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1. Introduction 

How to measure biodiversity? One of the possibilities is to use DNA. The mention of DNA can 
hint evolution, but this question is much more complicated and beyond the proposition of a 
biodiversity measure. The reasons stated for use DNA instead of other possible molecules 
could be that it is stable and responsible for the transmission of traits to future generations. But 
another reason is simple that it is suitable for measures. First, due to universality among all 
living things. Second, because it is a big molecule, constituted by variations of just four bases, 
making it easy to make a great number of sequence comparisons and used it on biodiversity 
measures. When individuals to be compared are similar, a greater number of comparisons 
have to be made to obtain a quantification of the differences among them. Conservation 
biology is not concerned only with the extinction of species, but also with diversity within 
species or subspecies, where accurate measures of diversity may be required. A third reason is 
that a good amount of methodologies is already developed to study its nature. 
DNA markers when used to study biodiversity are frequently designed for a great number 
of comparisons of similarities or differences among individuals, groups of individuals, or 
populations. DNA is the code for protein synthesis, but in most of the studies DNA markers 
are considered exclusively for comparison, which may not to be linked or recognized to be 
linked with any trait or adaptability of the individual. 
There are lots of kinds of markers, and one important thought to have in mind is that there 
is not a best one among them, but the choice should consider the species to be studied and 
the objective of the diversity analysis. 

2. From nature to agriculture: why we need diversity? 

The different crops and/or livestock, as we know, are indispensable components for 
Humankind daily routine and were domesticated in the course of modern agriculture 
development. The initials “attempts” of agriculture, which leaded to plants domestication, 
were mainly intuitive, the selection of seeds and animals were based in traits that best suited 
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the demand from each civilization. But as soon as the initials “attempts” of agriculture were 
taken, guiding early “breeding” purposes, the losses of diversity became more and more 
apparent. After XIX century, these losses tended to increase in a higher speed, since 
breeder’s effort in developing modern, high yield cultivars guided a substitution of wild 
relatives of modern crops, landraces and local varieties. 
The debate about diversity, germplasm conservation and agriculture is not an original topic 
within breeders, germplasm bank curators, ecologists and others. Even though, each expertise 
embraces a different perspective about diversity. It is well known that low genetic diversity, 
within main crops, are due the intensive selection practiced by breeding programs, which are 
inclined to use few genitors (Donini et al., 2000). Such custom may leave them more vulnerable 
to a broad set of biotic and abiotic stresses, if not it leads to a decline in genetic variability, 
reducing the chance of selecting new allelic combinations (Borba et al., 2009). And since 
genetic variability is the raw material for selection, it is prudent to maintain it at an adequate 
rate to consent new combinations and therefore the exploitation of “new” desirable traits. 
The competent maintenance of diversity within crops and their wild relatives, as well as 
plants with social-economic potential interest, is strategic not only to breeding programs but 
to pharmaceutical and biofuels industries, food security among others causes. But despite 
the immense potential that diversity holds for humankind, its unknown value comprises the 
major risk factor for its irreparable losses. Among the most prominent causes of diversity 
losses are the high rates of demographic growth and, as a result, the quick devastation of 
natural resources (Nass, 2001). Tropical and sub-tropical countries, which hold the greatest 
proportion of biodiversity (Figure 1, Figure 2), are the ones that undergo higher rates of 
natural devastation.  
 

 
Fig. 1. Sampling of common bean (Phaseolus vulgaris) diversity. Archives of Embrapa Rice 
and Beans, Francisco Lins, 1999. 
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Despite the great proportion of diversity concentrated in a relative small number of countries, 
no country is self-sufficient in biodiversity. Therefore, the preservation of biodiversity sources, 
as genetic resources, is the key factor to satisfy nowadays and future needs. Different strategies 
are available for the maintenance of genetic resources (as a living stock of diversity), the two 
most “popular” are ex situ and in situ methods. Both strategies are required and important and 
the choice for the most suited method must reflect the species characteristics and needs. 
The strategies for genetic diversity conservation can be practiced as management strategies 
and may vary according to the characteristics of the various plant species. Even though 
different species demand different conservation strategies, there are some few ordinary 
steps that, if followed, may guide a successful conservation of diversity. Prospection, 
evaluation and characterization, interchange, regeneration among others are essential for 
the adequate maintenance of diversity represented by genetic resources. 
Along with the available tools for the management of diversity there are molecular markers, 
or “observing” DNA fragments which can be associated to genetic heritable traits. 
 

