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1. Introduction 

West Nile virus (WNV), a mosquito-borne neurotropic pathogen, belongs to the family of 

Flaviviridae, the genus Flavivirus, a group of plus-sense, single-stranded RNA viruses 

(Anderson et al., 1999; Lanciotti et al., 1999). WNV genome is a single-stranded, positive-

sense RNA molecule, approximately 11,000 nucleotides in length that is translated into a 

single polypeptide, which is co- and post-translationally processed into ten proteins – 

three structural proteins (envelope (E), membrane and nucleocapsid) and seven 

nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) (Anderson et 

al., 1999; Lanciotti et al., 1999). The virus was originally isolated in Africa, and later caused 

epidemics with mainly a febrile illness in humans in Europe, the Middle East, and parts of 

Asia. In 1999, a more virulent WNV strain was detected in New York City. Since then, it 

has rapidly spread throughout the continental United States, southern Canada, Mexico, 

Guatemala, the Caribbean and to several countries in South America. It has become a 

public health concern in North America over the past decade (Campbell et al., 2002). The 

virus is maintained in an enzootic cycle that involves mosquitoes and birds. Human 

infection results primarily from mosquito bites; blood transfusion, organ transplantation, 

breast feeding and in utero or occupational exposure have all been associated with viral 

infection (2002a; 2002b; Alpert et al., 2003; Charatan, 2002). Although most WNV 

infections in humans are asymptomatic, severe neurological disease (including 

encephalitis) and death have been observed with a higher frequency in the elderly and 

immunocompromised (Campbell et al., 2002; Pletnev et al., 2006). Recent evidence also 

suggests that WNV can persist for years in humans and animals convalescing from 

infection (Appler et al., 2010; Murray et al., 2010; Tesh et al., 2005). Currently, licensed 

vaccines are not yet ready to use in humans. Treatment is currently nonspecific and 

supportive (Campbell et al., 2002).     

WNV has been studied in various animal models, including mice, hamsters, monkeys 

and horses (Davis et al., 2001; Kramer & Bernard, 2001; Ratterree et al., 2004; Xiao et al., 
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2001). Following the initial subcutaneous or intraperitoneal infection in mice, WNV 

induces a systemic infection, invades the central nervous system (CNS) and causes death 

rapidly when encephalitis develops, usually within 1–2 weeks (Beasley et al., 2002; 

Kramer & Bernard, 2001; Wang et al., 2001b). The severity and symptoms of lethal 

infection observed in mice mimic the symptoms caused by WNV infection in humans. 

The murine model has been an effective in vivo experimental model to investigate viral 

pathogenesis and the host immunity in humans. Based on information obtained  

from studies on animal models, cell culture and patient samples, this review will  

be focused on discussion of the role of several important immune factors, including 

pathogen recognition receptor (PRR) - mediated signaling pathways, cytokines, 

monocytes/microglia, γδ T cells, CD4+ and CD8+ αβ T cells in protection and 

pathogenesis of WNV-induced encephalitis. 

2. Innate Immunity to WNV infection 

2.1 PRR signaling pathways 

The key players of the innate immune surveillance are the sensor molecules known as PRRs 

which recognize specific pathogen associated molecular patterns (PAMPs) and trigger the 

signaling cascade ultimately leading to the production of type 1 interferon (IFN)s  and pro-

inflammatory cytokines. Three classes of PRRs have been implicated for viral PAMPs: toll-

like receptors (TLRs), retinoid acid-inducible gene-I (RIG-I) -like receptors (RLRs), and 

nucleotide oligomerization domain (NOD) -like receptors (NLRs) (Iwasaki & Medzhitov, 

2010; Wilkins & Gale, 2010). Of these, several TLRs and RLRs are involved in WNV 

recognition. 

