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1. Introduction

Sudden cardiac death (SCD) is the single most important cause of death in the adult

population of the industrialised world (Jacobs et al., 2004). It is estimated that SCD accounts

for an average of 100 to 200 deaths per 100 000 adults over 35 years and represents 50 % of all

heart-related death (Myerburg, 2001). Most sudden cardiac arrests occur out of hospital, and

the annual incidence of out of hospital cardiac arrest (OHCA) treated by emergency medical

services in the US is 55 per 100 000 population (Myerburg, 2001).

Ventricular fibrillation (VF) is the initial rhythm in 40 % of cardiac arrest cases (Rea et al.,

2004). Survival rates in untreated VF cardiac arrest decrease by 7 to 10 % per minute (Larsen

et al., 1993; Valenzuela et al., 1997), as the heart function deteriorates. Although many victims

present VF or ventricular tachycardia (VT) at the time of collapse, by the time the first ECG

is recorded the rhythm has deteriorated to asystole (Waalewijn et al., 2002). The estimated

survival rate in all cases of OHCA is a poor 8.4 %, but rises to 17.7 % when the victim presents

VF as initial rhythm (Rea et al., 2004). Consequently, early intervention is critical for the

survival of OHCA victims.

In the early 1990s, the American Heart Association (AHA) established the chain of survival

metaphor to describe the sequence of actions to treat OHCA. The chain of survival consists of

four links: early access, early cardiopulmonary resuscitation, early defibrillation and early advanced

cardiac life support. Defibrillation is normally administered using an automated external

defibrillator (AED). The AED analyses the rhythm acquired through two electrode pads and

delivers an electrical shock if a lethal ventricular arrhythmia – VF or rapid VT – is detected.

The shock advice algorithm (SAA) of an AED analyses the ECG to discriminate shockable

from non-shockable rhythms. Given a database of classified ECG records, the performance of

the SAA is evaluated in terms of the proportion of correctly identified shockable – sensitivity –

and non-shockable – specificity – rhythms, which must exceed the minimum values set by the

AHA (Kerber et al., 1997).

SCD is 10 times less frequent in children than in adults. However, only in the US, an estimated

16 000 children die each year from sudden cardiac arrest (Sirbaugh et al., 1999). Moreover,

the social and emotional impact of the death of a child is enormous because of the greater life

expectancy. Paediatric cardiac arrest constitutes less than 10 % of all OHCA, and cardiac arrest

due to arrhythmias is also less frequent in children than in adults. VF is the initially recorded
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rhythm in 3.8 - 19 % of paediatric OHCA cases, and more importantly, VF is the arrhythmia

associated with the highest survival rate (Biarent et al., 2005).

As late as 2000, no conclusive study existed on the use of AED in children under 8 years of

age. By 2003 the International Liaison Committee on Resuscitation (ILCOR) recommended

the use of AED in children 1–8 years of age (Samson et al., 2003), based on the evidence

provided in two independent studies (Atkinson et al., 2003; Cecchin et al., 2001). Since 2005 the

Resuscitation guidelines1 reflect the need of adapting AED for paediatric use. This involves

adjusting the defibrillation pads and the defibrillation energy dose, but also, demonstrating

that the SAA are accurate in the detection of paediatric arrhythmias. In fact, the first studies

on the use of AED in children showed that two adult SAA from commercial AED accurately

identified many paediatric rhythms (Atkinson et al., 2003; Cecchin et al., 2001). The specificity

for non-shockable rhythms and the sensitivity for VF were above the values recommended by

the AHA. However, those studies failed to meet AHA criteria for shockable paediatric VT. In

2008, a third study showed that a SAA designed for adult patients did not meet AHA criteria

for non-shockable paediatric supraventricular tachycardia (SVT) (Atkins et al., 2008).

SAA are based on the combination of several discrimination parameters computed from the

surface ECG. There are differences in rate, amplitude and ECG wave morphology between

paediatric and adult rhythms (Aramendi et al., 2010; Cecchin et al., 2001; Rustwick et al., 2007).

The faster heart rates and shorter QRS durations of paediatric rhythms produce differences

in the values of the discrimination parameters which may affect the performance of SAA

designed for adult use. Some of these differences have been previously assessed (Aramendi

et al., 2010; Irusta et al., 2008; Ruiz de Gauna et al., 2008). However, based on the thorough

analysis presented in this chapter, adequate strategies can be defined to either adapt (Atkins

et al., 2008; Irusta & Ruiz, 2009) or redesign adult SAA algorithms to be valid also for

paediatric use.

