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1. Introduction 

For many years, researchers have investigated information science, such as image analysis 

(Besag, 1974, Winkler, 1995, Cressie, 1993). Especially, image restoration has been studied as 

a fundamental problem in information science. In a recent development of this field, 

theoretical physicists have applied statistical mechanics to information based on analogy 

between statistical mechanics and Bayesian inference via the maximizer of the posterior 

(MPM) estimate (Nishimori, 2001). In this field, many techniques in statistical mechanics 

have been applied to various problems. Following the strategy, the present author has 

applied statistical mechanics to image restoration using the plane rotator model (Saika & 

Nishimori, 2002) and phase retrieval (Saika & Nishimori, 2005). Recently, statistical 

mechanical approach for information becomes an established field called as statistical 

mechanical informatics. Now statistical mechanics has been applied to many problems in 

various areas, such as information communication and quantum computation. 

In print technology, many techniques have been proposed to print images with high quality. 

Especially, a technique called as digital halftoning (Ulichney, 1987) is essential to convert an 

original image into a halftone image expressed as a set of black and white dots which are 

visually similar to the original image through human vision system. A lot of techniques 

have been proposed for this problem, such as the dither method (Bayer, 1973). On the other 

hand, the inverse of digital halftoning is called as inverse halftoning and then the purpose is 

to reconstruct the original image from the halftone image (Miceli, C. M. & Parker, K. J., 

1992). A lot of techniques have been proposed. From the practical point of view, Wong 

(Wong, 1995) has proposed statistical smoothing to inverse halftoning for halftone images. 

Then, Stevenson (Stevenson, 1995) has constructed the MAP estimation for halftone dithered 

images. 
In this article, we demonstrate recent development of our researches both on theoretical  
and practical aspects of inverse halftoning for halftone images obtained by the dither  
and error diffusion methods (Ulichney, 1987). As shown in Fig. 1, our strategy for this 
problem is based on the analogy between statistical mechanics and the Bayesian inference 
via the maximizer of the posterior (MPM) estimate (Fig. 2) and is then to propose  
the statistical mechanical techniques for this problem. First, we construct a Bayesian 
probabilistic formulation for inverse halftoning utilizing statistical mechanics of the Q-Ising 
model (Saika, et al., 2009, Saika & Okamoto, 2010). Then, we clarify the statistical 
performance of the present method using both the Monte Carlo simulation for a set of  
the snapshots of the Q-Ising model and the analytical estimate via the infinite-range model.  
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Fig. 1. Statistical mechanical approaches to image processing technology 

 

 

Fig. 2. Analogy between statistical mechanics and Bayesian inference 

These estimates clarify that the present method realizes optimal performance around the 

Bayes-optimal condition. Next, we investigate the practical aspect of this problem by means 

of the generalized statistical smoothing (GSS) (Saika & Yamasaki, 2007, Saika, et al., 2010a, 

2010b) which is regarded as the generalized MAP estimate corresponding to the 

deterministic limit of the MPM estimate. Using the numerical simulation for several 

standard images, we clarify that the GSS is a practically useful method for inverse 

halftoning, if we set parameters both for edge enhancement and generalized parameter 

scheduling appropriately. From the above studies, we clarify that statistical mechanical 

approach and its variants serve various powerful tools for clarifying both theoretical and 

practical aspects of inverse hafltoning.  

2. Theoretical apsect of inverse halftoning 

In this section, after we show the prescription of statistical mechanics, we then demonstrate 

the theoretical aspect of our studies (Saika, et al., 2009, Saika & Okamoto, 2010) for inverse 

halftoning. Especially, we indicate that the framework of statistical mechanics is available of 
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inverse halftoning and that the various techniques in statistical mechanics become powerful 

tools to clarify the statistical performance of the MPM estimate, such as the Monte Carlo 

simulation and the analytical estimate via the infinite-range model.  

2.1 Prescription of statistical mechanics 

In this section, we briefly show that statistical mechanics is useful for the clarification of 

macroscopic properties of many-body systems using knowledge of microscopic elements.  