2.1.1 TLRs 

TLRs, a family of thirteen mammalian homologues of Drosophila Toll that recognize PAMPs, 
play an essential role in the initiation of innate immunity (Qureshi & Medzhitov, 2003). 
Most TLR signaling pathways (except TLR3) utilize myeloid differentiation factor 88 
(MyD88) as the primary adaptor (Akira & Hemmi, 2003). TLR stimulation culminates in the 
synthesis of antiviral cytokines, such as type 1 IFN and proinflammatory cytokines, which 
may directly suppress viral replication. WNV is a positive ssRNA virus that produces 
dsRNA in its life cycle (Samuel, 2002). TLR3 recognizes dsRNA and is expressed in dendritic 
cells (DCs) and several CNS cell types, including neurons, astrocytes, and microglia (Daffis 
et al., 2008; Town et al., 2006; Wang et al., 2004). TLRs 7 and 8 are implicated in MyD88-
dependent recognition of ssRNA and ssRNA-producing viruses. Depending on the virus 
dose (lethal versus sub-lethal), passage history of the virus (Vero cell-derived versus insect 
cell- derived) or routes of inoculation, TLRs 3 and 7 are known to play important roles in 
host immunity to WNV infection, either pathogenic or protective. Following a sub-lethal 
dose of  insect cell derived WNV infection either intraperitoneally or subcutaneously, TLR3 
provides a protective effect against WNV infection, partially by restricting replication in 
neurons (Daffis et al., 2008). WNV NS1 protein plays a role in viral pathogenesis by 
counteracting TLR3 signaling in in vitro cell culture (Wilson et al., 2008). During an 
intraperitoneal infection of WNV, TLR7-mediated signaling promoted IL-12/IL-23-
dependent immune cell homing to infected target cells, thereby contributing to a vital host 
defense mechanism (Town et al., 2009). MyD88-mediated signaling was reported to restrict 
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WNV by inhibiting replication in neurons and modulating expression of chemokines that 
regulate immune cell migration into the CNS (Szretter et al., 2010).     
TLR3 and TLR7 -mediated signaling can also be pathogenic to host during WNV infection. 

For example, upon a lethal dose of a mammalian cell-passaged WNV challenge in mice via 

the intraperitoneal route, TLR3-dependent proinflammatory cytokines , including tumor- 

necrosis factor (TNF)-α were involved in blood brain barrier (BBB) compromise, and 

neuronal injury (Wang et al., 2004). In young human donors, binding of the glycosylated 

WNV envelope protein to the C-type lectin DC-specific intercellular adhesion molecule 3 

(ICAM3) grabbing nonintegrin (DC-SIGN) leads to a reduction in the expression of TLR3 in 

macrophages via the signal transducer and activator of transcription 1 (STAT1)-mediated 

pathway. This signaling was shown to be impaired in the elderly, which led to higher levels 

of TLR3 and proinflammatory cytokines. Thus, the alteration of the innate immune response 

with aging may lead to higher TLR3 levels and increased BBB permeability, which may 

suggest a possible mechanism for the increased severity of WNV infection in older 

individuals (Kong et al., 2008). Another example, WNV permissive Langerhans cells (LCs) 

could migrate from the skin to the lymph nodes upon a cutaneous infection, a process that 

might contribute to WNV dissemination in early viral infection (Byrne et al., 2001; Johnston 

et al., 2000). TLR7 recognition of WNV in skin epidermal keratinocytes induced IFN-α, 

interleukin-1β (IL-1β), IL-6 and IL-12 responses were shown to promote LC migration from 

the skin and WNV dissemination from the skin to other peripheral organs to initiate 

systemic infection. This effect might compromise its protective effect during a systemic 

infection (Welte et al., 2009).  

2.1.2 RLRs 

RLRs, which include RIG-I and melanoma differentiation antigen 5 (MDA-5) recognize 

dsRNA during viral infection. RIG-I is involved in the initial recognition of WNV 

infection and controls early virus replication. The wild-type WNV NY99 strain is known 

to evade the activation of interferon regulatory factor 3 (IRF3) through RIG-I-dependent 

and -independent pathways without antagonizing host defense signaling (Fredericksen & 

Gale, 2006). MDA-5 is needed to amplify and maintain the antiviral signals (Fredericksen 

et al., 2008). Both MDA5 and RIG-I work in concert to maintain the induction of the 

antiviral genes, while IFN-α functions to amplify and/or expand the response in an 

attempt to control viral replication. They are responsible for triggering downstream gene 

expression in response to WNV infection by signaling through an adaptor, interferon 

promoter stimulator-1 (IPS-1), which leads to activation of  transcription of IRFs and NF-

κB (Fredericksen et al., 2008). IPS-1 also plays a role to modulate adaptive immune 

response by providing effective antibody response and by restricting the expansion of 

regulatory T cells, though the mechanism needs to be deciphered. (Suthar et al., 2010). 

