
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



17 

Numerical Analysis of a Rotor Dynamics  
in the Magneto-Hydrodynamic Field 

Jan Awrejcewicz1 and Larisa P. Dzyubak2 
1Technical University of Łódź 

2National Technical University “Kharkov Polytechnic Institute” 
1Poland 

2Ukraine 

1. Introduction  

In general, rotating machinery elements are frequently met in mechanical/mechatronical 
engineering, and in many cases their non-linear dynamics causes many harmful effects, i.e. 
noise and vibrations. In particular, nonlinear rotordynamics plays a crucial role in 
understanding various nonlinear phenomena and in spite of its long research history (see 
for instance (Tondl, 1965; Someya, 1998; Rao, 1991; Gasch et al., 2002; Muszyńska, 2005)  and 
the references therein) it still attracts attention of many researchers and engineers. Since the 
topics related to nonlinear rotordynamics are broadband and cover many interesting aspects 
related to both theory and practice, in this chapter we are aimed only on analysis of some 
problems related to rotor suspended in a magneto-hydrodynamics field in the case of soft 
and rigid magnetic materials. 
The magnetic, magneto-hydrodynamic and also piezoelectric bearings are used in many 
mechanical engineering applications in order to support a high-speed rotor, provide 
vibration control, to keep lower rotating friction losses and to potentially avoid flutter 
instability. There are a lot of publications devoted to the dynamics analysis and control of a 
rotor supported on various bearings systems. The conditions for active close/open-loop 
control of a rigid rotor supported on hydrodynamic bearings and subjected to harmonic 
kinematical excitation are presented in (Kurnik, 1995; Dziedzic & Kurnik, 2002). The 
methodology for modeling lubricated revolute joints in constrained rigid multibody systems 
is described in (Flores et al., 2009). The hydrodynamic forces, used in the dynamic analysis 
of journal-bearings, which include both squeeze and wedge effects, are evaluated from the 
system state variables and included into the equations of motion of the multibody system. 
To analyze the dynamic behavior of rub-impact rotor supported by turbulent journal 
bearings and lubricated with couple stress fluid under quadratic damping the authors of 
(Chang–Jian & Chen, 2009) have used the system state trajectory, Poincaré maps, power 
spectrum, bifurcation diagrams and Lyapunov exponents. It was detected the dynamic 
motion as periodic, quasi-periodic and chaotic types.  
In (Zhang & Zhan, 2005; Li et al., 2006) a rotor–active magnetic bearings (rotor–AMB) systems 
with time-varying stiffness are considered. Using the method of multiple scales a governing 
nonlinear equation of motion for the rotor-AMB system with 1-dof is transformed to the 
averaged equation and then the bifurcation theory and the method of detection function are 
used to analyze the bifurcations of multiple limit cycles of the averaged equation.  
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Fig. 1. The cross–section diagram of a rotor symmetrically supported on the magneto–
hydrodynamic bearing 

In the present chapter 2-dof nonlinear dynamics of the rotor supported on the magneto-
hydrodynamic bearing (MHDB) system is analyzed in the cases of soft and rigid magnetic 
materials. In the case of soft magnetic materials the analytical solutions have been obtained 
by means of the method of multiple scales (Nayfeh & Mook, 2004). Rigid magnetic materials 
possess hysteretic properties which are realized in the frames of the present work by means 
of Bouc-Wen hysteretic model. This model allows simulating hysteretic loops of various 
forms for systems from very different fields (Awrejcewicz & Dzyubak, 2007). Chaotic 
regions and the amplitude level contours of the rotor vibrations have been obtained in 
various control parameter planes. 

2. Mathematical model of the rotor suspended in the magneto-hydrodynamic 
field 

Consider a uniform symmetric rigid rotor (Fig. 1) which is supported by a magneto–
hydrodynamic bearing system. The four–pole legs are symmetrically placed in the stator. Fk 
is the electromagnetic force produced by the kth opposed pair of electromagnet coils. This 
force is controlled by electric currents  

0k ki i i    

can be expressed in the form  
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where i0 denotes bias current in the actuators electric circuits, 0 is the magnetic 

permeability of vacuum, A is the core cross–section area, N is the number of windings of the 

electromagnet,  is the air gap in the central position of the rotor with reference to the 

bearing sleeve, l is the total length of the magnetic path, the constant value  *
0s sB H   

denotes the magnetic permeability of the core material; the values of the magnetic induction 

Bs and magnetizing force Hs define the magnetic saturation level. k is the angle between 

axis x and the kth magnetic actuator. Q0 is the vertical rotor load identified with its weight, 

(Pr ,P) are the radial and tangential components of the dynamic oil–film action, respectively. 