 
Fig. 2. Sampling of cultivated rice (Oryza sativa) diversity. Archives of Embrapa Rice and 
Beans, Francisco Lins, 1999. 

3. Microrganisms and pests associated to plants  

Plants shoots and roots are constantly exposed to pests and microorganisms. In soil the 
various microorganisms frequently starve, and are nurtured and attracted by root exudates. 
Microorganisms may be symbionts, in an intimate association where important new 
morphological structures are created, at least at the cellular level; or promote plant growth 
by, for example, producing beneficial substances or being antagonistic to pathogens (Araújo 
et al., 2001; Silveira & Freitas, 2007; Torres et al., 2009). Microorganisms may be pathogens, 
and plants have to defend themselves. Defense can be constitutive or be triggered only by  
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the contact with the microorganism. When defense reactions are elicited by the presence of 
pathogens, a system of recognition is necessary, usually performed by cell membrane 
proteins. Those recognition proteins are specific to pathogens species or races. Constitutive 
mechanisms can be much more general. 
Various research efforts are directed to study important pest or pathogens diversity. It has 
been frequently performed with markers not related to any function or pathogenicity (Krause-
Sakate et al., 2001; Ribeiro et al., 2003). The genetic structure of a pest population is probably 
related to geographical distances and physical barriers, and may be dependent of alternative 
hosts off the insect (Cunha et al., 2010). More recently, efforts have been made to identify genes 
related to pathogenicy and study of diversity is conducted directly with them. This seem to be 
the ideal measure, when the diversity study is conducted with agronomic purposes, for 
example, to evaluate the distribution and variability of the pathogen and its virulence 
effectors, as a way to infer if a given resistance gene, or some resistance genes, would be 
enough to control the disease. Effectors genes that encode proteins secreted in the host plants 
have been used to study a soil fungi diversity (Chakrabarti et al., 2011).  
Plant genes responsible to resistance to pathogens have been also localized or cloned. 
Molecular mapping is a use of molecular markers slightly different from the study of the 
genetic diversity per se, because it has the aim to localize a marker physically linked in the 
chromosome to a gene that is responsible for a given trait. The link implies that gene and 
marker recombine the least when gametes are formed, causing gene and marker to 
cosegregate. The ideal plant population to localize a marker linked to a gene is the offspring 
of plants derived from a cross between paternal lines which differ specially on the trait to be 
mapped. Some traits are controlled by various loci, each one contributing a small amount to 
a quantitative trait, and are called quantitative trait loci (QTL). Plant resistance to pathogens 
is interesting to be mapped because there are a small number of genes, or a single gene, 
responsible for the trait (St Clair, 2010), which can be considered qualitative. Furthermore, 
the general protein structure and protein sequences of various plant resistance genes are 
conserved among plants, particularly those related to pathogen recognition, and new genes 
can be isolated by similarity (Bakker et al., 2011). 
A series of markers linked to disease resistance genes are available in the literature, and they 
are useful in breeding programs where plants bearing the marker are selected with the aim 
to select resistant plants. There is special advantage of using this indirect selection, called 
marker assisted selection (MAS) is due to the difficulty of inoculating the high number of 
plants to be selected in a breeding program. Some viruses have to be inoculated through 
insect vectors, impracticable with a considerable amount of plants. Most of breeding 
programs are based on selection during natural infection, with the conduction of the 
experiments in conditions that favor the disease spread. But disease spread is not uniform, 
and plant by plant selection is sometimes required.  
The adaptability of plants introduced to different environment can be improved if a 
selection for the resistance to particular stressed condition is performed by molecular 
markers. For example, the introduction of Latin American cassava genotypes to Africa has 
been more successful when a previous selection to the resistance to the Africa Cassava 
Mosaic Virus was made (Okogbenin et al., 2007).  