The discrimination parameters analysed in this study quantify features of the ECG signal

in three domains: slope, frequency and time. The parameters are computed for a database

of more than 1900 ECG records from adult and paediatric patients. Section 2 describes the

database in terms of numbers of rhythms and patients, as well as the ECG record sources

and the rhythm classification process. Then, in section 3 paediatric and adult heart rates are

compared for the different age groups. The differences in the values of the discrimination

parameters between adult and paediatric rhythms are assessed in section 4. The differences

are quantified in terms of the statistical distributions of the values of the parameters, both for

shockable and non-shockable rhythms. Emphasis is made on the influence of the age group

on the values of the parameters. Then, the discriminative power of each parameter is assessed

through the Receiver Operating Characteristic (ROC) curve and the sensitivity/specificity

values. The analysis reveals important aspects that must be addressed when a SAA is adapted

or designed for paediatric use. Finally, section 5 discusses strategies to design reliable SAA

for adults and children and puts forward the main conclusions extracted from the study.

2. Collecting ECG recordings from adult and paediatric patients

The framework for the assessment of AED SAA was established by an AHA statement in

1997 (Kerber et al., 1997). The statement describes the composition of the databases used to

1 The latest version of the guidelines was released in 2010 (Biarent et al., 2010).
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develop and test SAA, including the types of rhythms and the minimum number of records

per rhythm type. It also defines the minimum sensitivities and specificities of SAA for those

rhythm types, these values are compiled in table 1. Furthermore, the statement mentions that

although a database can contain several records from the same patient there can only be one

record of each rhythm type per patient.

Currently there exist no public database of ECG records compliant with the AHA statement.

Each AED manufacturer compiles its own data, which must include paediatric rhythms if

the AED will treat children. However, the studies describing paediatric databases (Atkins

et al., 2008; Atkinson et al., 2003; Cecchin et al., 2001) report less shockable rhythms than those

specified by the AHA because paediatric ventricular arrhythmias are scarce.

In this study we use a database composed of adult and paediatric ECG records collected

from in- and out-of-hospital sources. Three cardiologists assigned a rhythm type and

a shock/no-shock recommendation to each record. For potentially shockable rhythms,

the criteria to determine the shock/no-shock recommendation were: the patient is

unresponsive, has no palpable pulse, and an unknown age (Cecchin et al., 2001). Diagnostic

discrepancies among the reviewers were further discussed, and a consensus decision for

the shock/no-shock diagnosis was agreed after the assessment of the risks of each potential

recommendation.

The database contains shockable rhythms (VF and rapid VT) and the most representative

non-shockable rhythms: Normal Sinus Rhythm (NSR) and SVT. SVT were treated separately

because adult SAA have been shown to misdiagnose high rate paediatric SVT (Atkins et al.,

2008). Furthermore, VT should only be shocked when its rate exceeds a threshold. In fact,

the AHA statement allows the manufacturer to specify this threshold because tolerance to VT

varies widely among patients. We considered VT shockable for rates above 150 bpm in adults

and 20 bpm above age-matched normal rate in children (Atkinson et al., 2003). Table 1 is a

summary of the database, where the paediatric data is divided in three age groups: under 1

Paediatric AHA goal

Rhythms Adult <1y 1y–8y >8y Records Sens/Esp

Shockable

Coarse VF a 374 (374) 3 (1) 18 (11) 37 (10) 200 90 %

Rapid VT 200 (200) 8 (4) 39 (19) 19 (13) 50 75 %

Non-shockable

NSR 292 (292) 14 (13) 312 (280) 214 (161) 100 99 %

SVT 89 (89) 38 (29) 147 (103) 137 (104) 30 95 %

Total 955 (820) 63 (39) 516 (357) 407 (216) – –

a Peak-to-peak amplitude above 200µV.

Table 1. Number of records per rhythm class in the adult and paediatric databases, the
number of patients is indicated in parenthesis. The AHA statement sets the minimum figures
per rhythm class, both in terms of number of records to test SAA and sensitivity/specificity
scores of the SAA.
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year (infants), 1–8 years of age (ILCOR recommendation) and above 8 years. All records were

stored with a common format, and a sampling frequency of fs = 250 Hz.

The following sections describe the origin and the characteristics of the adult and paediatric

records.

2.1 ECG records from adult patients

The adult database contains 955 records from 820 patients, 574 non-shockable records from

541 patients and 381 shockable records from 351 patients. The database is fully compliant

with the AHA statement for the rhythm categories used in this study. The mean duration of

the records was 13.0± 5.3 s, 15.4± 4.2 s for the non-shockable and 11.4± 5.4 s for the shockable

records.

The adult records were obtained from three sources. 251 non-shockable and 63 shockable

records were extracted from Public ECG databases2. The adult data also includes 127

shockable and 325 non-shockable records from in-hospital electrophysiology (EP) studies

and intensive care units obtained at two Spanish hospitals (Basurto and Donostia hospitals).

Finally, the database contains 3 non-shockable and 186 shockable out-of-hospital records from

the Spanish emergency services in Madrid and the Basque Country.

