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1. Introduction 

If at a macroscopic scale the heat transfer mechanism implies either diffusion type 

conduction or phononic type conduction (Zhang, 2007; Rohsenow et al., 1998), at a 

microscopic scale the situation is completely different. This happens because the 

macroscopic familiar concepts cannot be applied at a microscopic scale, e.g. the concept of a 

distribution function of both coordinates and momentum used in the Boltzmann equation 

(Wang et al., 2008). Moreover, fundamental concepts such a temperature cannot be defined 

in the conventional sense, i.e. as a measure of thermodynamic equilibrium (Chen, 2000). 

Thus anomalies might occur: the thermal anomaly of the nanofluids (Wang&Xu, 1999; 

Keblinski et al., 2002; Patel et al., 2003), etc.  

According to our opinion, anomalies become normalities if their specific measures depend 

on scales: heat conduction in nanostructures differs significantly from that in 

macrostructures because the characteristic length scales associated with heat carriers, i.e. the 

mean free path and the wavelength, are comparable to the characteristic length of 

nanostructures (Chen, 2000). Therefore, we expect to replace the usual mechanisms 

(ballistic thermal transport, etc.) by something more fundamental: a unique mechanism 

in which the physical measures should depend not only on spatial coordinates and 

time, but also on scales. This new way will be possible through the Scale Relativity (SR) 

theory (Notalle, 1992, 2008a, 2008b, 2007). Some applications of the SR theory at the 

nanoscale was given in (Casian Botez et al., 2010; Agop et al. 2008). In the present 

paper, a new model of the heat transfer on nanostructures, considering that the heat 

flow paths take place on continuous but non-differentiable curves, i.e. an fractals, is 

established.  
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2. Consequences of non-differentiability in the heat transfer processes 

Let us suppose that the heat flow take place on continuous but non-differentiable curves 
(fractal curves). The non-differentiability implies the followings (Notalle, 1992, 2008a, 2008b, 
2007): 
i. A continuous and a non-differentiable curve (or almost nowhere differentiable) is 

explicitly scale dependent, and its length tends to infinity, when the scale interval tends 
to zero. In other words, a continuous and non-differentiable space is fractal, in the 
general meaning given by Mandelbrot to this concept (Mandelbrot, 1982); 

ii. There is an infinity of fractals curves (geodesics) relating any couple of its points (or 
starting from any point), and this is valid for all scales; 

iii. The breaking of local differential time reflection invariance. The time-derivative of the 

temperature field T  can be written two-fold: 

 

dT T(t dt) - T(t)
lim

dt dtdt 0
dT T(t) - T(t - dt)

lim
dt dtdt 0

+
=

→

=
→

    (1a,b) 

Both definitions are equivalent in the differentiable case. In the non-differentiable 

situation these definitions fail, since the limits are no longer defined. In the framework 

of fractal theory, the physics is related to the behavior of the function during the 

“zoom” operation on the time resolution tδ , here identified with the differential 

element dt  (“substitution principle”), which is considered as an independent variable. 

The standard temperature field T(t)  is therefore replaced by a fractal temperature field 

T(t,dt) , explicitly dependent on the time resolution interval, whose derivative is 

undefined only at the unobservable limit dt 0→ . As a consequence, this lead us to 

define the two derivatives of the fractal temperature field as explicit functions of the 

two variables t  and dt , 

 

d T T(t + dt,dt) - T(t,dt)+ = lim
dt 0dt dt+

d T T(t,dt) - T(t - dt,dt)- = lim
dt 0dt dt-

→

→

   (2a,b) 

The sign, +, corresponds to the forward process and, -, to the backward process; 

iv. the differential of the fractal coordinates, d X(t,dt)± , can be decomposed as follows: 

 d X(t,dt) d x(t) d (t,dt)± ± ±= + ξ     (3a,b) 

where d x(t)±  is the “classical part” and d (t,dt)ξ±  is the “fractal part”.  

v. the differential of the “fractal part” of d X±  satisfies the relation (the fractal equation) 

 ( )
1 DFi id dt± ±ξ = λ    (4a,b) 

where i
±λ  are some constant coefficients, and FD  is a constant fractal dimension. We 

note that for the fractal dimension we can use any definition (Kolmogorov, Hausdorff 

www.intechopen.com



 
Heat Transfer in Nanostructures Using the Fractal Approximation of Motion 

 

453 

(Notalle, 1992, 2008a, 2008b, 2007; Casian Botez et al., 2010; Agop et al. 2008; 

Mandelbrot, 1982), etc.); 
vi. the local differential time reflection invariance is recovered by combining the two 

derivatives, d dt+  and -d dt , in the complex operator: 

 
ˆ d d d - dd 1 i- --

dt 2 dt 2 dt

+   + +=    
   

    (5) 

Applying this operator to the “position vector” yields a complex speed 

 
d d d i d d

V i i
dt dt dt

ˆ 1ˆ
2 2 2 2

+ − + − + − + −+ − + −   
= = − = − = −   

   
X X X X X V V V V

V U     (6) 

with 

 2

2

+ −

+ −

+
=

−
=

V V
V

V V
U

      (7a,b) 

The real part, V , of the complex speed, V̂ , represents the standard classical speed, which 

is differentiable and independent of resolution, while the imaginary part, U , is a new 

quantity arising from fractality, which is non-differentiable and resolution-dependent; 
vii. the average values of the quantities must be considered in the sense of a generalized 

statistical fluid like description. Particularly, the average of d±X is 

 d d± ±=X x      (8a,b) 

with 

 ±d ξ = 0        (9a,b) 

viii. in such an interpretation, the “particles” are indentified with the geodesics themselves. 
As a consequence, any measurement is interpreted as a sorting out (or selection) of the 
geodesics by the measuring devices. 

