Tanada and Kaya, 1993), which in turn can affect the parasitoid 
larvae living in the hemolymph. Alternatively, parasitoid larvae may be affected by 
ingesting the Bt toxin present in the hemolymph. Whatever the case, the most important 
consideration should be whether Bt maize can cause significant harm to stem borer natural 
enemies and most significantly the overall environmental consequences of such impacts. In 
order to determine the overall impact of growing Bt maize on stem borer natural enemies, 
the issues raised in this chapter should be placed in the context of real-life scenarios, taking 
into account inter alia, local agricultural practices, agro-ecological conditions, trade policies 
etc. 
This review has confined itself to potential impacts of Bt maize on stem borer natural 
enemies, specifically parasitoids and it is therefore not possible to make generalizations. 
Any judgment on the potential impact (s) of Bt maize, or any transgenic crop for that matter, 
should be made on a case-by-case basis using a rational, evidence-based scientific approach. 
In contrast to application of chemical insecticides with contact toxicity, insecticidal proteins 
expressed by GM plants have to be ingested to affect parasitoids. Consequently, when 
assessing the potential impacts of growing Bt maize on natural enemies it may be necessary 
to assess which organism (s) may be exposed under actual field conditions, and at what 
level. Indeed, the level at which an organism can be exposed to a plant expressed 
insecticidal protein may vary depending on the concentration of the toxin in the plant or 
environment, the plant tissue in which the protein is expressed, and the feeding behaviour 
of the non-target organism (Dutton et al., 2005b; Romeis et al, 2008a,b,c). Therefore exposure 
pathways can be predicted only if the relevant information for the GM plant, the 
environment and the natural enemy is available. Also, it may be necessary to make 
comparisons between the potential consequences of Bt maize on natural enemies and the 
use of conventional insecticides. Evidently, most studies have focussed mainly on making 
comparisons between Bt maize and non-Bt maize, without looking at the alternatives. It is 
only when a comparative approach is adopted that it may be possible to make prudent 
judgements regarding this novel method of insecticide delivery. Therefore in assessing the 
potential impact of Bt maize on the environment, it would be useful to pose the question: 
how would the use of Bt maize compare to the alternative (s)?” When assessment is not 
comparative decision making becomes non-objective. For example, it may be known that Bt 
maize reduces wing lengths of some stem borer parasitoids. However, with this information 
alone it may not be possible to reach useful conclusions. In contrast, if comparisons were 
made between the effects of Bt maize and the alternative (s) e.g., broad spectrum insecticides 
(effect on natural enemies), it would be easier to make more informed and objective 
conclusions (and hence decisions) regarding this novel technology. 
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4. Disclaimer 

The views expressed in this article are those of the individual authors and do not necessarily 
reflect the views and policies of the International Centre for Genetic Engineering and 
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