Equations of motion of the rotor are represented in the following form (Kurnik, 1995; 

Dziedzic & Kurnik, 2002; Osinski, 1998)  

     
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Here m* denotes the rigid rotor mass, (x*, y*) are the Cartesian coordinates of the rotor center; 

 *
xQ t ,  *

yQ t  are the external excitation characterizing bearing housing movements. We 

are considering vibrations of the rotor excited by harmonic movements of the bearing 

foundation in the vertical direction  

 * 0xQ t  ,   * * * *sinyQ t Q t  ,  

where Q* and * are the amplitude and frequency of the external excitation, respectively. 
Constant C* is defined as  

*
2

6 s c c

s

R L
C




 .  

Parameters s, s, Rc, Lc denote oil viscosity, relative bearing clearance, journal radius and 

total bearing length, respectively. (, ) are the polar coordinates,   21p    , 

  22q     are the functions conditional .  

To represent the equations of motion in a dimensionless form the following changes of 

variables and parameters are introduced: 
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where * is the rotation speed of the rotor; c* is the bearing clearance.  
Thus the dimensionless equations of motion take the form  

 
   
    0
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
; 

the magnetic control forces are expressed as follows  

 0xF x x x     ,  0yF y y y     , 

where  0 0,x y are the coordinates of the rotor static equilibrium,  and  are the control 

parameters.  

3. Soft magnetic materials 

In this section, we consider 2–dof dynamics of the rotor in the MHDB system without taking 
hysteresis into account. 

3.1 The non-resonant case 

The right–hand sides of Eqs (1) were expanded in Taylor’s series and the origin was shifted 

to the location of the static equilibrium  0 0,x y  for the convenience of the investigation. The 

linear and quadratic terms were kept. So, the reformed equations of motion are as follows:  

 

2 2
1 1 2 3 4 5 6 7

2 2
2 1 2 3 4 5 6 7

ˆ2 ,

ˆ2 cos .

x x y x x y xx xy xy xy yy

y y x y x y xx xy xy xy yy F t

         

          

          

             

      

      
     (2) 

We seek the first–order solution for small but finite amplitudes in the form  
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   
   

2
1 0 1 2 0 1

2
1 0 1 2 0 1

, , ,

, , ,
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       (3) 

where  is the small, dimensionless parameter related to the amplitudes and n
nT t  

(n=0, 1) are the independent variables. It follows that the derivatives with respect to t 

become expansions in terms of the partial derivatives with respect to Tn according to  
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k

D
T





.   

To analyze the non–resonant case the forcing term is ordered so that it appears at order . 
Thus, we recall in (2) F=f, ˆn n  . Substituting (3) into (2) and equating coefficients of 

similar powers of  we obtain 

Order   
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The solution of (4) is expressed in the form  

 
         

         
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where CC denotes the complex conjugate of the preceding terms, A1  and A2 are the arbitrary 
functions of T1 at this level of approximation,  

2
n
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2
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 


 

  
, (n=1, 2).  

n are assumed to be distinct and n2 are the roots of the characteristic equation  

 

1 0 0

0
det

0 0 1

0


  


  

 
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=  4 2 2 22       =  4 2 2 22 0n n        ,          (7) 

www.intechopen.com



 
  Numerical Simulations of Physical and Engineering Processes  

 

372 

1,2 1i   ,  3,4 2i   , 2 2
1,2

1
4 2 2 4

2
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2 2
3,4

1
4 2 2 4

2
           .  

Substitution of (6) into (5) gives 
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



        (8) 

The terms, which do not influence solvability conditions, are not presented in the last 
equations and replaced by dots.  
To determine the solvability conditions of (8), following to the method of undetermined 
coefficients we seek a particular solution in the form  

   2 11 1 0 12 2 0exp expx P i T P i T   , 

    2 21 1 0 22 2 0exp expy P i T P i T             (9) 

with unknowns P11, P12, P21 and P22. Substitution of expressions (9) into (8) and collection of 

coefficients at  1 0exp i T  and  2 0exp i T  yields  

 2
1 2 1n n n n nP i P R     , 

  2
1 2 2n n n n ni P P R           (n=1,2),         (10) 
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Taking into account the characteristic equation (7), the determinant  of the set of linear 
algebraic equations relative to P1n, P2n (10) is equal to zero  
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  

 
     


. 

According to Kronecker–Kapelly’s theorem, the set of linear algebraic equations is 
compatible if and only if the matrix rank of the linear set is equal to the extended matrix 
rank. Therefore, the solvability conditions are  
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
          (n=1,2), 
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otherwise the set of linear algebraic equations (10) has no solutions.  
So,  

2
1 2

n n
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i R
R


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


 

and the solvability conditions can be written in the form 
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n
n

n

R
R 


          (n=1,2).    (11) 

The differential equations to define A1(T1) and A2(T1) are the consequence of solvability 
conditions (11)  
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  (12) 

It follows from (3), (6) and (12) that the complex solution of the differential set (2) is 
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Then the real solution is as follows  

           
     

     

2
1 1 1 1 2 2 2 2 1

1 1 1 1 1 2 2

2
2 2 2 2

exp cos exp cos 2Im sin ,

Im exp sin Im exp

sin 2 cos ,

x t a t t a t t O

y t a t t

a t t O

      

   

  

               

         

       

  (13) 

where 
 1 22

1
4 Im

Im

n
n

n n
n

  


 




 
    

,  an and n are the real constants.  