3. Covariant total derivative in the heat transfer processes 

Let us now assume that the curves describing the heat flow (continuous but non-

differentiable) is immersed in a 3-dimensional space, and that X of components ( )iX i = 1,3  

is the position vector of a point on the curve. Let us also consider the fractal temperature 

fluid T( , t)X , and expand its total differential up to the third order: 

 j ji i k
j ji i k

T T T
d T dt T d d X d X d X d X d X

X X X X Xt

2 31 1

2 6
± ± ± ± ± ± ±

∂ ∂ ∂
= + ∇ ⋅

∂ ∂ ∂ ∂ ∂∂
+ +X   (10a,b) 

where only the first three terms were used in the Nottale’s theory (i.e. second order terms in 
the equation of motion). The relations (10a,b) are valid in any point of the space manifold 
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and also for the points X on the fractal curve which we have selected in relations (10a,b). 
From here, the forward and backward average values of this relation take the form: 

 

ji
ji

ji k
ji k

T T
d T dt T d d X d X

t X X

T
d X d X d X

X X X

2

3

1

2

1

6

± ± ± ±

± ± ±

∂ ∂
= + ∇ ⋅ + +

∂ ∂ ∂

∂
+

∂ ∂ ∂

X

     (11a,b) 

We make the following stipulation: the mean value of the function f  and its derivatives 

coincide with themselves, and the differentials id X±  and dt  are independent, therefore the 

average of their products coincide with the product of averages. Thus, the equations (11a,b) 
become: 

 j ji i k
j ji i k

T T T
d T dt T d d X d X d X d X d X

t X X X X X

2 31 1

2 6
± ± ± ± ± ± ±

∂ ∂ ∂
= + ∇ ⋅ + +

∂ ∂ ∂ ∂ ∂ ∂
X    (12a,b) 

or more, using equations (3a,b) with the property (9a,b), 

     
( )

( )

j ji i
ji

j ji k i k
ji k

T T
d T dt T d d x d x d d

t X X
T

d x d x d x d d d
X X X

2

3

1

2

1

6

± ± ± ± ± ±

± ± ± ± ± ±

∂ ∂
= + ∇ ⋅ + ξ ξ +

∂ ∂ ∂

∂
+ ξ ξ ξ

∂ ∂ ∂

x

    (13a,b) 

Even the average value of the fractal coordinate, id ξ± is null (see (9a,b)), for the higher order 

of the fractal coordinate average the situation can be different. First, let us focus on the 

mean jid dξ ξ± ± . If i j≠ , this average is zero due the independence of id ξ±  and jd ξ± . So, 

using (4a,b), we can write: 

 ( )( )Dj j Fi id d dt dt
2 1

ξ ξ λ λ
−

± ± ± ±=       (14a,b) 

Then, let us consider the mean ji kd d dξ ξ ξ± ± ± . If i j k≠ ≠ , this average is zero due the 

independence of id ξ±  on jd ξ±  and kd ξ± . Now, using equations (4a,b), we can write: 

 ( )( )Dj j Fi k i kd d d dt dt
3 1

ξ ξ ξ λ λ λ
−

± ± ± ± ± ±=     (15a,b) 

Then, equations (13a,b) may be written under the form: 

 
( )( )

( )( )

ji
ji

Dj Fi
ji

ji k
ji k

Dj Fi k
ji k

T T
d T dt d T d x d x

t X X
T

dt dt
X X

T
d x d x d x

X X X
T

dt dt
X X X

2

2
2 1

3

3
3 1

1

2

1

2

1

6

1

6

λ λ

λ λ λ

± ± ± ±

−

± ±

± ± ±

−

± ± ±

∂ ∂
= + ⋅ ∇ + +

∂ ∂ ∂

∂
+ +

∂ ∂

∂
+ +

∂ ∂ ∂

∂
+

∂ ∂ ∂

x

    (16a,b) 
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If we divide by dt  and neglect the terms which contain differential factors (for details on the 

method see (Casian Botez et al., 2010; Agop et al. 2008)), the  equations (16a,b) are reduced 
to: 

 
( )( )

( )

DFi
ji

Dji k F
ji k

jd T T T
T dt

dt t X X
T

dt
X X X

2 1

3
3 1

21

2

1
( )

6

λ λ

λ λ λ

−±
± ± ±

−

± ± ±

∂ ∂
= + ⋅ ∇ + +

∂ ∂ ∂

∂
+

∂ ∂ ∂

V

   (17a,b) 

These relations also allows us to define the operator: 

 
( )

( )

( )

DFji
ji

Dji k F
ji k

t
d dt
dt X X

dt
X X X

2
2 1

3
3 1

1
2

1
( )

6

λ λ

λ λ λ

−
±

± ± ±

−

± ± ±

∂

∂

∂
= + ⋅∇ + +

∂ ∂
∂

+
∂ ∂ ∂

V
   (18a,b) 

Under these circumstances, let us calculate ( )T t∂̂ ∂ . Taking into account equations (18a,b), 

(5) and (6) we obtain: 

 

( )( ) ( )( )

( )( )

( )( )