4. Genetic markers and molecular markers 

Along with the available tools for the management of diversity there are molecular markers, 
which may assist, reliably, the determination and examination of diversity, its conservation 
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and, satisfactorily, guide its exploitation. Within the applications of molecular markers is the 
determination of how the genetic structure of a certain population, or an assemblage of 
germplasm accessions, is organized. The genetic structure may answer questions about how 
much diversity such germplasm assemblage holds, or how such genotypes must “react” 
under natural or artificial selection. Besides, the information resultant from molecular 
markers’ analysis and from biometrics tools might result in the identification of novel 
marker alleles linked to genes involved in the expression of important traits, which can be 
extensively explored during cultivar development in breeding programs. 
The definition of a genetic marker is not new, it was first given when the concern was not to 
study diversity, but to understand cosegregation of agronomic interesting traits to others 
characteristics of the genome, which is known by QTL and genetic mapping. Therefore, a 
genetic marker is defined as a heritable characteristic that can be associated to an interesting 
trait. When we do not think in mapping, but in diversity, the genetic marker is any genetic 
characteristic that is variable, or polymorphic, among the individuals to be studied, and 
heritable. 
The genetic marker can be morphological or molecular (biochemical or DNA/RNA based). 
The presence or size of a spot in a flower is a morphological marker. The main advantage of 
molecular markers is that they can be obtained in a virtually infinite number. Furthermore it 
is not influenced by the environment, as parts of the morphological traits. Small organisms, 
as bacteria, are practically impossible to be studied through naked eye, or sometimes even 
with a microscope, consequently difficult to characterize morphological differences, 
therefore molecular markers can help. Others morphological markers can be assumed to 
have a relevance greater than the deserved. For example, the traditional cotton Gossypium 
barbadense, which used to be cultivated by native South American inhabitants, was classified 
in different subspecies when the seed from the same boll were adhered to each other, 
forming the called kidney seeds. This trait is, presumably, controlled by a single locus 
(Almeida et al., 2009), but for some authors this single trait is not relevant enough to 
differentiate subspecies, and molecular markers could be used to explain this process. 
Population genetics has been markedly based on studies using neutral molecular markers, 
and the obtained genetic structure provides information individuals in a population are 
more related among themselves than with individuals of other populations. It is also 
possible to conduct population genetic studies based on QTLs or markers linked to any 
characteristic known to have been selected. The comparison can elucidate relative roles of 
selection and neutral evolution (Edelaar & Bjorklund, 2011; Stinchcombe & Hoekstra, 2008). 
Monitoring forest maintenance by satellites has been criticized because it would not be 
enough to measure the size of the preserved forest area, but real diversity is not perceived. 
Species identification must be done in situ (Fonseca et al., 2008), and molecular markers 
distributed along the genome and not linked to the special selected traits may provide 
general diversity measures as the number of alleles per locus, as well as the population 
structure (Laurentin, 2009). 

5. How measures are taken: a brief review on the simplest and most popular 
tools 

For some time, sequencing was laborious and expensive, and differences among DNA 
molecules were accessed mainly by DNA fragment size. The amplification of DNA in vitro, 
or PCR, was an essential methodology to develop DNA markers. The separation can be 
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carried out by electrophoresis: short molecules migrate faster than long ones. Other tools are 
restriction enzymes, which, in nature, are enzymes synthesized by bacteria to break 
infecting virus DNA. Some of them make their cuts in special definite DNA sequences. The 
precision and reproducibility of the sequence recognition were useful on the recognition of 
specificities – maintenance and differences among DNA of various individuals – and so, on 
the development of markers. 
We here briefly list some of the most used techniques to obtain markers, focusing not in the 
methodology but the characteristics of facility of obtaining data and ability to detect 
polymorphism.  

5.1 Random amplified DNA reveals polymorphism 
Random Amplified Polymorphic DNA (RAPD) is a friendly marker which compares 
individuals based on suitability for amplifications which depends on DNA 
complementation to random small DNA sequences. It has been used largely, but is criticized 
due to the low repeatability or reproducibility.  
It is easy to use, and cheap, because it is based only on a PCR amplification followed by 
agarose gel electrophoresis. The random small DNA sequences (usually from eight to ten 
bases long) are used as primers of the PCR reaction. They are smaller to the oligonucleotides 
used in regular PCR, which are specific, therefore having a greater chance to anneal to any 
genome: since annealing occurs by complementarity of adenine to thiamine and of guanine 
to cytosine, the chance to a small sequence to find by chance a complementary sequence in a 
genome is relatively high. The regular PCRs are performed with longer oligonucleotides as 
primers therefore to the amplification is specific, chosen by the researcher, and the sequence 
of the oligonucleotides to be used have to be previously known.  
After electrophoresis, DNA is stained, and the differences among individuals are observed 
as presence or absence of bands (Figure 3). Homozygous and heterozygous individuals 
cannot be distinguished, and the progeny of intercrossed heterozygous individuals 
segregates in a 3:1 proportion, therefore RAPD is a dominant marker.  
 