Figure 2 shows a comparison of the numerical integration of (2) and the perturbation 

solutions (13). The following parameters of set (2) were accepted for all cases (a), (b), (c) 

=1500, =70, 1=9.985102, 2=2103, 3=7.9588103, 4= 0.002, 5= –4.0794103, 

6=4.0002103, 7=8.0005103, 1=29.9975, 2= –0.001, 3= –4.1594103, 4= –1.9997103, 5= –

7.9188103, 6=0.7959, 7= –0.4083; initial conditions are the following x(0)=10-12, y(0)=10-10, 

   0 0 0x y   .  

In the case of non–resonant undamped vibrations of the rotor (Fig. 2 (a)) it is accepted for 

numerical integration that 1̂ =0, 2̂ =0, F=0. According to (13), the perturbation solution is 

presented by the expressions  

x=8.2686044·10–6 cos (17.2015t)+1.6313956·10–6 cos (87.2015t), 

www.intechopen.com



 
  Numerical Simulations of Physical and Engineering Processes  

 

374 

y=8.2686044·10–6 sin (17.2015t)–1.6313956·10–6 sin (87.2015t).  

Fig. 2 (b) corresponds to the non–resonant damped vibrations of the rotor. For this case 

1̂ =0.1, 2̂ =0.15, F=0. The perturbation solution has the form  

x=8.2686044·10–6 exp (–0.0412t) cos (17.2015t)+1.6313956 ·10–6 exp (–0.2088t) cos (87.2015t), 

y=8.2686044·10–6 exp (–0.0412t) sin (17.2015t)–1.6313956 ·10–6 exp (–0.2088t) sin (87.2015t). 

For the non–resonant forced damped vibrations of the rotor (Fig. 2 (c)) it is accepted for 
numerical integration that 1̂ =0.1, 2̂ =0.15, F=0.005, =10, = –/2. The perturbation 
solution is  

x=5.8241·10–6 exp (–0.0412t) cos (17.2015t)+1.69495·10–6 exp(–0.2088t) cos (87.2015t) – 

2.38095·10–6 sin(10t–/2), 

y=5.8241·10–6 exp (–0.0412t) sin (17.2015t)–1.69495·10–6 exp (–0.2088t) sin (87.2015t) + 

4.7619·10–6 cos (10t–/2).  

Fig. 2 demonstrates good agreement of the numerical and analytical solutions.  
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(a)                                                                   (b) 
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(c) 

Fig. 2. Comparison of numerical integration (2) and perturbation solutions (13) in the case of 
(a) nonresonant undamped vibrations of the rotor, (b) nonresonant damped vibrations of 
the rotor; (c) nonresonant forced damped vibrations of the rotor  
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3.2 Primary resonance: The cases of no internal resonance and an internal resonance 

To analyze primary resonances the forcing term is ordered so that it appears at order 2 or in 

the same perturbation equation as the non–linear terms and damping. Thus, we recall in (2) 

F= 2f, ˆn n  . Consider the case in which 2  . The case 1   is analogous. Let us 

introduce detuning parameter 1 and put 2 1    .  

Substituting (3) into (2) and equating coefficients of similar powers of  we obtain 

Order  

 

2
0 1 1 0 1

2
0 1 1 0 1

0,

0.

D x x D y

D y y D x

 

 

  

  
    (14) 

 

Order 2 

 

 

 
 

2 2 2
0 2 2 0 2 0 1 1 1 1 1 1 1 1 2 1

3 1 0 1 4 1 1 5 1 0 1 6 1 0 1 7 1 0 1

2 2 2
0 2 2 0 2 0 1 1 2 1 1 1 1 1 2 1

3 1 0 1 4 1 1 5 1 0 1 6 1 0 1 7 1 0 1 0

2

,

2

cos .

D x x D y D D x x D y x y

x D x x y x D y y D x y D y

D y y D x D D y y D x x y

x D x x y x D y y D x y D y f T

     
    

     

     

        

   

        

      

    (15) 

 

The solution of (14) is given in the form  

 
       

       
1 1 1 1 0 2 1 2 0

1 1 1 1 1 0 2 2 1 2 0

exp exp ,

exp exp ,

x A T i T A T i T CC

y A T i T A T i T CC

 

 

  

    
    (16) 

 

where 
2
n

n
n

i
 
 


  .  