D Dj jF Fi i k
j ji i k

Dj Fi
ji

Dj Fi k
ji k

T d T d T d T d T T
i T

t dt dt dt dt t

T T
dt dt

X X X X X
T T

T dt
t X X

T i T i
dt

X X X t

2 3
2 1 3 1

2
2 1

3
3 1

ˆ 1 1 1

2 2 2

1 1

4 12

1 1 1

2 2 4

1

12 2

λ λ λ λ λ

λ λ

λ λ λ

+ − + −
+

− −

+ + + + +

−

− − −

−

− − −

 ∂ ∂ 
= + − − = + ⋅∇ +  ∂ ∂  

∂ ∂
+ + +

∂ ∂ ∂ ∂ ∂

∂ ∂
+ + ⋅∇ + +

∂ ∂ ∂

∂ ∂
+ − −

∂ ∂ ∂ ∂

V

V

( )( ) ( )( )

( )( )

( )( )

( )( )

( )

D Dj jF Fi i k
j ji i k

Dj Fi
ji

Dj Fi k
ji k

DF
j j ji i i

T

i T i T
dt dt

X X X X X
i T i i T

T dt
t X X

i T
dt

X X X
T

i T
t

dt
i

2 3
2 1 3 1

2
2 1

3
3 1

2 1

2

2 12

2 2 2

12

2 2

4

λ λ λ λ λ

λ λ

λ λ λ

λ λ λ λ λ λ

+

− −

+ + + + +

−

− − −

−

− − −

+ − + −

−

+ + − − + +

⋅∇ −

∂ ∂
− − +

∂ ∂ ∂ ∂ ∂

∂ ∂
+ + ⋅∇ + +

∂ ∂ ∂

∂
+ =

∂ ∂ ∂

∂ + + 
= + − ⋅∇ + 

∂  

+ + − −

V

V

V V V V

( )

( )( )

( ) ( )

( )( )

( ) ( )

( )( )

( )

ji
ji

DF
j j j ji k i k i k i k

ji k

DF
j j j ji i i i

ji

DF
j j j ji k i k i k i

T
X X

dt T
i

X X X

dtT T
T i

t X X

dt
i

2

3 1 3

2 1 2

3 1

12

ˆ
4

12

λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

− −

−

+ + + − − − + + + − − −

−

+ + − − + + − −

−

+ + + − − − + + + − − −

∂  +  ∂ ∂

∂ + + − − =  ∂ ∂ ∂

∂ ∂ = + ⋅∇ + + − − + ∂ ∂ ∂

+ + − −

V

( )k
ji k

T
X X X

3∂ ∂ ∂ ∂

  (19a,b) 
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This relation also allows us to define the fractal operator: 

 

( )( )

( ) ( )

( )( )

( ) ( )

DF
j j ji i i i

ji

DF
j j j ji k i k i k i k

ji k

jdt
i

t t X X

dt
i

X X X

2 1 2

3 1 3

ˆ
ˆ

4

12

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

−

+ − − + + − −

−

+ + + − − − + + + − − −

+

∂ ∂ ∂ = + ⋅∇ + + − − + ∂ ∂ ∂ ∂

∂ + + − −  ∂ ∂ ∂

V

    (20) 

Particularly, by choosing: 

 

j j iji i

j j ijki k i k 3 2

2

2 2

λ λ λ λ δ

λ λ λ λ λ λ δ

+ + − −

+ + + − − −

= − =

= =

D

D
    (21a,b) 

the fractal operator (20) takes the usual form: 

 ( )( ) ( )( )D DF Fi dt dt
t t

2 1 3 13 2 3
ˆ 2ˆ

3

− −∂ ∂
= + ⋅ ∇ − ∆ + ∇

∂ ∂
V D D    (22) 

We now apply the principle of scale covariance, and postulate that the passage from 

classical (differentiable) mechanics to the “fractal” mechanics can be implemented by 

replacing the standard time derivative operator, d dt ,  by the complex operator t∂̂ ∂  (this 

results in a generalization of the principle of scale covariance given by Nottale in (Nottale, 

1992)). As a consequence, we are now able to write the equation of the heat flow in its 

covariant form: 

 ( ) ( )( ) ( )( )D DF FT T
T i dt T dt T

t t
2 1 3 13 2 3

ˆ 2ˆ 0
3

− −∂ ∂
= + ⋅ ∇ − ∆ + ∇ =

∂ ∂
V D D     (23) 

This means that at any point of a fractal heat flow path, the local temporal term, tT∂ , the 

non-linearly (convective) term, ( )Tˆ ⋅∇V , the dissipative term, T∆  and the dispersive one, 

T3∇ , make their balance. Moreover, the behavior of a fractal fluid is of viscoelastic or of 

hysteretic type, i.e. the fractal fluid has memory. Such a result is in agreement with the 

opinion given in (Ferry& Goodnick, 1997; Chiroiu et al., 2005): the fractal fluid can be 

described by Kelvin-Voight or Maxwell rheological model with the aid of complex 

quantities e.g. the complex speed field, the complex structure coefficients. 

4. The dissipative approximation in the heat transfer processes 

4.1 Standard thermal transport 
In the dissipative approximation of the fractal heat transfer, the relation (23) becomes a 
Navier-Stokes type equation for the temperature field: 

 ( ) ( )( )DFT T
T i dt T

t t
2 1

ˆ
ˆ 0

−∂ ∂
= + ⋅ ∇ − ∆ =

∂ ∂
V D    (24) 

with an imaginary viscosity coefficient: 

 ( )
DFi dt

2 1
η

−
= D     (25) 
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Separating the real and imaginary parts in (24), i.e. 