Public databases are available in digital format with different sampling rates and storage

formats. In-hospital data was gathered in digital format (Prucka Cardiolab and EP-Tracer

systems) or as printed ECG paper strips. All the out-of-hospital data came in paper format

from AED printouts.

2.2 ECG records from paediatric patients

The paediatric database contains 986 records from 612 paediatric and adolescent patients aged

between 1 day and 20 years (mean age 7.1 ± 4.5 years). There are 862 non-shockable records

from 579 patients and 124 shockable records from 49 patients. The mean duration of the

records was 13.7 ± 9.0 s, 14.1 ± 9.3 s for the non-shockable and 10.9 ± 4.9 s for the shockable

records.

Although the non-shockable portion of the database is compliant with the AHA statement,

the shockable portion is not. There are only 58 VF from 22 patients and 66 VT from 36

patients, well below the 250 fatal ventricular arrhythmias (200 VF and 50 VT) specified in

the AHA statement. Furthermore in the paediatric database rhythm repetition – one patient

contributing more than one record within a rhythm type – was allowed when the morphology

of the rhythms was sufficiently different. A low number of ventricular arrhythmias and

rhythm repetition ease the terms imposed by the AHA statement, however all studies on the

use of AED in children have followed this path due to the scarceness of paediatric ventricular

arrhythmias (Atkins et al., 2008; Atkinson et al., 2003; Cecchin et al., 2001).

All the paediatric records were collected in-hospital, from archived paper and digital EP

studies (Prucka Cardiolab and EP-Tracer systems). The records were retrospectively obtained

in five Spanish hospitals: Cruces, Donostia, La Paz , Gregorio Marañón and San Joan de Deu.

The accurate discrimination of SVT and VT based on a single lead ECG is hard in the paediatric

case (Irusta & Ruiz, 2009). In fact, there were a number of paediatric SVT and VT cases

were the consensus decision between the cardiologists was not possible, Fig. 1 shows four

2 The MIT-BIH arrhythmia, the AHA and the Creighton University Ventricular Tachyarrhythmia
databases.
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examples. Discrepancies were resolved by adopting the original interpretation from the

physician aware of the clinical history of the patient. This interpretation is more reliable but it

is only available when records are obtained from documented EP studies. For out-of-hospital

records a consensus decision is the only alternative.

0 2 4 6 8 10

-0.25
0

1.25

(a) Paediatric SVT with disagreements in diagnosis (Rate 255 bpm).

0 2 4 6 8 10

-0.30

0

0.20

(b) Paediatric SVT with disagreements in diagnosis (Rate 125 bpm).

0 2 4 6 8 10

-0.70

0

0.50

(c) Paediatric VT with disagreements in diagnosis (Rate 210 bpm).

0 2 4 6 8 10

-1.50

0

0.70

(d) Paediatric VT with disagreements in diagnosis (Rate 255 bpm).

Fig. 1. Examples of paediatric VT and SVT with disagreements in the cardiologists’
classification. In these cases, the diagnosis from the rhythm source was adopted.

3. Analysis of the heart rate

A well-known ECG difference between children and adults is the heart rate. Normal heart

rate changes with age, from the neonatal period, through infancy, childhood and adolescence.

To maintain the cardiac output in neonates and infants, higher heart rates compensate smaller

stroke volumes. As a result of the maturation of the cardiovascular system, the stroke volume

increases so the heart rate lowers maintaining the overall cardiac output (Chan et al., 2008).

In this section we report the heart rates of the NSR, SVT and VT records from our database.

VF records were excluded from the analysis because VF is an irregular ventricular rhythm

characterized by the absence of QRS complexes and a well defined heart rate. First, QRS

187AED for Paediatric Use, Implications in the Design of Shock Advice Algorithms
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complexes were automatically detected3 and the results were visually inspected and corrected

when necessary. We computed the heart rate (HR) for each record as the inverse of the mean

time-interval between consecutive beats (QRS complexes). The result was expressed in beats

per minute (bpm).

Fig. 2 shows the HR distributions for the non-shockable (NSR and SVT) and the VT rhythms

for all patients (a), the paediatric group (b) and the adult group (c). There is a remarkable

overlap between the HR of the non-shockable and the VT records caused by the high rate

of the non-shockable paediatric rhythms. In the adult case, the HR values of non-shockable

rhythms and VT are well separated. This demonstrates that a shock/no-shock discrimination

approach depending on the HR is not efficient when paediatric rhythms are included,

although it can be useful for the adult group.