 
Fig. 3. Eight soybean individuals amplified with the RAPD primer OPA11. Polymorphism is 
noticed as presence or absence of stained bands, resulting from the number of times this 
primer annealed in each one of the particular genomes, with production of amplified DNA 
fragments separated by size in the agarose gel.  
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The lack of necessity of any previous knowledge of the species DNA was a great advantage 
of this marker.  
Other techniques were developed that did not require any previous information of the species 
DNA, although with higher reproducibility, as AFLPs (Vos et al., 1995; Zabeau & Vos, 1993) 
and DART ( Akbari et al., 2006; Amorim et al., 2009; Varshney et al.,2010; Wenz et al., 2004). 
The RAPD markers have been independently developed by Willians et al. (1990) and Welsh 
e McClelland (1990). 
The use of the marker in plant diversity has been reviewed by Arif et al. (2010). 

5.2 Repetitive sequences can be especially polymorphic 
Despite the extent of DNA molecule and the differences among individuals, it may be 
difficult to access variability, especially when studying genetically related individuals. In 
those cases, sequences with the greatest contrasts are desirable. 
Microsatelites or SSR are small repetitive DNAs which are used due to be hypervariable. 
The repetitive bases are one to six, repeated a few times until around a hundred times, 
flanked by normal non repetitive sequences. The primers to reveal SSR loci are designed to 
be complementary to these non repetitive flanking sequences – so the disadvantage of SSR 
markers is the necessity of knowing the sequences before the primers design. SSR markers 
are more frequently in no coding regions of the genome, those which will not be transcribed 
or translated into DNA or proteins (Victoria et al., 2011). SSR are used multialellic, what 
means that for a single locus more than two forms of the marker, composed by various 
number of repetitions, may be found (Figure 4). Heteroziguous individuals bearing two 
alleles can be distinguished from any of the homozygous ones, and observing the alleles of a 
population derived from the crossing among two heterozygous individuals the proportion 
1:2:1 can be noticed. Therefore microsatellites are codominant markers. 
Frequently genomes have been sequenced not from the whole DNA of the organisms, but 
from expressed sequences only. For that, the initially collected material is RNA, instead of 
DNA. It means that the sequences obtained are all expressed, called expressed sequence tags 
(EST). These data can be a source to mine SSRs, and when obtained this way the SSRs 
belong to a expressed sequence. 
Following the PCR an electrophoresis is performed to separate fragments of different sizes. 
Differently from RAPD, SSR of the individuals differ from others just by a few bases, so the 
separation has to be sharp to lead size identification. For that reason fragments are 
separated on acrylamide gels, not agarose gels, or capillary electrophoresis in a sequencing 
equipment. 
 

 
Fig. 4. Fragments of DNA resulting for the amplification with SSR primer pairs separated by 
size by electrophoresis in an acrylamide gel and stained by silver. For different DNA sizes 
are shown, corresponding to four different alleles. 
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5.3 Sequencing and single nucleotide polymorphism 
Recently, sequencing became much more reliable, allowing the discovering of differences 
between individuals of a single nucleotide, or single nucleotide polymorphism (SNP). 
Differently from the previous cited markers, the definition of single nucleotide 
polymorphism is not dependent on the methodology used for their detection, which can be 
various. The most efficient are oligonucleotide arrays (Gupta et al., 2008). 
Similarly, small insertion or deletion (INDEL) have been localized and their frequencies 
measured (Zhidkov et al., 2011).  
Those markers are much more abundant and precise, and should turn out to be the most 
used, at least among the most studied species. They are the new frontier to measure the 
biodiversity, and have been used to study human pathogens diversity and epidemiology 
(Baker et al., 2010). 
Independently of the marker class, working with DNA fragments may require criteria to 
demonstrate the reliability of the results. Sharing information by publications and websites 
may be very useful to verify reproducibility of results. 