 

( )( )DF

T
T

t

T dt T
2 1

0

−

∂
+ ⋅ ∇ =

∂

− ⋅ ∇ = ∆

V

U D

  (26a,b) 

We can add these two equations and obtain the thermal transfer equation in the form: 

 ( ) ( )( )DFT
T dt T

t
2 1−∂

+ − ⋅ ∇ = ∆
∂

V U D    (27) 

The standard equation for the thermal transport, i.e.: 

 ( )( )DFT
T dt

t
2 1

,α α
−∂

= ∆
∂

= D    (28a,b) 

results from (27) on the following assertions 

i. the fractal heat flow are of Peano’s type (Nottale, 1992), i.e. for FD 2= ; 

ii. the movements at differentiable and non-differentiable scales are synchronous, i.e. 

V =U ; 

iii.  the structure coefficient D , proper to the fractal-nonfractal transition, is identified with 

the diffusivity coefficient ┙, i.e. α ≡ D .   

In the form 

 
T T
t x y

2 2

22

 
 
 

∂ ∂ ∂
= +

∂ ∂ ∂
    (29) 

where we used the normalized quantities 

 
T

t t x kx y ky T
T0

, , ,ω= = = =    (30a-d) 

and the restriction 

 
k2

1
ω

=
D

   (31) 

the equation (29) can by solved with the following initial and boundaries conditions: 

 ( )T x y x y1
0, , ,for 0 1 and 0 1

4
= ≤ ≤ ≤ ≤     (32a,b) 

 

( ) ( )

( ) ( )

T t y T t y

t xT t x T t x
2 2

,0, 1 4 , ,1, 1 4

1 2 1 2
, ,0 exp exp , , ,1 1 4

1 2 1 2

      
      
        

= =

− −
= − − =

   (33a-d) 

In the Figures (1a-j) we present the solutions obtained with the finite differences method 
(Zienkievicz &Taylor, 1991). Furthermore, using tha same method from (Zienkievicz 
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&Taylor, 1991), if the thermal transport occurs in the presence of a “wall”, condition which 
involves substituting (33d) with 

 ( )T t x
y

, ,1 0
∂

=
∂

    (34) 

then obtain the numerical solutions from the figures (2a-j). It results that the perturbation of 
the thermal field, either disappear because of the rheological properties of the fractal 
environment (Figures 1a-j), or it regenerates (Figures 2a-j). 

 

Fig. 1. a-j. Numerical 2D contour curves of the normalized temperature field in the absence 
of a “wall”. Thermal field perturbation disappears due to the rheological properties of the 
fractal environment 
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Fig. 2. a-j. Numerical 2D contour curves of the normalized temperature field in the presence 
of a “wall”. Thermal field perturbation regenerates in the presence of a “wall” 

4.2 Thermal anomaly of the nanofluids 
The equation (28a) is implied by the Fourier type law 

 T k T( ) = − ∇j     (35) 

with T( )j  the thermal current density and k the thermal conductivity.  
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Let us apply the previous formalism for the heat transfer in nanofluids, assuming the 
following: (i) there are two different paths (fractal curves of fractal dimension DF) of heat 
flow through the “suspension”, one through the fluid particles and other through the 
nanoparticles; (ii) the fractal curves are of Peano type (Nottale, 1992), which implies DF =2. 
The overall heat transfer rate of the system, q, for the one-dimensional heat flow, may be 
expressed as: 

 p f f p p
f p

f
dT dT

q q q k A k A
dX dX
   

= + = − −   
   

   (36) 

where A, k, (dT/dX) denote the heat transfer area, the thermal conductivity and the 
temperature gradient, while the subscripts f, p denote quantities corresponding to the fluid 
and the particle phase, respectively. Assuming that the fluid and the nanoparticles are in 
local thermal equilibrium at each location, we can set: 

 
f p

dT dT dT
dX dX dX
     
     
     

= =    (37) 

Now the overall heat transfer rate can be expressed as 

 p p
t f f

f f

k AdT
q k A

dX k A
1
  

= − +  
    

  (38) 

We propose, using the method from (Hemanth Kumar et al., 2004), that the ratio of heat 

transfer areas, ( )p fA A , could be taken in proportion to the total surface areas of the 

nanoparticles ( )pS  and the fluid species ( )fS  per unit volume of the “suspension”. Taking 

both the fluid and the suspended nanoparticles to be spheres of radii fr  and pr  respectively, 

the total surface area can be calculated as the product of the number of particles n and the 

surface area of the particle for each constituent. Denoting by ε   the volume fraction of the 

nanoparticle and by ( )1 ε−  the volume fraction of the fluid, the number of particles for the 

two constituents can be calculated as : 

   

( )f

f

p

p

n
r

n
r

3

3

1
1

4

3
1

4

3

ε
π

ε
π

= −

=

    (39a,b) 

The corresponding surface areas of the fluid and the nanoparticle phase are given by: 

 

( ) ( )

( )

f f
f

p p p

p

fS n r
r

S n r
r

2

2

3
4 1

3
4

π ε

π ε

= = −

= =

    (40a,b) 
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Taking  

 
f

p p

fS A

S A
=      (41) 

and using the previous relations, the expression for the heat transfer rate becomes: 

 
( )

p f
f f ef f

f p

k rdT dT
q k A k A

dX k r dX
1

1

ε

ε

    
= − + = −    

−     
  (42) 

where the effective thermal conductivity, keff is expressed as: 

 
( )

eff p f

f f p

k k r

k k r
1

1

ε

ε
= +

−
   (43) 

We present in Figures 3a-c the dependencies: ( )eff f p f p fk k k k r rconst., ,ε=  (a), 

( )eff f p f p fk k k k r r, , const.ε =  (b) and ( )eff f p f p fk k k k r r, const.,ε =
 
(c). 