 

 

Fig. 3. Prescription of statistical mechanics 

As shown in Fig. 3, a goal of statistical mechanics is to clarify the thermodynamic properties 
of many-body systems starting from the knowledge of interactions between microscopic 
elements. The general prescription of statistical mechanics is to calculate the thermal 
average of a physical quantity using the probability distribution 

 [ ]
1

Pr({ }) exp ({ })iH S
Z

ξ β= −          (1) 

for a given Hamiltonian. Here {Si} represents a set of spin states which are regarded as a 
typical example of the microscopic elements. Here we take the unit of temperature such that 
Boltzmann’s constant kB is unity. Then, ┚ is the inverse temperature ┚=1/T. The 
normalization factor Z is called as the partition function:  

 
1 2

({ })

1 1 1N

H S
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Z e β−

=± =± =±

=       (2) 

Equation (1) is called the Gibbs-Boltzmann distribution and then e-┚H is termed the 
Boltzmann factor. Then, by making use of the Gibbs-Boltzmann distribution, we can 
estimate the macroscopic quantities, such as the free energy, as  
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utilizing various thermodynamical relations. For instance, the internal energy of the system 
is obtained by the relation:  

 
1 2

({ })

1 1 1

1
({ }) log

N

H S

S S S

E E S e Z
Z

β

β
−

=± =± =±

∂
= = −

∂
      (4) 

using the partition function.  
Then, we briefly show the strategy of statistical mechanics to information science and 

technology. The basic concept of the statistical mechanics to information is based on the 

analogy between statistical mechanics and the Bayesian inference via the MPM estimate. 

Following this strategy, the statistical mechanical formulations have been constructed for 

various problems in information science and technology, such as image restoration and 

error-correcting codes. Then, researcheres utilize various statistical mechanical techniques, 

such as the mean-field theory and its variants including the Bethe approximation. Further, 

we can use these statistical mechanical techniques to clarify the statistical performance, such 

as the Monte Carlo simulation and the analytical estimate via the infinite-range model.  

2.2 Statistical mechanical formulation for inverse halftoning 

In this section, as shown in Fig. 4, we show the statistical mechanical formulation for inverse 

halftoning using the Bayesian inference via the MPM estimate for a set of snapshots of the 

Q-Ising model. 

 

 

Fig. 4. The reconstruction-based inverse halftoning based on the Bayesian inference.  

 

In this formulation, we first consider the set of original grayscale images {ξx,y} (ξx,y=0,…,255 

and x,y=1,…,L) generated by the assumed true prior which is expressed as the probability 

distribution: 

 2 2
, 1, , , 1

1 1

1
Pr({ }) exp [( ) ( ) ]

L L
s

x y x y x y x y
s s x y

J

Z T
ξ ξ ξ ξ ξ+ +

= =

 
= − − + − 

  
  (5) 
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                               (a)                                             (b)                                             (c) 

   

                               (d)                                             (e)                                               (f) 

Fig. 5. (a) a snapshot of the 4-level Q-Ising model with 100×100 pixels, (b) a halftone image 

of (a) converted by the dither method via the 2×2 Bayer-type threshold array, (c) a grayscale 

image reconstructed from (b) by the MPM estimate under the Bayes-optimal condition, (d) 

the 256-level standard image “Lena” with 256×256 pixels, (e) a halftone version of (d) 

converted by the dither method via the 4×4 Bayer-type threshold array, (f) a grayscale 

image reconstructed from (e) by the MPM estimate when J=5.0. 

Here Js and Ts are parameters to generate grayscale images with smooth structures 

appearing in natural images. A typical pattern of the original images is shown in Fig. 5(a). 

On the other hand, when we estimate the performance for realistic images we use the 256-

level standard image “Lena” with 256×256 pixels in Fig. 5(d).  