Table 2 presents the mean HR per rhythm category for the different age groups. As expected,

HR decreases with age. Our results are in line with the literature, although the age categories

do not match strictly (Chan et al., 2008; Finley & Nugent, 1995). SVT records have a mean HR

of 187 bpm, higher than the 131 bpm obtained for the adult group. The mean HR of SVT in

infants (under 1 year) is lower than the figures reported in the literature: > 220 bpm (Chan

et al., 2008) or between 260-300 bpm (Schwartz et al., 2002). For the 1–8 years of age group,

the mean HR of SVT is comparable to the >180 bpm reported by Chan et al. The mean HR is

similar for adult and paediatric VT, and is above 200 bpm for all age groups. The overlap in

HR between non-shockable and VT rhythms observed in Fig. 2 is therefore caused by the high

rates of paediatric SVT. This overlap is best seen in Fig. 3 which shows the HR distributions

of the paediatric VT and SVT.

Paediatric

Rhythms Adult Total <1y 1y–8y >8y

Non-shockable

NSR 74 (15) 98 (21) 122 (19) 102 (19) 90 (20)

SVT 131 (32) 187 (40) 186 (45) 194 (39) 180 (39)

Shockable

VT 241 (58) 232 (54) 226 (31) 247 (57) 206 (46)

VF – – – – –

Table 2. Mean HR (standard deviation in parenthesis) expressed in bpm for the adult and the
paediatric records. There are no HR values for VF because it is not possible to associate a
heart rate to a VF rhythm.

In conclusion, the higher heart rates of paediatric rhythms have important implications in the

design of SAA. Paediatric SVT with rates close to or above those of rapid VT may be wrongly

classified as shockable, therefore decreasing the specificity of the SAA.

In the next section we analyse how well several parameters discriminate shockable from

non-shockable rhythms. Our purpose is not to define a SAA by optimizing the sensitivity and

specificity for the records in our database. On the contrary, we study the possibility of defining

3 All the signal processing and measurements for this study were made with Matlab (MathWorks, Natick,
MA)
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50 100 150 200 250 300 350
0

0.08

0.16

(a) HR distribution of the non-shockable (�) and shockable VT
(�) records in the complete database.

50 100 150 200 250 300 350
0

0.06

0.12

(b) HR distribution of the non-shockable (�) and shockable VT
(�) records in the paediatric database.

50 100 150 200 250 300 350
0

0.13

0.26

(c) HR distribution of the non-shockable (�) and shockable VT
(�) records in the adult database.

Fig. 2. HR distributions for all the records, the adult records and the paediatric records.
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100 150 200 250 300 350
0

0.06

0.12

Fig. 3. HR distribution for the paediatric SVT (�) and VT records (�).

different features that will serve to discriminate fatal ventricular arrhythmias regardless of the

patient age, i.e., paediatric or adult. Those parameters must therefore be as independent as

possible from the HR.

4. Parameters for the shock/no-shock discrimination

The basic principle of any SAA is the definition of a set of features that will serve to

discriminate fatal ventricular arrhythmias, i.e. shockable rhythms. These features quantify

distinctive characteristics of the rhythms, generally better observed by transforming the time

domain representation of the ECG into a new analysis domain. For example, non-shockable

rhythms have larger bandwidths and more harmonic content because of the fast-changing

QRS complexes. This information is easily observed in the frequency domain representation

of the ECG. Other characteristics, such as the rapid variation of the ECG waveform during

QRS complexes are better observed in the slope domain.

In this section, we describe a set of four parameters and analyse their ability to accurately

identify shockable arrhythmias regardless the age of the patient. One feature is computed

in the slope domain; two in the frequency domain and the last one in the time domain.

The parameters were computed using ECG segments of 3.2 s duration, and a maximum of

3 segments per record were used.

Each parameter is first analytically defined and then the idea behind the parameter is

illustrated through an example from our database. Then, we compute the ROC curve for

the parameter to quantify its potential ability to discriminate shockable from non-shockable

rhythms. Emphasis is made on how well the parameter discriminates SVT from VT in the

paediatric case. Finally, we show different graphical examples corresponding to border-line

cases, for which the discrimination efficiency decreases.

4.1 Slope domain: slope bandwidth

In a normal sinus rhythm the ECG varies slowly most of the time, during QRS complexes

however the ECG changes very rapidly. These differences in the rate of variation of the ECG

permit the identification of QRS complexes in the normal ECG. In our context, we want to

quantify the differences between non-shockable rhythms, with narrow QRS complexes, and

shockable rhythms, with either wide QRS complexes (VT) or no QRS complexes at all (VF).

190 Cardiac Defibrillation – Mechanisms, Challenges and Implications
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We have defined a parameter named slope bandwidth (sBW) to identify the presence of QRS

complexes in the slope domain.

First, each 3.2 s ECG segment is preprocessed with an order 10 Butterworth band-pass filter

(0.5 - 30 Hz). Then, the slope of the ECG is estimated as the first difference of the preprocessed

ECG, xecg[n] . Since we are only interested in the relative magnitude of the slope, the first

difference is squared and normalized to amplitude one.

xd[n] = (xecg[n + 1]− xecg[n])
2 (1)

xd[n] =
xd[n]

max{xd[n]}
(2)

ECG segments with QRS complexes will show large differences in the values of xd[n], with

peaks around the QRS complexes and valleys for the intervals when the ECG changes slowly.