In the above expression, it is seen that the enhancement is directly proportional to the ratio 

of the conductivities, volume fraction of the nanoparticle (for 1ε  ) and is inversely 

proportional to the nanoparticle radius.  
Next we determine the temperature dependence of keff. The thermal conduction of 
nanoparticle based on Debye’s model is: 

 
v

p p

nc l
k u

ˆ

3
=    (44) 

where l  is the mean free path, vĉ  is the specific heat per particle, n  is the particle 

concentration and pu  the average particle speed. Because the particle’s movement in fluid 

is a Brownian one, so it can be approximate by a fractal with fractal dimension FD 2= , we 

can use a Stokes-Einstein’s type formula for the definition of D  from Eqs. (21a, b) 

 B

p

k T
rπη

D      (45) 

with Bk  the Boltzmann’s constant, T the temperature and η  the dynamic viscosity of the 

fluid. For a choice of the form: 

 ( )p pu T rD    (46) 

which implies 

 ( ) B
p

p

k T
u T

r 2π η
      (47) 

the equation (44) becomes: 

 ( ) ( ) ( ) ( )v B
p p r r p p p

p

T nC l k T
k k T t t k T u T u T

T r
0

,   0 0 0 0 2

0

ˆ
,   

3
,   

π η
= =    (48a-d) 
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a) 

b) 

c) 

Fig. 3. Dependence of the effective thermal conductivity effk on: (a) p fr r ,ε ; (b) p fk k ,ε ;  

(c) p f p fr r k k,  

ε 

ε 
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So, the dependence of effk  on the reduced temperature rt  takes the form (see also Fig.4): 

 
( )
( )

eff p f
r

f f p

k k T r
t

k k r
0

1 ,
1

ε
ν ν

ε
= + =

−
   (49a,b) 

Obviously, Eq.(49a) it more complicated if we accept the dependence ( )rtη η= .  

 

 

Fig. 4. Dependence of the effective thermal conductivity effk on the reduced temperature 

rt and ν  

We remark that the theoretical model describes not only qualitative but also quantitative the 
thermal behavior of the nanofluids experimentally observed (the increasing of the heat 
transfer in nanofluids-thermal anomaly of the nanofluids) (Wang&Xu, 1999; Keblinski, 2002; 
Hemanth Kumar et al., 2004). 

4.3 Negative differential thermal conductance effect 

Applying the fractal operator (22) in the dispersive approximation of motions to the 

complex speed field (fractal function), V̂  we obtain the inertial principle in the form of a 

Navier-Stokes type equation:  

 ( )( )DFT T
T dt T

t t
3 13 2 3

ˆ 2ˆ 0
3

−∂ ∂
= + ⋅ ∇ + ∇ =

∂ ∂
V D   (50) 

with a imaginary viscosity coefficient (25). 

This means that the local complex acceleration field, tˆ∂ ∂V , the convective term, ˆ ˆ⋅ ∇V V , 

and the dissipative one, ˆ∇V ,  reciprocally compensate in any point of the fractal curve. 
In the case of the irrotational motions: 

 ˆ 0∇ × =V    (51) 
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so that the complex speed field (6) can be expressed through the gradient of a complex 
scalar function Φ,  

 ˆ = ∇ΦV     (52) 

named the scalar potential of the complex speed field.  

Substituting equation (52) in equation (50) it results 

 ( ) ( )( )DFi dt
t

2 2 11
0

2

Φ
Φ Φ

−∂ 
∇ + ∇ − ∆ = ∂ 

D   (53) 

and by an integration, a Bernoulli type equation 

 ( ) ( )( ) ( )
DFi dt F t

t
2 2 11

2

Φ
Φ Φ

−∂
+ ∇ − ∆ =

∂
D   (54) 

with F(t) function which depends only on time. Particularly, for Φ of the form: 

 ( )( )DFi dt
2 1

lnψΦ
−

= −2 D   (55) 

where ψ  is a new complex scalar function, the equation (54) takes the form: 

 ( ) ( )( ) ( )DD FF
F t

dt dt
t

i 2 14 12( )
2

0
ψ

ψ ψ
−− ∂

∆
∂

+ + =D D    (56) 

From here, a Schrödinger type equation result for F(t)≡0  i.e. 

 ( ) ( )( )DD FFdt i dt
t

2 14 12( ) 0
ψ

ψ
−− ∂

∆ + =
∂

D D   (57) 

Moreover, for the movement on fractal curves of Peano’s type, i.e. in the fractal dimension 

DF = 2, and Compton’s length, λ, and temporal, τ, scales, 

m c0

λ =


 

 
m c0

2
τ =


   (58a,b) 

equation (57) takes the Schrödinger standard form: 

 i
m t

2

0

0
2

ψ
ψ

∂
∆ + =

∂

       (59) 

In the relations (58 a,b) and (59) ħ is the reduced Plank’s constant, c the speed of light on the 

vacuum and m0 the rest mass of the particle test. 