RIG-I signaling is regulated by multiple host factors, including ubiquitination, autophagy 

or the RNA helicase LGP2 (Gack et al., 2007; Jounai et al., 2007; Saito et al., 2007). Caspases 

are a family of aspartic acid–specific cysteine-dependent proteases mainly involved in 

apoptotic and inflammatory signaling pathways.  During WNV infection, Caspase 12 has 

been found to be required for an effective antiviral innate response by regulating the 

ubiquitination of RIG-I through the tripartite motif (TRIM) 25 mediated pathway (Wang et 

al., 2010).  
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2.2 Cytokines 
2.2.1 IFNs 

Type 1 IFNs, including IFN-α and IFN-β participate in the control of viral infections 
(Katze et al., 2002) and in vitro, can partially protect fetal murine spinal cord tissues, 
neuroblastoma cells and primate cells from WNV infection (Anderson & Rahal, 2002; 

Lucas et al., 2003; Samuel & Diamond, 2005; Shahar et al., 1990). IFN-α/β R-/- mice were 
much more susceptible to WNV infection than controls (Samuel & Diamond, 2005). The 
production of type 1 IFNs after flavivirus infection is primarily triggered by viral RNA 
through several distinct PRRs including the cell surface and endosomal RNA sensors 
TLR3 and TLR7, and the cytoplasmic RNA sensors, RIG-I and MDA-5 (2002c; Daffis et al., 
2008; Fredericksen & Gale, 2006; Fredericksen et al., 2008; Town et al., 2009; Wang et al., 
2004). In older donors, the production of type 1 IFNs was significantly lower in DCs, 
compared with younger donors, which might contribute to their higher susceptibility to 

WNV encephalitis (Qian et al., 2011). Type 2 IFN, such as IFN-γ was produced by γδ T 
cells, nature killer (NK) cells and CD8 T cells, which provide protective immunity against 
lethal WNV encephalitis (Shrestha et al., 2006b; Wang et al., 2003a). Several NS proteins 
have  been reported to be associated with evasion of host innate immune defenses 
(Laurent-Rolle et al., 2010; Puig-Basagoiti et al., 2007; Rossi et al., 2007), including 
inhibiting IFN signaling by the blockage of STAT1 and STAT2 activation (Evans & Seeger, 
2007; Liu et al., 2005; Munoz-Jordan et al., 2005).    

2.2.2 Proinflammatory and regulatory cytokines  

Proinflammatory cytokines, such as TNF-α,  IFN-γ or IL-1β can act synergistically with 
WNV to modulate the expression of immune recognition molecules, including class I and II 
major histocompatibility complex (MHC) and various adhesion molecules  on endothelial 
cell surface, leading to increased recognition by the virus-specific cytotoxic T cells (King et 

al., 2003). Neuronal TNF-α expression could diminish chemokine (C-X-C motif) ligand 10 
(CXCL10) -induced death  in the CNS (Zhang et al., 2010a).  

TNF-α and IL-1β were up-regulated with replication of the  E protein-glycosylated virus 
indicating a relation to the neuroinvasive phenotype of E protein-glycosylated WNV 
(Shirato et al., 2006). Microarray analysis of genes upregulated by neurovirulent strains of 

WNV also revealed the involvement of TNF-α and other inflammatory cytokines in both 
mouse (Venter et al., 2005) and human cells (Cheeran et al., 2005) following WNV infection.  

Consistent with these findings, WNV replication induced TNF-α and macrophage migration 
inhibitory factor (MIF) responses during systemic infection were shown to modulate the 
BBB permeability, which in turn may enable viral entry into the brain and induce lethal 
encephalitis (Arjona et al., 2007; Wang et al., 2004). Regulatory cytokines, such as IL-10 is 
known to be involved in WNV pathogenesis (Bai et al., 2009; Schneider et al., 2007). WNV 
infection was diminished in IL-10-deficient mice, and this ultimately increased the survival 
rate (Bai et al., 2009; Schneider et al., 2007). Another regulatory cytokine, transforming 

growth factor (TGF)-β was found to suppress the protective γδ T cell subsets expansion 
during WNV infection (Welte T. & Wang T, unpublished data). 