On the contrary, the values of xd[n] are more evenly distributed for shockable rhythms because

there are no narrow fast changing QRS complexes.

To quantify these differences we define the sBW parameter as the 25th percentile (P25) of the

values of xd[n] scaled by a factor of 1000:

sBW = 1000 · P25 (3)

The value of sBW will be small when narrow QRS complexes are present and large when

wide QRS complexes or no QRS complexes are present. Fig. 4 shows the xd[n] waveforms for

a non-shockable (a) and a shockable segment (b); the figure illustrates how representing the

ECG in the slope domain enhances the presence of QRS complexes.

Table 3 presents the mean sBW per rhythm category for the adult and paediatric records,

including the 1–8 years of age group. The average sBW results show a clear separation

between the shockable and the non-shockable segments for each age category. As expected,

sBW is much larger for VT and VF segments, because shockable rhythms have more evenly

distributed amplitudes in the slope domain. However, the mean sBW value for paediatric

VT is significantly lower than for adult VT (8.85 versus 17.99). Furthermore, SVT rhythms

have larger sBW values, particularly in the paediatric case. Consequently, the least accurate

discrimination based on the slope domain occurs between paediatric VT and SVT.

The shock/no-shock discrimination power of sBW is assessed in terms of its ROC curve,

shown in Fig. 5. The ROC curve depicts the proportion of correctly classified shockable

segments (sensitivity) against the proportion of wrongly classified non-shockable segments

(1-specificity) as the classification threshold (the value of sBW) varies. The optimal operating

point (OOP) was selected to maximize the detection accuracy (number of correct decisions),

which produced a 95.5 % sensitivity and 97.2 % specificity.

Although the global discrimination results are good a detailed analysis reveals that the

SVT/VT discrimination is poorer. The SVT/VT discrimination results for the OOP obtained

for the complete database were: 96.5 % VT sensitivity and 94.8 % SVT specificity in adults and

84.6 % VT sensitivity and 92.2 % SVT specificity in children.

Fig. 6 shows two examples of misclassified VT paediatric segments (the group with lowest

performance). The VT segment in panel (a) presents spiky noise that can be interpreted as QRS

191AED for Paediatric Use, Implications in the Design of Shock Advice Algorithms
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complexes. The VT segment in panel (b) shows abrupt descents with large slopes, therefore is

classified as non-shockable.

xecg[n]

0 1.6 3.2

-0.80

0

0.80

xd[n]

0 1.6 3.2

0

1.00

(a) SVT segment. Large differences in the slope produce low sBW values (0.06).

xecg[n]

0 1.6 3.2

-3.00

0

3.00

xd[n]

0 1.6 3.2

0

1.00

(b) VF segment. Fast ventricular activity with an evenly distributed slope produce high sBW values
(34.21).

Fig. 4. Differences in the distribution of the slope, xd[n], between shockable and
non-shockable segments.

Paediatric

Rhythms All patients Adult Total 1y–8y

Non-shockable

NSR 0.18 (0.35) 0.22 (0.50) 0.16 (0.22) 0.16 (0.21)

SVT 0.76 (1.27) 0.65 (1.28) 0.80 (1.26) 0.79 (0.99)

Shockable

VT 15.80 (17.24) 17.99 (18.58) 8.85 (9.01) 8.52 (8.77)

VF 10.66 (7.05) 10.74 (7.20) 10.15 (6.00) 9.40 (4.57)

Table 3. Mean sBW (standard deviation in parenthesis) for the adult and the paediatric
records.
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Fig. 5. ROC curve for the shock/no-shock discrimination based on the sBW parameter.

xecg[n]
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(a) VT segment with QRS like activity (sBW = 0.55).
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(b) VT segment with abrupt descents provoking large slopes (sBW = 0.98).

Fig. 6. Examples of paediatric VT segments misclassified in terms of the sBW parameter.
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4.2 Frequency domain: dominant power and high power content

There are important differences in the power spectral density (PSD) between shockable and

non-shockable rhythms. VT presents regular ventricular beats that frequently appear as a

sinus-like waveform; its power spectral distribution is therefore concentrated around the

frequency of the ventricular rate, the dominant frequency. VF is a more irregular rhythm

so it has a wider band power distribution. Non-shockable rhythms, SVT or NSR, are very

repetitive in time, and present complex waveforms consisting of a P wave, a QRS complex

and T wave. Their power is distributed among the harmonics of the heart rate, and occupies a

much larger bandwidth than for shockable rhythms. We have defined two frequency domain

features to quantify these differences.