Then, in the procedure of digital halftoning, we rewrite each original image {ξx,y} into a 

halftone image {τx,y} by using the dither method via the p×p Bayer-type threshold array {Mp} 

in Fig. 5. Here τx,y= 0, 1 and x, y = 1,…,L. The typical threshold arrays are shown in Figs. 6(a) 

and (b). These threshold arrays {Mp} are generated by using the recurrence relation: 

 
/2 /2 /2

/2 /2 /2 /2

4 4 2
{ }

4 3 4

p

p p p p

p p

p

M M U
M

M U M U
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 2

0 2
{ }

3 1
M

 
=  
 

   (7) 

Here Un is a n×n matrix whose all elements are unity. Then, the element of the threshold Mp 
is an integer from 0 to p2-1. When we rewrite the original image {ξx,y} into the halftone image 
{τx,y}, we first make a one-to-one correspondence between each pixel of the original image 
{ξx,y} and the threshold of the Bayer-type threshold array {Mp} using the correspondence 
relation:  

 , % , %x y x p y pMξ ↔    (8) 

Here a%b denotes a surplus which divides a by b. Then, we carry out thresholding at each 
pixel of the original image {ξx,y} by the corresponding threshold {Mp} as 

 2
, , % , %( / 1 / 2)x y x y x p y pθ M Q pτ ξ= − ⋅ −     (9) 

Here θ(…) is the unit-step function which is defined by  

 
0 ( 0)

( )
1 ( 0)

x
θ x

x

<
= 

>
.      (10) 

The halftone images of the original images in Figs. 5(a) and (d) are shown in Figs. 5(b) and 
(e). These halftone images are visually similar to the original image if we observe them 
through the human vision system, although the information on the original images is lost 
through the halftone procedure. 
In the procedure of inverse halftoning, we reconstruct the original image so as to maximize 
the posterior marginal probability. The pixel value at the (x,y)-th pixel of the reconstructed 
image is given as 

 
,

,

,
{ }

ˆ arg max Pr({ }|{ }).
x y

x y

x y
z

z z

z z τ
≠

=      (11) 

The posterior probability in (11) can be estimated based on the Bayes formula:  
 

  

                                                      (a)                                    (b) 

Fig. 6. (a) the 4×4 Bayer-type threshold array, (b) the 8×8 Bayer-type threshold array 
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{ }

Pr({ })Pr({ }|{ })
Pr({ }|{ }) .

Pr({ })Pr({ }|{ })

z z
z

z z
τ

τ
τ

τ
=


    (12) 

using the assumed model prior and the likelihood. In this study, we assume the model prior 
which is expressed as the probability distribution:  

 ( ) 2 2
, 1, , , 1

1 1

Pr { } exp [( ) ( ) ]
L L

x y x y x y x y
m x y

J
z z z z z

T
+ −

= =

 
∝ − − + − 

  
     (13) 

so as to enhance smooth structures in the patterns of the reconstructed image. Then, in order 
to construct the Bayes-optimal solution, we consider the model prior which has the same 
form as the assumed true prior in (5). Then, we use the likelihood which is expressed as the 
conditional probability representing the dither method via the Bayer-type threshold array as 

 2
, , % , %

1 1

Pr({ }|{ }) ( , ( / 1 / 2))
L L

x y x y x p y p
x y

z z M Q pτ δ τ θ
= =

= − ⋅ −∏∏     (14) 

In this study, the reconstructed image is obtained by 

 , ,
ˆ ( ),x y x yz Θ z=        (15)  

where 

 ( )2

, ,
{ }

Pr { }|{ }p
x y x y

z

z z z τ= ,       (16) 

 ( )
0

1 1

2 2

Q

k

Θ x θ x k θ x k
=

   
= − + − − −   

   
 .    (17) 

When we estimate the performance of the present method for the realistic image, we 
evaluate the mean square error (MSE) defined by 

 ( )
2

, ,2
1 1

1
ˆ

L L

x y x y
x y

MSE z
L

ξ
= =

= − .   (18) 

Then, when we estimate the statistical performance, we evaluate the MSE averaged over the 
set of the original images {ξx,y} as  

 ( )
2

, ,2
{ } 1 1

1
ˆPr({ })

L L

x y x y
x y

MSE z
Lξ

ξ ξ
= =

= −  .     (19) 