2.2.3 Chemokines 

Chemokines and chemokine receptors mediate leukocyte trafficking during WNV infection. 

Cxcr2 is important for early neutrophil migration to the initial site of virus entry (Bai et al., 
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2010). Ccr2 is critical for monocyte recruitment to the CNS, acting mainly by regulating 

monocytosis in the blood (Lim et al., 2011). Cxcr3 and Cxcl 10 appear to control CD4+ and 

CD8+ T lymphocyte accumulation in the brain (Klein et al., 2005; Zhang et al., 2008). CNS 

expression of the chemokine receptor CCR5 and its ligand CCL5 was prominently up-

regulated by WNV, and this was associated with the infiltration of CD4+ and CD8+ T cells, 

NK1.1+ cells and macrophages expressing the receptor (Glass et al., 2005). In humans, CCR5 

may function normally to limit disease due to WNV infection (Lim et al., 2010). It is 

suggested that CCR5 deficiency is a strong and consistent risk factor for symptomatic WNV 

infection in the United States (Lim et al., 2008). 

2.3 Cellular players: Monocytes /macrophages, microglia, neutrophils, NK cells and γδ 
T cells 
2.3.1 Monocytes /macrophages and microglia 

Initial studies suggest that macrophages are important in the non-specific immediate 

defense system of WNV infection. In vivo depletion of macrophages had an exacerbating 

effect on the course of the infection by an attenuated WNV strain, exhibited by higher and 

extended viremia and accelerated development of encephalitis and death (Ben-Nathan et al., 

1996). 

Nevertheless, the susceptibility of monocytes /macrophages to productive WNV infection 

in vitro (Cardosa et al., 1983) is also compatible with a potential role in initial WNV 

replication and propagation in humans (Rios et al., 2006). In support of this notion, 

silencing early viral replication in macrophages in mice seems to effectively suppress 

WNV induced encephalitis (Ye et al., 2003). In the CNS, microglia and macrophage-

associated inflammation are involved in neuropathology (Wang et al., 2004). An 

attenuated microglia activation in Tlr3-/- brains was reported to contribute to the resistance 

of these mice to WNV encephalitis during systemic infection (Wang et al., 2004). Although 

there were more microglia in the CNS during WNV infection, few of them were 

proliferating, which suggests that the increased numbers in the CNS might be derived 

from a migratory precursor cell. Indeed, a recent report shows that 

Ly6c+Gr1hiLy6ChiCCR2+ "inflammatory monocytes" are microglial precursors recruited to 

the CNS during WNV infection (Getts et al., 2008). Consistent with these findings, CCL2-

dependent inflammatory monocyte migration was reported to be critical for increases in 

microglia during WNV infection and may play a pathogenic role during WNV 

encephalitis (Lim et al., 2011). 

2.3.2 Neutrophils 

Neutrophils are the most abundant type of leukocytes in humans, a key component of the 

innate immune response, and the first immune cells to be recruited to inflammatory foci. 

Following a lethal dose of WNV challenge, neutrophils greatly expand as the virus invades 

the brain (Brehin et al., 2008). Neutrophils play a paradoxical role during WNV infection. 

Depletion of these cells can be either beneficial or harmful during WNV infection, 

depending on the timing of depletion. Neutrophil depletion 1 or 2 days following infection 

resulted in increased susceptibility whereas unexpectedly, if neutrophils were depleted 1 

day prior to infection, the opposite results were observed: increased resistance (Bai et al., 

2010). 
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2.3.3 NK cells   

NK cells are a crucial component of the host innate immune system with anti-viral 

properties. The role of NK cells in WNV infection is controversial. They are reported to be 

important to control WNV infection by recognition and elimination of WNV infected cells.  