Substitution of (16) into (15) yields  
 

 

   
   

 

2
0 2 2 0 2 1 1 1 1 1 1 1 0

2 2 1 2 2 2 2 0

2 2 2
1 1 1 2 1 3 1 4 1 1 5 1 1 6 1 1 7 1 0

2 2 2
2 1 2 2 2 3 2 4 2 2 5 2 2 6 2 2 7

2 exp

2 exp

exp 2

exp 2

D x x D y i A A A i T

i A A A i T

A i i i i i T

A i i i i i

     

   

           

           

          
       

             
              2 0T 

   (17) 

     
       

     
       

1 2 1 1 2 2 1 2 3 1 2 4 2 2 1 1 5

2 1 1 2 6 1 2 1 2 7 1 2 0

1 2 1 1 2 2 2 1 3 2 1 4 2 2 1 1 5

2 1 1 2 6 2 1 1 2 7 2 1 0

1 1 1 1 1 2 4 1 5

2 2

exp

2 2

exp

A A i i i i

i i i i i T

A A i i i i

i i i i i T

A A i

        

       

        

       

    

              
        

              
        

            6 2 2 1 2 2 2 4 2 5 6 ,A A i CC              
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   
   

 

2
0 2 2 0 2 1 1 1 2 1 1 1 0

2 2 2 2 2 2 2 0

2 2 2
1 1 1 2 1 3 1 4 1 1 5 1 1 6 1 1 7 1 0

2 2 2
2 1 2 2 2 3 2 4 2 2 5 2 2 6 2 2 7

2 exp

2 exp

exp 2

exp 2

D y y D x i A A A i T

i A A A i T

A i i i i i T

A i i i i i

     

   

           

           

          
       

             
              2 0T 

  (18) 

     
      

     
      

1 2 1 1 2 2 1 2 3 1 2 4 2 2 1 1 5

2 1 1 2 6 1 2 1 2 7 1 2 0

1 2 1 1 2 2 2 1 3 2 1 4 2 2 1 1 5

2 1 1 2 6 2 1 1 2 7 2 1 0

1 1 1 1 1 2 4

2 2

exp

2 2

exp

A A i i i i

i i i i i T

A A i i i i

i i i i i T

A A i

        

       

        

       

  

              
         
              

        

            
  

1 5 6 2 2 1 2 2 2 4 2 5 6

2 0 1 1

1
exp .

2

A A i

f i T T CC

        

  

        

  

 

Let 2>1 for definiteness. We need to distinguish between the case of internal resonance 

2 12   and the case of no internal resonance, i.e., 2 is away from 21. The case 1>2, 

1 22   is analogous. When 2 is away from 21 the solvability conditions (11) are written 

in the form  

  

1 1

2 2

1

1 1
2 2

1
0,

1 1
exp 0,

2

q p

q p f i T

 

   

 


   
 

 

where  

   
1 21 1 1 1 1 1 2 2 1 2 2 22 , 2 ,q i A A A q i A A A                   

 
1 1 1 1 2 1 12 ,p i A A A            

2 2 2 2 2 2 22p i A A A         . 

Thus, when there is no internal resonance, the first approximation is not influenced by the 
non–linear terms; it is essentially a solution of the corresponding linear problem.  
Actually, the solutions of the differential equations below  

 

1 1 1 1 2
1 1 1 1 1 1

1 1

2 2 2 2 2
2 2 2 2 1 2 1 1

2 2 2

2 2
2 2 0,

2 2 1
2 2 exp

2

i i
i A i A

i i
i A i A f i T

      

        

             
    

                        

 

are  

   1 1 1 1 1 1

1
exp

2
A T a T i    , 
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     
   2 1

2 1 2 2 1 2 1 12 2
2 2 2 1

1
exp exp

2 2Im Im

f i
A T a T i i T

 
  

  


         

, 

where an and n are the real constants,  

 1 22

1
4 Im

Im

n
n

n n
n

  


 




 
    

, 
2 2 2

2

1
4 Im

Im
i i  

 
     

 
. 

As t, T1 and  

 A10,   
   2 1

2 1 12 2
2 2 2 1

exp
2Im Im

f i
A i T

 
 

  


     

       (19) 

according to (16), we obtain the following steady–state response:  

 
   2 1

1 2 0 1 12 2
2 2 2 1

exp
2Im Im

f i
x i T T CC

 
  

  


      

, 

 
   2 1

1 2 2 0 1 12 2
2 2 2 1

exp
2Im Im

f i
y i T T CC

 
  

  


       

. 

Therefore, the real solution is  

       2
2 12 2

2 2 2 1

1
cos sin

Im Im

F
x t t O    

   
          

, 

       2
1 22 2

2 2 1

1
cos sin

Im

F
y t t O    

   
         

, 

or it can be rewritten in the form  

 
 

   

 
   

2
11 22 2

2 2 2 1

2
21 2

2 2
2 2 1

1
sin ,

Im Im

1
sin ,

Im

F
x t O

F
y t O

  
   

  
   

    
 

    





       (20) 

where  1 2 1arctg   ,  2 1 2arctg    .  
Other situation occurs when the internal resonance 2 12   exists. Let us introduce 
detuning parameter 2 and put 2 1 22    .  
Taking into account (11), the solvability conditions for this case become  

 
 

    

1 1 2 1 2 1

2 2 1 1

1 2 2 1
1 1

2
2 2 1 2 1 1 1

2 2 2

1 1
exp 0,

1 1 1
exp exp 0.