6. Markers may help to understand evolution 

Evolution is rarely accessed experimentally, but by observation and measures taken in natural 
environment and inference. Hypothesis in this field may look more theoretical than in others. 
It is known that natural selection depends on fitness, which may be defined as the ability to 
produce descendents. Fitness is dependent on the interaction with environment.  
The hole of hybridization in evolution has been despised since a various interespecific 
hybrids present smaller general development and reduced or absent seed production. 
Molecular markers have lead to show that well established plants are hybrids (Ellstrand, 
2003) and may have supplanted their parents (Hegde et al., 2006).  
Genetic drift may have importance in evolution, which can be understood by loose of 
variability, caused for example by death of huge amount of population individuals due to 
natural phenomena or human actions. It is not unusual that a plant species suffer with an 
environmental or disturbance by human action causing a marked reduction of the population 
size. Afterwards, the remaining individuals reproduce so size of the population is recovered, 
but not with the ancient diversity. This phenomena is called a genetic bottleneck, and 
molecular markers are able to track them by identifying a population with great number of 
individuals with genetic diversity smaller then a small population of the same species (Barroso 
et al., 2010). The smallest diversity reveals disturbance among wild plants. 
The importance of genetic drift has been shown experimentally in a for years experiment 
with Lolium perenne (Nestmann et al., 2011). 

7. The gains in plant breeding depends of variance 

Biodiversity is important not only in nature, but also on agriculture systems. The goals of 
plant breeding are productive plants, resistant to draught and temperature, pathogens and 
insects, efficient on nutrients uptake and symbiosis, etc. Novel characteristics or use of plant 
species can also be a challenge, like production of biofuels (Paterson et al., 2009). The way to 
achieve this is to find within the species to be bred plants bearing the genes conferring the 
desired trait or, if not available, within related species which intercrosses with it.  
The number of traits that can be introduced by genes of non related plant species by plant 
genetic transformation is restricted mainly by the number of genes necessary for the 
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characteristic to be expressed. Only those controlled by a small number of genes can be 
introduce by genetic transformation, and usually a single gene is introduced. Difficulties on 
knowing useful genes, which may not have been already isolated and characterized, may 
also exist. 
Productiveness is economically believed to be major challenge to agriculture in face of the 
human population growth. Plant breeding has a major hole on increase agricultural 
production by the development of seeds – and for that the selection have to be performed 
among the plants that already are productive and adapted to cultivation. The continuous 
procedure causes loss of general biological diversity (Bai & Lindhout, 2007) and genetic 
diversity, which can be noticed by a loss in allele richness.  
The gains achieved by plant breeding may decrease in years of selection due to the loss of 
genetic richness and allele segregation within the breeding population (Campbell et al., 
2010). How genetic variability could be enhanced or preserved? The introduction of the crop 
relatives not so adapted to the cultivation system is referred as pre breeding, which are 
crossed to well adapted genotypes. The low productiveness of the offspring compared to the 
adapted parent and the years of crossing and the years of crossings and selection necessary 
to recover the initial production level discourages its use. Molecular markers can help hear 
not to maintain diversity, but otherwise to recover the adapted parent traits, with the use of 
recurrent selection. The marker assisted selection when used to select to the productive 
parental genotype may help to recover production levels in a much lesser number of years. 
Selecting the crop genotype is the aid molecular markers can play to foster introduction of 
non adapted genotypes to plant breeding. 
Colored cotton fibers exist in nature, but cotton breeders have been selected for white fibers, 
easier to be industrial stained (Figure 5). The development of color cotton varieties avoids 
environmental pollution caused by staining (Teixeira et al., 2010). 
Because breeding programs are expensive, and a great number of the populations which are 
conducted may not produce interesting seeds of varieties, models have been developed to 
use the evaluation by molecular data of candidate parents for prediction of the performance 
of the population resulting from their crossings (Barroso et al., 2003).  
 

  
Fig. 5. (Continued) 

A B
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Fig. 5. Gossipium mustelinum, a native cotton species endemic to northeast Brazil semiarid 
region. While the cultivated cotton (A) retains the fiber and seeds, a trait selected by plant 
domestication, the seeds of the wild cotton are naturally released from the boll (B) and will 
be dispersed through streams. Young plants survive due the protection from goat feeding 
by a common thorn plant Bromelia lacinosa (C). Adult plants can be high (D) so animals 
damage but not destroy them. 

8. Conclusion 

We are in a period of constant innovations in methodologies to access genetic diversity, in 
which some methodologies in use can be seen as obsolete when faced to newly developed 
ones. For a number of well the best studied species, genetic diversity measures data are 
easily obtained and available. The use of molecular data to monitor genetic diversity lead 
improved understanding over evolution. The increasing amount of data of crops and their 
relatives should foster the actual use of genetic resources in plant breeding. 
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