First, each 3.2 s ECG segment is preprocessed with an order 10 Butterworth band-pass filter

(0.5 - 30 Hz). Then, we apply a Hanning window with no overlap to the segment and compute

the FFT of the windowed ECG segment, Xecg( f ). The PSD is estimated as the square of the

amplitude of the FFT normalised to a unit area under the curve:

PSD( f ) =
|Xecg( f )|2

∑
f=30
f=0 |Xecg( f )|2

(4)

The first parameter, named PD, measures how concentrated the spectrum is around the

frequency for which the PSD is maximum, the dominant frequency fD. PD is the relative

power content in a B f =1.2 Hz bandwidth symmetrically distributed around fD:

PD(%) = 100 ·
fD−B f /2

∑
fD−B f /2

PSD( f ) (5)

The second parameter measures the power content of the high frequencies. For a cutoff

frequency fH = 12.5 Hz, the relative power content above fH is:

PH(%) = 100 ·
f=30

∑
f=12.5

PSD( f ) (6)

Fig. 7 shows examples of the PSD for the four type of rhythms, and the graphical description

of the two parameters used to quantify these differences. VT rhythms concentrate most of

the power around fD, consequently PD is large and PH is small. For VF rhythms the power

concentrates in a wider band around fD and the power content in the high frequencies is

higher than for VT. On the contrary, rhythms with narrow QRS complexes distribute their

power around several harmonics of the heart rate, PD is therefore smaller and PH larger than

for shockable rhythms. The differences in the spectral separation of the harmonics between

NSR and SVT rhythms are explained by the larger heart rates of SVT.

Tables 4 and 5 list the mean PD and PH for the adult and paediatric records, including the 1–8

years of age group. There is a significant difference in the values of PH between adult and

paediatric NSR segments. This difference is due to the influence of heart rate in the power

content above a fixed fH . Children have faster normal rates, the harmonics of the heart rate

are therefore at higher frequencies and the value of PH is larger. In any case, these values are

well-above those obtained for the shockable segments.
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(a) NSR segment. Narrow QRS complexes produce a large harmonic content, and the power content
of the high frequencies is large: PD = 17.8% and PH = 23.1%.

xecg[n]

0 1.6 3.2

-0.75

0

0.75

PSD( f )B f

0 fD 10 f
H

20 30
0

0.02

0.04

(b) SVT segment. Narrow QRS complexes produce a large harmonic content but at higher frequencies
due to the larger heart rates: PD = 33.5% and PH = 33.8%.
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(c) VT segment. Most of the power is concentrated around fD and there is very little power in the
high frequencies: PD = 89.1% and PH = 0.49%.
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(d) VF segment. The power concentrates around fD but with a wider band power distribution, the
power content of the high frequencies is low: PD = 31.6% and PH = 7.2%.

Fig. 7. Examples of the PSD for the four types of rhythms. The differences in the PSD are
reflected in the values of the PD and PH parameters.
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Paediatric

Rhythms All patients Adult Total 1y–8y

Non-shockable

NSR 19.4 (8.8) 20.2 (9.6) 19.0 (8.2) 18.7 (8.2)

SVT 32.6 (14.4) 28.9 (14.6) 33.7 (14.2) 35.1 (13.8)

Shockable

VT 82.4 (10.2) 83.5 (10.1) 79.0 (9.8) 79.5 (9.1)

VF 58.2 (18.6) 58.3 (18.4) 57.0 (20.0) 46.2 (19.8)

Table 4. Mean PD (standard deviation in parenthesis) for the adult and the paediatric records.

Paediatric

Rhythms All patients Adult Total 1y–8y

Non-shockable

NSR 27.2 (14.4) 21.6 (13.4) 30.5 (13.4) 33.0 (12.1)

SVT 28.4 (15.0) 25.3 (16.9) 29.3 (14.3) 28.8 (14.0)

Shockable

VT 2.0 (2.1) 1.6 (1.9) 3.1 (2.3) 3.3 (2.4)

VF 2.5 (3.0) 2.2 (2.4) 4.3 (5.2) 4.1 (3.5)

Table 5. Mean PH (standard deviation in parenthesis) for the adult and the paediatric records.

The shock/no-shock discrimination power of PD and PH is assessed in terms of their ROC

curves, shown in Figs. 8 and 9. The sensitivity and specificity for the OOP were 83.4 %

and 92.4 % for the PD parameter, and 93.4 % and 89.6 % for the PH parameter, respectively.

Table 6 shows the sensitivity and the specificity in the SVT/VT discrimination for the OOP

threshold, both for the adult and the paediatric groups. The PD parameter has a very high

VT sensitivity for the paediatric (100 %) and adult (99.0 %) cases4, at the expense of a very

poor SVT specificity (79.0 % and 85.8 %, respectively). However, in the same conditions, the

PH parameter presents a contrary behaviour for the paediatric (79.6 % sensitivity vs 95.6 %

specificity) and adult cases (94.9 % sensitivity vs 82.4 % specificity).