Infection of mice with WNV was accompanied by temporary activation of NK cells (Vargin 

& Semenov, 1986). Interaction of NKp44 with the WNV E protein is an important step in 

triggering NK cell activation during infection (Hershkovitz et al., 2009). A more recent study 

shows that co-culture of peripheral blood mononuclear cells with K562D2 stimulatory cells 

is an efficient technique to prepare large quantities of pure and active human NK cells, and 

these expanded NK cells inhibited WNV infection of Vero cells through both cytolytic and 

noncytolytic activities, which may imply a potential role of NK cells in combating WNV 

infection (Zhang et al., 2010b). Nevertheless, antibody depletion of NK cells in mice did not 

show enhanced susceptibility to WNV encephalitis (Chung et al., 2007; Shrestha & Diamond, 

2004). 

2.3.4 γδ T cells 

In mice and humans, γδ T cells comprise a minority of the CD3+ T cells in lymphoid tissue 

and blood but are well represented at epithelial and mucosal sites (Hayday, 2000). They can 

rapidly produce Th1, Th2, or Th-17 type cytokines dependent upon the type of antigen or 

the subtype of γδ T cells stimulated (Carding & Egan, 2002; Hayday, 2000; Hayes & Love, 

2002; Roark et al., 2007) and have unique features, including a lack of MHC restriction and 

the potential capacity to respond to antigens without a requirement for conventional antigen 

processing, which together suggest a role in innate immunity against pathogen infection 

(Wang et al., 2001a). γδ T cells are important for early control of WNV dissemination (Wang 

et al., 2003a). TCRδ–/– mice, which are deficient in γδ T cells had elevated viral loads and 

greater dissemination of the pathogen to the CNS, more severe encephalitis and thereby 

were much more susceptible to WNV infection than wild-type controls. This protection 

relied partially on their IFN-γ producing capacity. Adoptive transfer of wild-type or TCRβ-/- 

mice splenocytes to naïve TCRδ–/– mice enhanced survival, whereas TCRβ-/- IFN-γ -/- 

splenocoytes did not. Further,  irradiated mice reconstituted with IFN-γ-deficient γδ T cells 

had significantly higher levels of viral loads in blood, and brains throughout the time course 

compared to mice reconstituted with IFN-γ-sufficient γδ T cells (Shrestha et al., 2006b). γδ T 

cells are further divisible into functionally distinct subsets in human and mouse, which have 

direct and indirect effects on host immunity to pathogen infection (Bank et al., 1986). 

Following WNV challenge, Vγ1+ cells, the major subpopulation, expanded significantly and 

were the main resource for IFN-γ. Mice depleted of Vγ1+ cells had an enhanced viremia and 

higher mortality to WNV encephalitis. A major risk factor for fatality of WNV infection in 

humans is aging (Hayes & Gubler, 2006; Wang & Fikrig, 2004). Aged mice were more 

susceptible to WNV infection than young mice. Vγ1+ T cells in aged mice displayed a slower 

and reduced response following WNV infection, which might partially contribute to the 

enhanced host susceptibility to viral encephalitis (Welte et al., 2008). Human γδ T cells are 

also known to display numerical and functional alteration in the elderly (Argentati et al., 

2002; Cardillo et al., 1993; Weerkamp et al., 2005). Nevertheless, whether the dysfunction of 

γδ T cells of older individuals leads to their higher susceptibility to WNV encephalitis 

remains undefined. 
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Vγ4+ cells, another peripheral γδ  T cell subset, had a higher potential for producing TNF-α, 

a cytokine known to be involved in BBB compromise and WNV entry into the brain. 

Depletion of Vγ4+ cells reduced TNF-α level in the periphery, accompanied by a decreased 

viral load in the brain and a lower mortality to WN encephalitis (Welte et al., 2008).  