2

q p q p A A i T

q p q p A i T f i T

     

   



  

 
 

     
  

 
      
   

         (21) 

www.intechopen.com



 
  Numerical Simulations of Physical and Engineering Processes  

 

378 

Here coefficients q1 , q2 , q2-1 , q21 are the expressions in the bracket at the exponents 

with the corresponding powers (17) and p1 , p2 , p2-1 , p21 are the expressions in the 
bracket at the exponents with the corresponding powers (18):  

   
1 21 1 1 1 1 1 2 2 1 2 2 22 , 2 ,q i A A A q i A A A                   

1

2 2
2 1 1 2 1 3 1 4 1 1 5 1 1 6 1 1 7 ,q i i i i                        

     
   

2 1 1 1 2 2 2 1 3 2 1 4 2 2 1 1 5

2 1 1 2 6 2 1 1 2 7

2 2

,

q i i i i

i i i i

          

     

               

      
 

 
1 1 1 1 2 1 12 ,p i A A A            

2 2 2 2 2 2 22 ,p i A A A          

1

2 2
2 1 1 2 1 3 1 4 1 1 5 1 1 6 1 1 7 ,p i i i i                        

     
   

2 1 1 1 2 2 2 1 3 2 1 4 2 2 1 1 5

2 1 1 2 6 2 1 1 2 7

2 2

.

p i i i i

i i i i

          

     
               

      
 

For the convenience let us introduce the polar notation  

  1
exp , 1, 2

2
m m mA a i m   ,        (22) 

where am and m are the real functions of T1.  
Substitution of (22) into (21) yields  

 

     

       

1 1 1 1 1 1 2 2
1

2
2 2 2 2 2 1 2 1

2 2 2

1
exp 0,

2

1
exp exp 0.

2

a ia a a a i i

f
a ia a a i i i

   


    
 

      

        


    (23) 

In the expressions above the following notations were introduced  

2 1 2 1
1

1
Re q p     

 
  

 
,  

2 1 2 1
1

1
Im q p     

 
  

 
, 

1 12 2
2

1
Re q p 

 
  

 
,  

1 12 2
2

1
Im q p 

 
  

 
, 

1
4 Im , 1,2

Im
n n n

n

i i n  
 

      
 

  , 

1 1 1 2 2 2 1 2 1, 2T T            ,  

1 and 2 are defined as in Eq (13).  
Separating Eqs. (23) into real and imaginary parts and taking into account that according to 

(6) n (n=1,2) is the imaginary value, we obtain  
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 1 2
1 1 1 2 2

1

cos sin
2Im

a a
a a    


     , 

  1 2
1 1 2 2

1

cos sin
2Im

a a
a    


   ,  (24) 

 
2
1

2 2 2 2 2 1
2 2 2

cos sin cos
2Im Im Im

fa
a a     

 
     


, 

 
2
1

2 2 2 2 1
2 2 2

cos sin sin
2Im Im Im

fa
a     

 
   


. 

For the steady–state response 0n na    , therefore  1 1 2

1

2
    , 2 1

  . 

Two possibilities follow from (24). The first one is given by (19). It is the solution of the 
linear problem. Let us find functions a1 and a2 of T1 according to the second possibility. It 
follows from the first two Eqs. (24) that 

 1 1 2
2 2

2

4
cos sin

a

  
   


   , 

 1
1 2 2 2

2

Im
cos sin

a

         .  

So,  

 
     1 2

2 22 2
1 1 2 1 1 2

2 2 2

16 Im
a

     

 

       
 

.     (25) 

Let us take sin2 and cos2 using, for example, the formulas by Cramer  

1 2
2 2cos , sin  
 
 

,  where  2 2 
 

 
 

   


,  

      1 1
1 1 1 2 1 1 2

1 1 22 2

2Im1 1
4 Im

Ima a

  
       

   
      


, 

      1 1
2 1 1 2 1 1 2

1 1 22 2

2Im1 1
Im 4

Ima a

  
       

   


      


.  

Then a biquadratic equation relative to a1 follows from the last two Eqs. (24)  

       4 2 2 2
1 1 2 1 2 2 2 2 2 1 2 2 24 2 cos sin Im cos sina a a a                       + 
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 
 

2
22 2 2 2

2 1 2 2 1 2 2
2

4
4 4 Im 0

Im

f
a          

.  

Finally, we obtain the expression for a1:  

 

1
1 2

2 2

1
2 2

p p
a q

 
             

 

,           (26) 

where  

    2
2 1 2 2 2 2 1 2 22 2

4
2 cos sin Im cos sin

a
p             

 
       

, 

 
 

2
22 2 2 2

2 2 1 2 2 12 2 2
2

41
4 4 Im

Im

f
q a     

 

           
. 