Let us apply the previous mathematical model in the description of two fractal fluids 

interface dynamics in the fractal dimension DF. Consider two fractal fluids, 1 and 2, 

separated by an interface as shown in Figure 5. If the interface is thick enough so that the 
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fractal fluids are “isolated” from each other, the time-dependent Schrödinger type equation 

for each side is: 

 
dim D H
dt

1
0 1 12

ψ
ψ=     (60) 

 
dim D H
dt

2
0 2 22

ψ
ψ=    (61) 

with 

 ( )( )DFD dt
2 1−

= D     (62) 

where iψ  and Hi , i = 1, 2 are the scalar potentials of the complex speed fields and 

respectively the “Hamiltonians” on either side of the interface. We assume that a 

temperature field, 2T, is applied between the two fractal fluids. If the zero point of the 

temperature field is assumed to occur in the middle of the interface, the fractal fluid 1 will 

be at the temperature field -T, while the fractal fluid 2 will be at the temperature field +T. 
 

 

Fig. 5. Interface generated through the interaction of two fractal fluids ( d is the geometrical 

thickness, before the self-structuring of the interface and ξ  is the physical thickness, after 

the self-structuring of the interface) (a) and the variation of the speed field with the fractal 
coordinates (b) 
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The presence of the interface couples together the two previous Equations (60) and (61) in 
the form: 

 
dim D T Γ
dt

1
0 1 22

ψ
α ψ ψ= +     (63) 

 
dim D T Γ
dt

2
0 2 12

ψ
α ψ ψ= − +    (64) 

where α is a constant which specifies the thermal transfer type in the fractal fluid 
(Vizureanu&Agop, 2007) and Γ  is the coupling constant for the scalar potentials of the 
complex speed fields across the interface. Since the square of each scalar potential of the 
complex speed fields is also a probability density (Notalle, 1992, 2008a, 2008b, 2007), the two 
scalar potentials of the complex speed fields can be written in the form:   

 ie 1
1 1

θψ ρ=     (65) 

 ie 2
2 2

θψ ρ=      (66) 

 Θ 2 1θ θ= −      (67) 

where 1ρ and 2ρ  are the densities of particles in the two fractal fluids and Θ  is the phase 

difference across the interface. If the two scalar potentials of the complex speed fields (65) 
and (66) are substituted in the coupled Equations (63) and (64) and the results separated into 
real and imaginary parts, we obtain equations for the time dependence of the particle 
densities and the phase difference: 

 
d
dt m D

1
1 2

0

sin
ρ Γ

ρ ρ− Θ=      (68) 

 
d
dt m D

2
1 2

0

sin
ρ Γ

ρ ρ Θ= −    (69) 

 
dΘ T
dt m D0

α
= = Ω     (70) 

We can specify the heat flux in terms of the difference between Equations (69) and (70) 
which multiplies with ε:  

 ( )
d

j
dt 21ε ρ ρ= −   (71) 

It results 

 cj j Θsin=       (72) 

where 

 cj m D
1 2

0

2ε ρ ρΓ
=     (73) 
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and ε is the elementary amount of energy transferred trough the interface 
(Vizureanu&Agop, 2007). 

Equations (70) and (72) define the thermal transport inside the interface. If the temperature 

field from Equation (70) is zero, a constant heat flux of any value between cj− and cj  may 

flow through the junction according to the Equation (72). 
We return to Equations (69), (70) and (72) and apply a constant temperature field T0 to the 
junction that is: 

 ( )Θ t T t Θ
m D 0 0

0

α
= + , Θ0 const.=    (74a,b) 

A variable heat flux: 

( )cj t j t Θ0 0( ) sin= Ω +  

 T
m D0 0

0

α
Ω =    (75 a,b) 

results, although a constant temperature field is applied. 
If one overlay an “alternative” temperature field over the constant temperature field: 

 ( )T t T T t0 0( ) cos= + Ω     (76) 

one obtains a “frequency” modulation of the “heat flux”: 

( )

( ) ( )

0c

n

n 0

n

T
j j t s t Θ

m D

T
j J n t Θc m D

0
0

0

0
0

0

sin in

1 sin

α

α
+∞

=−∞

 
= Ω + Ω + = 

Ω 
 

 = − Ω − Ω +   Ω 


 

 const.0Θ =    (77a,b)               

nJ  is the Bessel function of integer index (Nikitov&Ouvanov, 1974). We note that, in the first 

approximation, for any “arbitrary” thermal signal we can always perform a Fourier’s 
decomposition (Jackson, 1991).   

Since j versus T characteristic is drawn for the average thermal flux ( )j j t≈ , and since the 

sine term averages to zero unless n0Ω = Ω , there are spikes appearing on this characteristic 

for temperature field equal to: 

 n
m D

T n 0

α
= Ω      (78) 

with the maximum amplitude  

 c n

T
j j J

m D
0

0

max

α 
=  

Ω 
   (79) 
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occurring for the phaseΘ 2π= . Figure 6 shows these spikes at intervals proportional to the 

thermal source “frequency” and indicates their maximum amplitude range. The value of the 

heat flux can be anywhere along a particular heat flux spike, depending on the initial phase.  
 

 

Fig. 6. Theoretical heat flux-temperature characteristic  

It results the following: 
 i. The presence of the spikes in the average heat flux specifies a negative differential   

thermal “conductance” which corresponds to the interface self-structuring. This is a 
Josephson thermal type effect; 

 ii. Condition (78) corresponds to the “modulation” of the interface “oscillations” under the 
influence of an external thermal signal. 