2.3 Statistical performance 
In this section, we indicate that the Monte Carlo simulation is useful for clarifying the 
statitstical performance of the MPM estimate. When we investigate the statistical 
performance for the set of the snapshots of the Q-Ising model. As shown in Fig. 5(a), we 
numerically estimate the statistical performance for the set of the snapshots of the Q-Ising 
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model. These images are generated by the assumed true prior expressed by the Boltzmann 
factor of the Q-Ising model when we set to Q=4 and Js=Ts=1. Then, each original image is 
converted into the halftone image by the dither method via the 2×2 Bayer-type threshold 
array. Then, when we carry out the Monte Carlo simulation, we use the Metropolis 
algorithm with 20000 Monte Carlo steps.  
In order to clarify the statistical performance for the set of the Q-Ising model, we 
numerically estimate how the MSE depends on the parameter Tm when J=1. As shown in 
Fig. 7, the Monte Carlo simulations clarify that optimal performance is realized around the 
Bayes-optimal condition, Tm=Ts. (=1) within statistical uncertainty. This result also means 
that the optimal performance of the MPM estimate is as well as that of the MAP estimate, if 
we set the parameters appropriately. Here, we denote the MAP estimate as the Tm →0 limit 
of the MPM estimate.  
 

 Fig. 7. The MSE as a function of Tm obtained by the Monte Carlo simulation for the set of the 
snapshots of the Q-Ising model. 

 

 

Fig. 8. The MSE as a function of the parameter Tm obtained by the analytical estimate using 
the infinite-range model.  
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2.4 Analytical estimate via the infinite-range model 

In this section, we clarify that the analytical estimate via the infinite-range model is useful 
for the estimation of the statistical performance of the MPM estimate averaged over the set 
of the snapshots of the Q-Ising model. For convenience, we here use the language in the 
field of statistical mechanics.  
In order to estimate the statistical performance, we first introduce the infinite-range versions 
of the model and true priors: 

 ( )
21

Pr({ }) exp ,s
i i j

s s i j

J

Z T
ξ ξ ξ

<

 
= − − 

  
    (20) 

 ( )
21

Pr({ }) exp ,m
i i j

m m i j

J
z z z

Z T <

 
= − − 

  
      (21) 

both of which are assumed to approximate the assumed model and true priors in two 
dimensions. Then, based on the saddle-point conditions on the free energy (Nishimori, 2001, 
Saika, et al., 2009), we can derive the self-consistent equations on m0 and m as 
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1

2
0 0

0

exp[ (2 )]
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s sZ m m
ξ

β ξ
−

=

= −     (24) 

using the infinite-range versions of the model and true priors. In above equations, ┚s =1/Ts 
and ┚m=1/Tm respectively. By making use of the solutions m0 and m on the self-consistent 
equations in (22)-(24), we can estimate the MSE:  

 ( )

1
2

0 0
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where 
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which is averaged over the true prior.  
 

 

Fig. 9. The general formulation of inverse halftoning for the halftone image converted by the 
error diffusion method 

As shown in Fig. 8, the analytical estimate via the infinite-range model clarifies that the 

MPM estimate achieves the optimal performance around the Bayes-optimal condition Tm=Ts 

(=1) without the statistical uncertainty. This shows that the results of the Monte Carlo 

simulation are qualitatively confirmed by the analytical estimate via the infinite-range 

model.  

2.5 Realistic image 

In this section, we indicate that the present method is also available of inverse halftoning for 

realistic images. Especially, we numerically estimate the performance of the MPM estimate 

using the Monte Carlo simulation for the 256-level standard image “Lena” with 256×256 

pixels. As shown in Fig. 5 (f), we find that the present method is effective for inverse 

halftoning, if we assume the parameters appropriately.  

3. Practical apsect of inverse halftoning 

3.1 Generalized statistical smoothing 

In this section, we indicate that the practically useful technique can be constructed as the 

generalized MAP estimate corresponding to the deterministic limit of the MPM estimate. In 

this article, the technique called as the GSS (Saika & Yamasaki, 2007, Saika et al., 2010a, 

Saika et al., 2010b) is constructed by introducing the edge enhancement and the generalized 

parameter scheduling into the MAP estimate. Here we show how to use the GSS to inverse 

halftoning for the halftone image which is converted by the error diffusion method (Floyd 

and Steinberg, 1975).  

As shown in Fig. 9, we show the general formulation of the GSS to inverse halftoning for the 

halftone image converted by the error diffusion method. Then, we indicate the performance 

measure which utilizes the MTF function of the human vision system.  