Thus, the unknown functions in (16) were defined. It follows from (3), (16) and (22) that  

     

     

2
1 1 1 0 2 2 2 0

2
1 1 1 1 0 2 2 2 2 0

1 1
exp exp ,

2 2

1 1
exp exp .

2 2

x a i T a i T CC O

y a i T a i T CC O

   

   

                
                  
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                                              (a)                                                                          (b) 

Fig. 3. (a) Frequency–response curves; 2=0, 2; (b) amplitudes a1, a2 versus the amplitude 

of external excitation f; 2, 1= –0.5, 2= 0  

Then, the real solution is as follows  

www.intechopen.com



 
Numerical Analysis of a Rotor Dynamics in the Magneto-Hydrodynamic Field 

 

381 

 

     

     

2
1 1 2 2 1

2
1 1 1 2 2 2 1

1
cos cos ,

2

1
Im sin Im sin .

2

x a t a t O

y a t a t O

      

      

               
                  

    (27) 

Here a1 and a2 are defined by (25), (26).  

Let us consider the expression for a1 (26). When 2{[( 2) 0] ( 0)} [( 2) ]p q p q     , there are 

no real values of a1 defined by (26) and the response must be given by (20). When 
2[( 2) ] ( 0)p q q   , there is one real solution defined by (26). Therefore, the response is one 

of the two possibilities given by (20) and (27). When 2[( / 2) 0] [( / 2) ] ( 0)p p q q     , 

there are two real solutions defined by (26). Therefore, the response is one of the three 

possibilities given by (20) and (27).  
In Fig. 3 (a)  the frequency–response curves are depicted. a1 and a2 are plotted as a function 

of 1 for 2=0. The dashed line having a peak at 1=0 corresponds to a1=0 and it is a solution 
of the corresponding linear problem. Arrows indicate the jump phenomenon associated 

with varying the frequency of external excitation . Perturbation solution obtained is the 

superposition of two submotions with amplitudes a1 and a2 and frequencies 1, 2 
correspondingly. To compare the perturbation and numerical solutions we performed an 
approximate harmonic analysis of solutions x(t), y(t) obtained numerically. These functions 
are expanded in Fourier series formed of cosines  

  0

1

cos
2

k
k

a k t
x t a

T




  ,  

0

2
cos

T

k

k t
a x t dt

T T


  ,  k=0,1,2…,  

where T is the period of integration, 0tT. The coefficients of the Fourier series were 

calculated approximately. The following parameters of set (2) were accepted: =200, = 10 

(parameters =200, =10 correspond to natural frequencies 1=10, 2=20, i.e. 2=21), 

1=9.985102, 2=2103, 3=7.9588103, 4= 0.002, 5= –4.0794103, 6=4.0002103, 

7=8.0005103, 1=29.9975, 2= –0.001, 3= –4.1594103, 4= –1.9997103, 5= –7.9188103, 

6=0.7959, 7= –0.4083. The perturbation and numerical solutions of (2) are in good agreement.  
In Fig. 3 (b) one can see saturation phenomenon. As f increases from zero, a2 increases too 

until it reaches the value a2=3.510-4 while a1 is zero. This agrees with the solution of the 

corresponding linear problem. Then a2 saves the constant value and a1 starts to increase. 

Approximate harmonic analysis demonstrates good agreement of the theoretical prediction 

presented in Fig. 3 (b)  and the corresponding numerical solution of (2).  

4. Rigid magnetic materials. Conditions for chaotic vibrations of the rotor in 
various control parameter planes 

In the case of rigid magnetic materials the hysteretic properties of system (1) can be 

considered using the Bouc–Wen hysteretic model. It was shown (Awrejcewicz & Dzyubak, 

2007) that this modeling mechanism for energy dissipation was sufficiently accurate to 

model loops of various shapes in accordance with a real experiment, reflecting the behavior 

of hysteretic systems from very different fields. The hysteretic model of the rotor–MHDB 

system is as follows  
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       0 1, , cos , sin 1 ,r m mx P P x x x z                        

        0 2 0, , sin , cos 1 sin ,r m my P P y y y z Q Q t                           (28) 

    1 1 1sgn sgn
n

zz k x z z x     
   , 

    2 2 2sgn sgn
n

zz k y z z y     
   . 

 

Here z1 and z2 are the hysteretic forces. The case =0 corresponds to maximal hysteretic 

dissipation and =1 corresponds to the absence of hysteretic forces in the system, 

parameters ( kz, , n )R+ and R govern the shape of the hysteresis loops.  

Conditions for chaotic vibrations of the rotor have been found using the approach based on 

the analysis of the wandering trajectories. The description of the approach, its advantages 

over standard procedures and a comparison with other approaches can be found, for 

example, in (Awrejcewicz & Dzyubak, 2007; Awrejcewicz & Mosdorf, 2003; Awrejcewicz et 

al., 2005).  