4.4 Numerical simulations of the heat transfer in nanofluids 
Replacing the complex speed field (6) in equation (50) and separating the real and imaginary 
parts, we obtain: 

 
( )

( ) ( )
( )DF

m m Q
t

D dt
t

0 0

2 1

0
−

∂
+ ⋅∇ = −∇

∂
∂

+ ∇ ⋅ + ∆ =
∂

V
V V

U
V U V

   (80a,b) 

where Q is the fractal potential,  

 ( )
( )DFm

Q m D dt
2 2 1

0
0

2

−

= − ∇ ⋅−
U

U    (81) 

The explicit form of the complex speed field is given by means the expression:  

 iSeψ ρ=     (82) 
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with ρ the amplitude and S the phase. Then equation (55) with 

 ( )
( )

( )
DF iSΦ iD dt e

2 1

2 ln ρ
−

= −    (83) 

 involves the real and imaginary speed field components 

 
( )( )

( )( )

DF

DF

D dt S

D dt

2 1

2 1

2

ln ρ

−

−

= ∇

= ∇

V

U

    (84a,b) 

while the fractal potential (81) is given by the simple expression 

 ( )( )DFQ m D dt
4 22

0

ρ

ρ

− ∆
= −      (85) 

With equations (84 a, b), the relation (80 b) takes the form: 

 
t

ln
ln 0

ρ
ρ

∂ 
∇ + ⋅∇ + ∇ ⋅ = 

∂ 
V V     (86) 

or, by integration with 0ρ ≠ : 

 ( ) T t
t

( )
ρ

ρ
∂

+ ∇ ⋅ =
∂

V     (87) 

with T(t) a function which depends only on time. 
Equation (80 a) corresponds to the momentum conservation law, while equation (87), with 
T(t)≡0  to the probability density conservation law. So, equations: 

 

( )

m Q
t

t

0 ( )

0
ρ

ρ

∂ 
+ ⋅∇ = −∇ 

∂ 
∂

+ ∇ ⋅ =
∂

V
V V

V

  (88a,b) 

with Q given by (81) or (85), from the fractal hydrodynamic equations in the fractal 
dimension DF. The fractal potential (81) is induced by the non-differentiability of the space 
coordinates. 
Now, by multiplying equation (88 b) with ε, i.e. 

 
( )

( )
t t

ρ ε ε
ρ ε ρ ε

∂ ∂ 
+ ∇ ⋅ = + ⋅ ∇ 

∂ ∂ 
V V   (89) 

and considering the null value of the right term of Eq. (89), the conservation law for ε is 
found in the form: 

 
( )

( )
t

0
ρ ε

ρ ε
∂

+ ∇ ⋅ =
∂

V     (90) 
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Particularly, if ε is the energy density of a fluid (Landau&Lifshitz, 1987), ε=e+(p/ρ)+v2/2 , the 
“classical” form of the energy conservation law results (the physical significances of e and p 
are given in (Landau&Lifshitz, 1987)). 
Several numerical investigations of the nanofluid heat transfer have been accomplished in 
(Maiga et al., 2005, 2004; Patankar, 1980). Akbarnia and Behzadmehr (Akbarnia & 
Behzadmehr, 2007) reported a Computational Fluid Dynamics (CFD) model based on single 
phase model for investigation of laminar convection of water-Al2O3 nanofluid in a 
horizontal curved tube. In their study, effects of buoyancy force, centrifugal force and 
nanoparticle concentration have been discussed. 
In that follows we shall perform numerical studies on the nanofluid heat transfer (water-
based nanofluids, Al2O3 with 10 nm particle-sizes) in a coaxial heat exchanger.  
The detailed turbulent flow field for the single-phase flow in a circular tube with constant 
wall temperature can be determined by solving the volume-averaged fluid equations, as 
follows: 
i. continuity equations (88 b) 

 ( )
t

0
ρ

ρ
∂

+ ∇ =
∂

V     (91) 

ii. momentum equation (88 a) in the form: 

 ( ) ( ) P B
t

ρ ρ τ
∂

+ ∇ = −∇ + ∇ +
∂

V VV    (92) 

where we supposed that (Harvey, 1966; Albeverio&Hoegh-Krohn, 1974): 

 Q P Bτ−∇ = −∇ + ∇ +     (93) 

P, τ and B having the significances from (Fard et al., 2009); 
iii. energy equation (90) in the form: 

 ( ) ( ) ( )ppH C T k T C T
t
ρ

ρ ρ ρ
∂

+ ∇ = ∇ ∇ −
∂

V V    (94) 

where H is the enthalpy, Cp is the specific heat capacity and T is the temperature field. 
In order to solve above-mentioned equations the thermo physical parameters of nanofluids 
such as density, heat capacity, viscosity, and thermal conductivity must be evaluated. These 
parameters are defined as follows: 
i. density and heat capacity. The relations determinate by Pak si Cho (Pak&Cho, 1998), 

have the form: 

 ( ) f pnf 1ρ ε ρ ερ= − +    (95) 

 ( )nf f pC C C1 ε ε= − +    (96) 

ii. thermal conductivity. The effective thermal conductivity of a mixture can be   calculated 
by using relation (43): 

 
( )

eff p

f f

k k

k k
1 0.043

1

ε

ε
= +

−
  (97) 
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where we consider that rf /rp ≈ 0,043 as in (Kumar et al., 2004; Jang&Choi, 2004; Prasher, 
2005) and keff = knf; 

iii. viscosity. We choose the polynomial approximation based on experimental data 
Nguyen (Nguyen et al., 2005), for water – Al2O3 nanofluid: 

 ( )nf f
2306 0.19 1µ ε ε µ= − +     (98) 

These equations were used to perform the calculation of temperature distribution and 
transmission fields in the geometry studied.   
Figure 7 shows the geometric configuration of the studied model which consists of a 
coaxial heat exchanger with length L=64 cm; inner tube diameter d=10 mm and outer tube 
diameter D=20 mm. By inner tube will circulate a nanofluid as primary agent, and by the 
outer tube will circulate pure water as secondary agent. The nanofluid used is composed 
of aluminum oxide Al2O3 particles dispersed in pure water in different concentrations 
(1%, 3% and 5%). 
 