PD PH

SVT/VT discrimination Paediatric Adult Paediatric Adult

VT sensitivity 100 % 99.0 % 79.6 % 95.0 %

SVT specificity 79.0 % 85.8 % 95.6 % 82.4 %

Table 6. SVT/VT discrimination based on the spectral parameters for the adult and the
paediatric cases.

4 VF rhythms are therefore responsible for the total sensitivity decrease, as their values are close to the
SVT values, see Table 4.
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Fig. 8. ROC curve for the shock/no-shock discrimination based on the PD parameter.
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Fig. 9. ROC curve for the shock/no-shock discrimination based on the PH parameter.
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Fig. 10 shows one example of misclassification for each parameter in the frequency domain.

The SVT segment shown in panel (a) has a large harmonic content; however, its power content

around fD is still high (PD=67.7 %). The VT segment in panel (b) has a very high heart rate

(395 bpm, 6.6 Hz), its second harmonic falls above fH and PH is therefore large.
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(a) SVT segment with a large power content around the fundamental frequency, PD = 67.7%.
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(b) VT segment. Fast rate, a significant second harmonic power content above fH , PH = 11.1%.

Fig. 10. Examples of misclassification in the frequency domain parameters.

4.3 Time domain: baseline content

A normal ECG with well defined QRS complexes has long ECG intervals around the baseline

or isoelectric line. These intervals shorten as the heart rate increases. For shockable rhythms,

on the contrary, the proportion of time spent by the ECG around the baseline is low because

of the fast ventricular activity. This difference between non-shockable and shockable rhythms

is related to the presence or absence of QRS complexes. We have defined a parameter named

baseline content (bC). The purpose is not to accurately estimate the isoelectric content but rather

to define a parameter that enhances the differences between rhythms with large and small

isoelectric contents.

First, each 3.2 s ECG segment is preprocessed with an order 10 Butterworth band-pass filter

(5 - 30 Hz). The unusually large low cutoff frequency was selected to eliminate P and T

waves, highlighting the presence of QRS complexes and maximizing the baseline effect. The

preprocessed ECG is then normalised so that the maximum absolute value of the amplitude

of xecg[n] is one,

xecg[n] =
xecg[n]

max{|xecg[n]|}
(7)

The bC parameter is computed in the time domain as the proportion of the samples of xecg[n]
in the ±0.1 range. Fig. 11 shows an example of the calculation of this parameter. Segments
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(a) SVT segment. Long isoelectric intervals between QRS complexes; bC = 0.75
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(b) VF segment. Fast ventricular activity with low isoelectric content; bC = 0.20

Fig. 11. Differences in the value of bC for shockable and non-shockable segments. The
waveform of the normalised preprocessed ECG, xecg(n), is very distorted because of the
large low cutoff frequency of the preprocessing filter.

with QRS complexes contain a large proportion of samples in the ±0.1 range, bC is therefore

large. On the other hand, fast ventricular arrhythmias present evenly distributed amplitudes

and bC is small.

Table 7 presents the mean bC per rhythm category for the adult and paediatric records,

including the 1–8 years of age group. For each rhythm type, the differences in the value of bC

between the age groups are small. The largest difference occurs between adult and paediatric

SVT, and is caused by the large difference in HR reported in table 2. As in the other two

domains paediatric SVT is the most difficult to discriminate rhythm.

The shock/no-shock discrimination power of bC is assessed in terms of the ROC curves,

shown in Fig. 12. The total sensitivity and specificity for the OOP were 91.1 % and 92.0 %.

Again the SVT/VT discrimination, particularly for paediatric patients, remains a problem.

Paediatric VT sensitivity is good, 93.2 %, the SVT specificity however is a poor 72.2 %. The

figures are better in the adult case, 95.5 % VT sensitivity and 85.8 % SVT specificity, although

far from reliable for a SAA.

Fig. 13 shows two examples of misclassified SVT paediatric segments. The SVT segment in

panel (a) presents large T waves, the baseline content is therefore low. The SVT segment in

panel (b) shows a similar effect for a faster rate.
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Paediatric

Rhythms All patients Adult Total 1y–8y

Non-shockable

NSR 0.65 (0.13) 0.67 (0.14) 0.64 (0.13) 0.65 (0.12)

SVT 0.40 (0.14) 0.49 (0.16) 0.37 (0.13) 0.35 (0.11)

Shockable

VT 0.17 (0.07) 0.16 (0.07) 0.19 (0.06) 0.17 (0.05)

VF 0.21 (0.07) 0.21 (0.07) 0.22 (0.06) 0.23 (0.07)

Table 7. Mean bC (standard deviation in parenthesis) for the total, the adult and the
paediatric records, including the 1–8 years old subgroup.
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Fig. 12. ROC curve for the shock/no-shock discrimination based on the bC parameter.
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(a) SVT segment with large T waves (bC = 0.08) .

xecg[n]

0 1.6 3.2

-0.60

0

0.60

xecg[n]

0.1

-0.1

0 1.6 3.2
-1.00

1.00

(b) SVT segment with low baseline content (bC = 0.09) .