The stability of motion depends on all the parameters of system (28), including initial 

conditions. We traced the irregular vibrations of the rotor to sufficient accuracy in the 

parametric planes of amplitude of external excitation versus hysteretic dissipation (, Q), the 

amplitude versus frequency of external excitation (, Q), the amplitude versus dynamic oil– 

film action characteristics (C, Q) and the amplitude versus the magnetic control parameters  

(m, Q), (m, Q).  

It should be noted, that chaos is not found in absence of hysteresis when =1. Chaotic 

vibrations of the rotor are caused by hysteresis and for all chaotic regions presented 1. So, 

in system (28) chaos was quantified using the following conditions  

  *
1 ,t t T  :           * * * *

x yx t x t A y t y t A                 (29) 

                                                   
       chaotic vibrations                    chaotic vibrations 

      in the horizontal direction           in the vertical direction 

Here  x t ,  x t  and  y t ,  y t  are nearby trajectories respectively, Ax and Ay are the 

characteristic vibration amplitudes of the rotor in the horizontal and vertical direction 

respectively  

   
11

1
max min

2
x

t t Tt t T
A x t x t

  
  ,    

11

1
max min

2
y

t t Tt t T
A y t y t

  
  .  

   1 0, ,t T t T  and  0 ,t T  is the time interval over which the trajectories are considered. The 

interval  0 1,t t  is the time interval over which all transient processes are damped. The 

parameter  introduced is an auxiliary parameter such that 0<<1. Ax, Ay are referred to 

as the divergence measures of the observable trajectories in the horizontal and vertical 
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directions and, with the aid of the chosen parameter , are inadmissible for the case of 

regularity of the motion.  

If the inequality (29) is satisfied in some nodal point of the sampled control parameter space, 

then the motion is chaotic (including transient and alternating chaos). The manifold of all 

such nodal points of the investigated control parameter space defines the domains of chaotic 

behaviour for the considered system.  

Figure 4 (a) displays the regions of rotor chaotic vibrations in (, Q) plane. The part of this 

plane (10-7<0.0017; 0.00125<Q0.00185) was sampled by means of an uniform rectangular 

grid. For this aim two families of straight lines were drawn through dividing points of the 

axes  

i = i     (i=0, 1,…, 120),  

Qj = jQ     (j=0, 1,…, 120).  

Here =1.416510-5, Q=510-6.  

The time period for the simulation T is of 
200


 in nondimentional time units. During the 

computations, two thirds of the time period T corresponds to the time interval  0 1,t t , 

where transient processes are damped. The integration step size is 0.02



. Initial conditions 

of the nearby trajectories are differed less than 0.5% of characteristic vibration amplitudes, 

e.g. the starting points of these trajectories are in the rectangle (    0 0 0.005 xx t x t A  , 

   0 0 0.005 yy t y t A  ). The parameter  is chosen to be equal to 
1

3
.  

All domains have complex structure. There are a number of scattered points, streaks and islets 
here. Such a structure is characteristic of domains where chaotic vibrations are possible. For 
each aggregate of control parameters there is some critical value of the hysteretic dissipation 
(1-cr) that if (1-)<(1-cr), chaos is not observed in the system considered.  

In Fig. 4 (b) chaotic regions for the vertical vibrations of the rotor are depicted in the (, Q) 

parametric plane (0.25<1.2; 0.0015<Q0.0022). The time period for the simulation T and 

other numerical integration characteristics are the same as for (, Q) parametric plane, 

=7.9166710-3, 5.8333310-6. Numerical experiments show that for the larger hysteretic 

dissipation the chaotic regions areas are increased.  
Figure 5 shows the phase portrait (a), hysteretic loop (b) and Poincaré map (e) of chaotic 
motion of the rotor. Parameters of motion correspond to the parameters of chaotic region 
depicted in Fig. 4 (b). The phase portrait (c), hysteretic loop (d) and Poincaré map (f) of 
the periodic rotor motion are also agree well with the obtained regions of 
regular/irregular behaviour of the rotor depicted in Fig. 4 (b).  The influence of the 

magnetic control parameters m, m on chaos occurring in the rotor vibrations can be 

observed in Fig. 6. The (m, Q)  (a) and (m, Q)  (b) parametric planes were uniformly 

sampled by120120 nodal points in the rectangles (0<m0.09; 0.00165<Q0.0019), 

m=7.510-4, Q=2.0833310-6; (450<m630; 0.00145<Q0.0025), m=1.5, Q=8.7510-6. 
The influence of the dynamic oil–film action characteristics on chaos occurring in the rotor 
motion can be observed in Fig. 7. One can see the restraining of chaotic regions with 
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decreasing of hysteretic dissipation (1-). The (C, Q) parametric plane was uniformly 

sampled by 120120 nodal points in the rectangles (0<C1.5; 0.0015<Q0.0021), 

C=0.0125, Q=510-6 (a) and (0<C1.5; 0.0015<Q0.00225), C=0.0125, Q=6.2510-6 (b). 
The time period for the simulation T and other numerical integration characteristics are 