In this formulation, we first consider an original grayscale image {ξx,y}(ξx,y=0,…,255, 

x,y=0,…,L-1) on the square lattice. Here the pixel value ξx,y represents the brightness at the 
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(x,y)-th site on the square lattice. In this study, we use several 256-level standard image, 

such as “Lena” with 256×256 pixels in Fig. 10(a). Then, in the procedure of digital 

halftoning, we convert the original image {ξx,y} into a halftone image {τx,y}(τx,y=0, Q-1, 

x,y=0,…,L-1) by using the error diffusion method. The block diagram of this method is 

shown in Fig. 11 and the Floyd-Steinberg kernel is shown in Fig. 12. Then, as shown in Fig. 

10(b), the density of the black and white dots of the halftone image approximate the gray 

levels of the original image and are visually similar to the original image through the human 

vision system. 

 
 

   

                                 (a)                                          (b)                                            (c) 

 

   

                               (d)                                              (e)                                             (f) 

Fig. 10. (a) the 256-level standard image “Lena” with 256×256 pixels, (b) the halftone image 

converted from the standard image (a) by the error diffusion using the Floyd-Steinberg’s 

kernel, (c) the restored image due to the GSS when κ=2.5 and D=0 (d) the restored image 

using the GSS when κ=2.5 and D=25, (e) the restored image obtained by the Gaussian filter, 

(f) the restored image obtained by the average filter. 

Next, we carry out inverse halftoning by using the GSS constructed by introducing both the 

edge enhancement and the generalized parameter scheduling into the statistical smoothing 

originally proposed by Wong (Wong, 1995). Here, we construct this method so as to achieve 

the optimal performance when we observe images through the MTF function of the human 

vision system. We carry out the GSS by repeating fundamental processes by 5 times. Then, 

each fundamental process composed of two parts is carried out through pixel by pixel in a 

raster scan. At the first part, we calculate a mean: 
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Fig. 11. Block diagram of the error diffusion method, where {ai,j} is the kernel of the error 
diffusion method 

 

 

Fig. 12. Floyd-Steinberg’s kernel used in the error diffusion method 

 
,

old
, , ,

, m n

m n i j i j
i j R

a xµ
∈

=         (27) 

which is averaged over the pixels in the region Rm,n which includes the (m, n)-th site and the 
(m+├x, n+├y)-sites (├x, ├y=-1,0,1) which hold the condition:  

 old old
, ,| |

x ym n m nx x Dδ δ+ + − < .        (28) 

Here, D is the threshold to detect edges appearing in original images and should be set 
respective of the choice of the original image. Then, {ai,j} is the kernel of the conventional 
Gaussian filter. We note that the present method is regarded as the original statistical 
smoothing, if D=256. On the other hand, as clearly seen from eq. (28), smoothing does not 
work if we set to D=0. In this procedure, we then compute a measure vm,n given by the 
standard deviation: 

 
,

1/
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, , ,

( , ),

1
.

m n

r
r

m n i j i j
i j Rm n

v x
R

µ
∈

 
 = −
  

    (29) 

which is averaged over the pixels in the region Rm,n. Here∥Rm,n∥is the number of the pixels in 
the region Rm,n. Then, the second step of the core process is the smoothing procedure as 
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      (30) 
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Fig. 13. Generalized parameter scheduling in the GSS. 

Here ┛ is a positive parameter which evolves following the schedule: 

 
5

n
κ

γ
 

=  
 

    (31) 

where n is the positive integer from 1 to 5. This schedule is also shown in Fig. 11. If κ=1, this 
method is same as the original statistical smoothing proposed by Wong (Wong, 1995). Then, 
if ┛ =0, the present method is regarded as the conventional smoothing filter which is 
characterized by the kernel {ai,j}. 
When we estimate the performance of the GSS for the standard image, as shown in Fig. 14, 
we use the mean square error between original and reconstructed images both of which are 
modulated by the MTF function: 

 

 ( )

2 2 2 2

2 2

2 2

5.05exp 1.38 1 exp 0.1

, (5 )

1 (0 )

x y x y

x y x y

x y

k k k k

H k k k k

k k

     − + − − +         
= ≤ +

 < +


        (32)
 

which approximates the human vision system. That is, we numerically estimate the 
performance measure which is expressed as 
 

 

Fig. 14. Performance measure via the MTF function approximating the human vision system 
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where 
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L L
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1
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x Y

z i k x k y z
L = =

= +      (36) 

For convenience, we note the performance measure as the MMSE in the following part of 
this paper.  