3. DCs, the linkage between innate and adaptive immunity 

DCs, macrophages, and B cells are the antigen presenting cells (APCs)  involved during 

WNV infection (Kulkarni et al., 1991). DCs represent the most important APCs exhibiting the 

unique capacity to initiate primary T cell responses. In particular, during cutaneous WNV 

infection, the bone-marrow-derived epidermal DCs – LCs are important APCs in the skin — 

where the pathogen is naturally deposited during mosquito transmission of the virus (Byrne 

et al., 2001; Johnston et al., 2000). These cells migrate from the epidermis by an IL-1β-

dependent pathway and accumulate in the local draining lymph nodes, thereby playing an 

important role in T-cell activation and proliferation (Byrne et al., 2001).  Interestingly, a 

recent report shows that mosquito saliva contains factors that could alter the antiviral 

signaling of APCs, including macrophages and DCs, which may explain the enhancement of 

WNV diseases during a natural infection (Schneider et al., 2010). Upon microbial infection, 

DC maturation is an innate response that leads to adaptive immunity to foreign antigens 

(Bennett et al., 1998; De Smedt et al., 1996). Maturation of DCs results in the expression of 

high levels of MHC and co-stimulatory molecules such as CD40, CD80 and CD86 and is 

often associated with the secretion of IL-12 (Fujii et al., 2004; Inaba et al., 2000). WNV-

induced γδ T-cell activation plays an important role in promoting DC maturation, which 

further initiates CD4+ T-cell priming. Splenic DCs of WNV-infected TCRδ–/– mice displayed 

lower levels of CD40, CD80, CD86 and MHC class II expression and IL-12 production than 

those of wild-type mice (Fang et al., 2010).   

WNV permissive LCs could migrate from the skin to the lymph nodes upon a cutaneous 

infection, which contributes to WNV dissemination in early viral infection (Byrne et al., 2001; 

Johnston et al., 2000). DC-SIGN is highly expressed in monocyte-derived DCs in vitro and at 

lower levels in vivo in subsets of macrophages and DCs (Geijtenbeek et al., 2000; Krutzik et 

al., 2005; Soilleux et al., 2002). DC-SIGN plays an important role in the enhancement of 

infection by WNV glycosylated strains. Further, the location of the N-linked glycosylation 

sites on a virion determines the types of glycans incorporated, thus controlling viral tropism 

for DC-SIGN -expressing cells (Davis et al., 2006). 

4. Adaptive immunity 

4.1 T cell responses 

Both CD4+ and CD8+ αβ T cells contribute to host survival during WNV infection. CD4+ T 
cells respond vigorously in the periphery (Kulkarni et al., 1991). They are known to provide 
help for antibody responses and to sustain WNV-specific CD8+ T cell responses in the CNS 

enabling viral clearance (Sitati & Diamond, 2006). Among CD4+ αβ T cells, higher levels of 
peripheral Tregs after infection protect against severe WNV disease in immunocompetent 
animals and humans possibly by dampening the WNV-specific immune response and 
inflammation. In humans, WNV symptomatic donors exhibited lower Treg frequencies from 
2 weeks through 1 year after index donation. Similarly, symptomatic WNV-infected mice 
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also had lower Treg frequencies compared with asymptomatic mice at 2 weeks after 
infection (Lanteri et al., 2009). In WNV-infected mice, CD8+ T cell responses have been 
observed in both the spleen and brain (Liu et al., 1989). CD8+ T cells have important 
functions in clearing infection from peripheral tissues and CNS, and in preventing viral 
persistence (Brien et al., 2007; Shrestha & Diamond, 2004). During WNV infection, 
chemokines secreted from CNS, including CXCL10 (Klein et al., 2005) or CCL5 (Glass et al., 
2005) help to recruit the antigen specific CD8+ effector T cells. CD40-CD40L interactions are 
also  important for T cell trafficking into the CNS and for protection of the host from a low 
dose WNV challenge (Sitati et al., 2007). Once inside CNS, these cells kill the virus infected 
target cells in perforin or FasL effector-dependent manners (Shrestha & Diamond, 2007; 
Shrestha et al., 2006a). Both primary and memory CD8+ T cells have been demonstrated to 
efficiently kill target cells that display WNV antigens restricted by a class I MHC (Shrestha 
& Diamond, 2004).  