Fig. 13. Examples of paediatric SVT segments misclassified in terms of the bC parameter.

5. Discussion and conclusions

The ILCOR recommended the use of AED in children 1–8 years of age in 2003. Two

independent studies provided the scientific evidence for this recommendation (Atkinson et al.,

2003; Cecchin et al., 2001). These contributions demonstrated that two adult algorithms from

commercial AED accurately identified paediatric non-shockable rhythms and paediatric VF.

In both studies, the overall specificity was above 99 % and the VF sensitivity above 95 %.

However, both studies failed in the accurate classification of rapid VT; Cecchin et al. reported

a 71 % VT sensitivity, and the results from Atkinson et al. were not significant because their

database only contained three instances of shockable VT. These two studies represent the first

alternative for the design of SAA adapted for paediatric use, which consists on proving that a

SAA designed for adult patients is suitable for paediatric patients

The differences between paediatric and adult arrhythmias might explain the poor VT

sensitivity results; in particular, the higher rates of paediatric SVT. A related problem is that, as

indicated in the ILCOR statement, heart rate oriented SAA designed for adult patients might

identify high rate paediatric SVT as shockable. Atkins et al. (Atkins et al., 2008) addressed

this difficulty when they showed how an SAA designed for adult patients failed to accurately

identify non-shockable paediatric SVT, the SVT specificity was 87 %. They increased the SVT

specificity to 99.6 % by applying specific detection criteria to paediatric rhythms. This study

proposes a second alternative for the design of paediatric SAA, namely changing the detection

criteria fixed for adult patients to accurately detect paediatric arrhythmias.

The current literature only covers ventricular arrhythmia detection algorithms developed and

tested using arrhythmias from adult patients, and the validation of complete AED SAA in

children. In this work, we have analysed the feasibility of a third alternative, oriented to the

201AED for Paediatric Use, Implications in the Design of Shock Advice Algorithms

www.intechopen.com



20 Will-be-set-by-IN-TECH

design of a SAA but including adult and paediatric rhythms in the design of the algorithm.

Consequently, a significant database of adult and paediatric arrhythmias is needed from

the early stages of the process. Obtaining shockable paediatric arrhythmias is particularly

challenging because fatal ventricular arrhythmias are scarce in children. We describe the

process of gathering and classifying a database of adult and paediatric rhythms compliant

with the AHA statement. This laborious and complex task involved emergency services,

hospitals and, in particular, expert cardiologists to classify the records and biomedical

engineers to manage and store the data.

We have dedicated a section to analyse the heart rate of the records in our database, and

to asses the differences in heart rate between children and adults. Our analysis shows that

the discrimination of shockable rhythms based on the heart rate may be accurate with adult

patients but not valid for children, due to the higher rates of paediatric SVT. Consequently,

rate-oriented SAA designed for adults will present a low specificity for paediatric SVT, which

confirms the findings of Atkins et al (Atkins et al., 2008).

The core of the chapter is dedicated to the analysis of the ECG in the slope, time and frequency

domains. We define four easily computable parameters to quantify the differences between

shockable and non-shockable rhythms. These parameters were designed to be independent

of the heart rate and therefore less influenced by the age of the patient.

After the analysis, we conclude that the parameters are to a great degree independent of

the heart rate. There are, however, small differences between paediatric and adult patients

for some rhythm types. For example, the average value of the sBW parameter for VT is

different in adults and children. We have quantified the discrimination capacity of the four

parameters in terms of their ROC curves. As anticipated, there are some borderline cases

between paediatric SVT and VT. In fact, the accurate discrimination of paediatric SVT is a key

aspect when adapting adult AED algorithms for paediatric use. Following this line, Irusta and

Ruiz proposed a SVT/VT discrimination algorithm that could be incorporated to adult and

paediatric AED (Irusta & Ruiz, 2009).

Although the performance of each parameter is not sufficient for a reliable shock/no-shock

discrimination, the parameters can be efficiently combined to accurately identify

non-shockable rhythms with narrow QRS complexes. However, a SAA valid for adult and

paediatric patients based on this strategy must incorporate several additional algorithms

which fall beyond the scope of this work. Those algorithms include: an algorithm for

the detection of non-shockable rhythms with low electrical activity such as asystole or

idioventricular rhythms, an algorithm to discriminate VF (always shockable) from VT

(shockable above a rate threshold) and the protective addition of a SVT/VT discrimination

algorithm to avoid shock diagnoses for fast paediatric SVT.
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