3.2 Numerical simulation 

In this section, using the numerical simulation for the 256-level standard image “Lena” with 
256×256 pixels (Fig. 10(a)), we estimate the performance of the GSS to inverse halftoning for 
the halftone images converted by the error diffusion method via the Floyd-Steinberg’s 
kernel. When we estimate the performance of the GSS for inverse halftoning, we 
numerically estimate the MMSE between original and reconstructed images. 
First, in order to clarify the efficiency of the edge enhancement and the generalized 
parameter scheduling, we evaluate how the MMSE depends on the threshold D for the edge 
enhancement and the parameter κ for the generalized parameter scheduling. Using the 
numerical simulation for the 256-level halftone image “Lena” with 256×256 pixels, as shown 
in Fig. 15, we find that the GSS achieves the optimal performance, if we set to D=25 and 
κ=2.5 for the 256-level standard image “Lena” with 256×256 pixels. Then, as shown in Figs. 
10 (d) and (f), . We also find that the generalized parameter scheduling due to the parameter 
κ appropriately, and that the GSS reconstructs original image with higher image quality 
than the conventional average and Gaussian filters. 
These results indicate that the performance of the statistical smoothing is improved by 
introducing appropriate models of the edge enhancement and the generalized parameter 
scheduling and that the practically useful technique via the GSS can be constructed as the 
extension of the statistical mechanical method which corresponds to the Bayesian inference 
via the MPM estimate.  

4. Conclusion 

In above sections, we have shown our researches on both theoretical and practical aspects  
of inverse halftoning using the statistical mechanical method and the practical filter via  
the GSS. First, on the basis of the statistical mechanics of the Q-Ising model, we have 
investigated the theoretical aspect on inverse halftoning utilizing the Bayesian inference  
via the MPM estimate. Then, we have investigated the statistical performance using the Monte 
Carlo simulation for the set of the snapshots of the Q-Ising model. The simulations have found 
that the optimal performance is realized around the Bayes-optimal condition within statistical 
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Fig. 15. MMSE as a function of the parameter D and κ for the 256-level standard image 
“Lena” with 256×256 pixels 

uncertainty and that it is almost same as the performance of the MAP estimate 
corresponding to the deterministic limit of the MPM estimate. These results are 
qualitatively confirmed by the analytical estimate via the infinite-range model. Also we 
have clarified that the MPM estimate reconstructs original images accurately, if we 
assume the appropriate model of the true prior. These results have clarified that prior 
information on original images are important to achieve inverse halftoning with high 
image quality. Next, we have investigated the practical aspect of inverse halftoning for the 
halftone image converted by the error diffusion method. In this study, we have 
constructed the GSS which is regarded as the generalized MAP estimate corresponding to 
the deterministic limit of the MPM estimate. Here, in order to realize the high 
performance technique for inverse halftoning, we have proposed the GSS which is 
constructed by introducing both the edge enhancement and the generalized parameter 
scheduling into the conventional MAP estimate. Using the numerical simulation for the 
256-level standard image, we have clarified that the high performance is achieved by 
tuning both the threshold for the edge enhancement and the parameter for the 
generalized parameter scheduling. The above studies have indicated that the theoretical 
study based on the statistical mechanics gives useful suggestions to construct the 
practically useful technique based on the MAP estimate. 
In the previous researches, we have clarified that the statistical mechanics serves various 
powerful tools to investigate the problem of inverse halftoning by making use of various 
techniques, such as the Monte Carlo simulation and the analytical estimate via the 
infinite-range model, and that the statistical mechanics serves practical and useful 
techniques based on the MAP estimate. As a future problem, we are going to construct the 
statistical mechanical techniques based on the Bayesian inference via the MPM estimate 
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by utilizing the knowledge obtained from the practical approach via the GSS for inverse 
halftoning.  
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