the same as for (, Q) parametric plane.  
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Fig. 4. (a) The influence of hysteretic dissipation parameter  on chaos occurring in vertical 
vibrations of the rotor (28) in the case of rigid magnetic materials. The following parameters 
are fixed: C=0.03, m=0.001, m=450, kz=0.000055, =15, =0.25, n=1.0, =0.87, Q0=0, x0=0, 
y0=0,     80 0 10x y   ,    0 0 0x y   , z1(0)=z2(0)=0;  
(b) chaotic regions for the vertical vibrations of the rotor in the (, Q) parametric plane with 
other parameters of the system fixed: =0.0001, C=0.2, m=0, m=500, kz=0.000055, =15, 
=0.25, n=1.0, Q0=0, x0=0, y0=0,     80 0 10x y   ,    0 0 0x y   , z1(0)=z2(0)=0.  
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                                      (e)                                                                     (f) 

Fig. 5. Phase portraits (a), (c), hysteresis loops (b), (d) and Poincaré maps (e), (f) of the 
chaotic (a), (b), (e) and periodic (c), (d), (f) rotor motion that agree well with the 
chaotic/regular regions in Fig. 4 (b). The parameters =0.0001, C=0.2, m=0, m=500, 
kz=0.000055, =15, =0.25, n=1.0, Q0=0, x0=0, y0=0,     80 0 10x y   ,    0 0 0x y   , 
z1(0)=z2(0)=0  are fixed; (a), (b), (e) =0.87, Q=0.00177; (c), (d), (f) =1.2, Q=0.0017  
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Fig. 6. The influence of the magnetic control parameters m (a) and m  (b) on chaos occurring 

in vertical vibrations of the rotor (28) in the case of rigid magnetic materials. The parametric 

planes are depicted at (a) m=500 and (b) m=0 with other parameters of the system fixed: 

=0.000001, C=0.2, kz=0.000055, =15, =0.25, n=1.0, =0.87, Q0=0, x0=0, y0=0, 

    80 0 10x y   ,    0 0 0x y   , z1(0)=z2(0)=0   
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Fig. 7. The influence of the dynamic oil–film action characteristics on chaos occurring in 
vertical vibrations of the rotor (28) in the case of rigid magnetic materials. The parametric 
planes (C, Q) are depicted at (a) =0.000001, m=0 and (b) =0.001, m=0.03 with other 
parameters of the system fixed: m=500, kz=0.000055, =15, =0.25, n=1.0, =0.87, Q0=0, x0=0, 
y0=0,     80 0 10x y   ,    0 0 0x y   , z1(0)=z2(0)=0  

In order to see if the rotor chaotic motion is accompanied by increasing of the amplitude of 
vibration, the amplitude level contours of the horizontal and vertical vibrations of the rotor 

have been obtained. In Fig. 8 (a) the amplitude level contours are presented in (m, Q) 
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parametric plane with the same parameters as in Fig. 6 (a). Some “consonance” between the 
chaotic vibrations regions and the amplitude level contours is observed. At that the 
amplitudes of chaotic rotor vibrations are greater in comparison to the periodic vibrations. 
In Fig. 8 (b) the amplitude level contours are presented in (C, Q) parametric plane with the 
same parameters as in Fig. 7 (a). Although some “consonance” between the chaotic regions 
of vibrations and the amplitude level contours is observed, it can not be concluded that 
chaos leads to essential increasing of the rotor vibrations amplitude.  
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Fig. 8. The amplitude level contours of vertical  vibrations of the rotor (28): (a) in the 

parametric plane (m, Q) that  corresponds to Fig. 6 (a);  (b) in the parametric plane (C, Q) 

that  corresponds to Fig. 7 (a)  

5. Conclusions 

2–dof non–linear dynamics of the rotor suspended in a magneto–hydrodynamic field is 
studied. In the case of soft magnetic materials the analytical solutions were obtained by 
means of the method of multiple scales. In the non–resonant case the system exhibits linear 
properties. The perturbation solutions are in good agreement with the numerical solutions. 
The cases of primary resonances with and without an internal resonance were investigated. 
The frequency–response curves were obtained. The saturation phenomenon was 
demonstrated. When the amplitude of the external excitation increases (or decreases), above 
some critical value the energy pumping between various submotions of the rotor occurs. A 
comparison of the analytical and numerical solutions based on the approximate harmonic 
analysis was made.  
In the case of rigid magnetic materials, hysteresis was considered using the Bouc–Wen 
hysteretic model. Using the approach based on the analysis of the wandering trajectories the 
regions of chaotic vibrations of the rotor were found in various control parameter planes: 
amplitude of external harmonic excitation versus hysteretic dissipation, versus frequency of 
external harmonic excitation, dynamic oil–film action characteristics as well as versus the 
magnetic control parameters. The amplitude level contours of the horizontal and vertical 
vibrations of the rotor were obtained. Phase portraits and hysteretic loops are in good 
agreement with the chaotic regions obtained. Chaos was generated by hysteretic properties 
of the system considered. 
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