αβ T cells can also be pathogenic. For example, they can support a low but productive WNV 
replication. Following a systemic infection, WNV might cross the BBB and enter the CNS by 
being carried by infected infiltrating T cells (Wang et al., 2008). Another study suggests that 
CD8+ T cells contribute to immunopathology upon high-dose WNV challenge (Wang et al., 
2003b). Nevertheless, little is known about the role of T cell-mediated pathology in WNV-
related brain damage. In the aged mouse model of WNV infection, defects in T cell 
responses against dominant WNV epitopes were shown to contribute to the enhanced 
susceptibility to WNV encephalitis (Brien et al., 2009). Primary and memory T cell responses 
in old mice induced by RepliVAX WN, a single-cycle flavivirus vaccination were 
significantly lower than those seen in younger mice. However, this seems to be overcome by 
repeating in vivo stimulation of T  cell responses in old mice (Uhrlaub et al., 2011). In 
investigation of the correlation between T cell phenotype and disease severity,  CD8 T cells 
of a terminally differentiated/cytolytic profile were found to be associated with 
neuroinvasion (Piazza et al., 2010). 

4.2 B cells, antibody and complement responses to WNV infection 

B cells and specific antibodies are critical in the control of disseminated WNV infection, but 
are not sufficient to eliminate it from the host (Diamond et al., 2003a; Diamond et al., 2003b; 
Diamond et al., 2003c; Roehrig et al., 2001). In particular, induction of a specific, neutralizing 
IgM response early during infection limits viremia and dissemination into the CNS and 
protects the host against lethal infection (Diamond et al., 2003c). Mice deficient in B cells and 
antibody (microMT mice) were vulnerable to lethal WNV infection (Engle & Diamond, 
2003). Patients with defects in humoral immunity may not produce a serologic response and 
clear WNV infection permanently, which would result in persistent CNS infection (Penn et 
al., 2006).  
The complement system is made up of a complex pathway of more than 30 serum proteins 
and cell surface receptors that are involved in direct cell lysis and the enhancement of B and 
T cell responses (Avirutnan et al., 2008; Carroll, 2004). Complement is activated by three 
different pathways: classical, lectin and alternative. All three share the common step of 
activating the central component C3, but they differ according to the nature of recognition. 
Although one early study suggests that complement could enhance IgM-dependent WNV 
replication in macrophages in vitro (Cardosa et al., 1983), more evidence supports that it is 
required for control of WNV infection in vivo. Protection against WNV encephalitis requires 
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an intact complement system as mice lacking C3 uniformly succumbed to infection 
(Mehlhop et al., 2005). All complement activation pathways are required, as mice deficient in 
C1q (classical pathway) or fB (alternative pathway) (Mehlhop & Diamond, 2006), or  mice 
deficient in lectin pathway recognition molecules (mannose binding lectin-A and mannose 
binding lectin-C or the effector enzyme mannan-binding lectin-associated serine protease-2 ) 
were more vulnerable to WNV infection (Fuchs et al., 2011). The complement system is 
known to control WNV infection, in part through its ability to induce a protective antibody 
response and by priming adaptive immune responses through distinct mechanisms 
(Mehlhop & Diamond, 2006; Mehlhop et al., 2005). Mice deficient of classical and lectin 
pathways had defects in WNV specific antibody production and T cell responses. In 
comparison, mice deficient of alternative pathway had normal B cell function but impaired 
CD8+ T cell response (Mehlhop & Diamond, 2006). 

5. Conclusions 

Studies from animal models, cell culture and patient samples have suggested that both 
innate and adaptive immunity are involved in host protective immune responses. Among 

them, type 1 IFNs, γδ T cells and humoral immunity are critical in controlling dissemination 
of WNV (Anderson & Rahal, 2002; Diamond et al., 2003a; Fredericksen et al., 2008; Klein et 
al., 2005; Lucas et al., 2003; Roehrig et al., 2001; Wang et al., 2003a). CD4+ (Kulkarni et al., 

1991) and CD8+ αβ T-cells (Shrestha et al., 2006a; Wang et al., 2003b) contribute to host 
survival following WNV infection. Host immune responses may act as a double-edged 
sword during WNV infection. Depending on the virus dose (lethal versus sub-lethal), 
passage history of the virus (Vero cell-derived versus insect cell derived) or routes of 
inoculation, immune factors can be either pathogenic or protective in host immunity against 
WNV infection. 
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