 

Fig. 7. Geometry of coaxial heat exchanger 

The continuity, momentum, and energy equations are non-linear partial differential 
equations, subjected to the following boundary conditions: at the tubes inlet, “velocity inlet” 
boundary condition was used. The magnitude of the inlet velocity varies for the inner tube 
between 0,12 m/s and 0,64 m/s, remaining constant at the value of 0,21 m/s for the outer 
tube. Temperatures used are 60, 70, 90 degrees C for the primary agent and for the 
secondary agent is 30 degrees C. Heat loss to the outside were considered null, imposing the 
heat flux = 0 at the outer wall of heat exchanger. The interior wall temperature is considered 
equal to the average temperature value of interior fluid. Using this values for velocity, the 
flow is turbulent and we choose a corresponding model (k-ε) for solve the equations 
(Mayga&Nguyen, 2006; Bianco et al., 2009).  
For mixing between the base fluid and the three types of nanofluids were performed 
numerical simulations to determinate correlations between flows regime, characterized by 
Reynold’s number, and convective coefficient values.  
The convective coefficient value h is calculated using Nusselt number for nanofluids 
(Al2O3+H2O), relation established following experimental determinations by Vasu and all 
(Vasu et al., in press): 

 nf nf nfNu 0.8 0.40.0023 Re Pr= ⋅ ⋅    (99) 
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where the Reynolds number is defined by: 

 
nf m

nf
nf

v d
Re

ρ

µ
=   (100) 

and Prandtl number is : 

 
nf

nf
nf

Pr
υ

α
=     (101) 

and then, results : 

 
nfNuk

h
d

=    (102) 

The temperature and velocity profiles can be viewed post processing. In figure 8 is 
illustrated one example of visualization the temperature profile in a case study, depending 
by the boundary conditions imposed. 
 

 

Fig. 8. Temperature profile  

Following we analyze the variation of convective heat transfer coefficient in comparison 
with flow regime, temperature and nanofluids concentrations. 
Figures 9-11 highlights the results of values of water and three types of nanofluids used 
depending on the Reynolds number and the primary agent temperature.  
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Fig. 9. Variation of convective heat transfer coefficient based on the Reynolds number at the 
T=60oC 

 

 

Fig. 10. Variation of convective heat transfer coefficient based on the Reynolds number at 
the T=70oC 
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Fig. 11. Variation of convective heat transfer coefficient based on the Reynolds number at 
the T=90oC 

 

 

Fig. 12. Variation of convective heat transfer coefficient based on temperature at Reynolds 
number equal to 8000 
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It can be seen that the value of convective heat transfer coefficient h for water is about 13% 

lower than the nanofluids, also parietal heat transfer increases with increasing the primary 

agent temperature and implicitly with increasing of volume concentration. 

In Figure 12 is represented the variation of convective heat transfer coefficient h depending 

on the volume concentration of particles at imposed temperatures (60, 70 and 90 degree C) 

for  Reynold’s number equal to 8000. 

We can notice a significant increase of approximately 50% for convective heat transfer 

coefficient for nanofluid at 5% concentration, compared with water at 90 degree C. 

5. The dispersive approximation in the heat transfer processes 

In the dispersive approximation of the fractal heat transfer the relation becomes a Korteweg 

de Vries type equation for the temperature field 
 

 ( )( )DFT T
T dt T

t t
3 13 2 3

ˆ 2ˆ 0
3

−∂ ∂
= + ⋅∇ + ∇ =

∂ ∂
V D     (103) 

Separating the real and imaginary parts in Eq.(103), i.e. 

 ( )( )DFT
T dt T

t
T

3 13 2 32
0

3
0

−∂
+ ⋅∇ + ∇ =

∂
− ⋅∇ =

V

U

D      (104a,b) 

and adding them the heat transfer equation is obtained as: 
 

 ( ) ( )( )DFT
T dt T

t
3 13 2 32

0
3

−∂
+ − ⋅ ∇ + ∇ =

∂
V U D   (105) 

From Eq.(104b) we see that at the fractal scale there isn’t any thermal convection. 

Assuming that Tσ− =V U , with constantσ =  (for this assumption see (Agop et al., 2008)), 

in the one-dimensional case, the equation (52), with the dimensionless parameters 

 
T

t kx
T

0

, ,τ ω ξ φ= = =    (106a-c) 

and the normalizing conditions 

 
( )

( )DF
T k dt k

3 13 2 3

0 2
1

6 3

σ

ω ω

−

= =
D

    (107) 

takes the form: 

 6 0τ ξ ξξξφ φ φ φ∂ + ∂ + ∂ =    (108) 

Through the substitutions 

 ( ) ( )w u, ,θ φ τ ξ θ ξ τ= = −    (109a,b) 
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the Eq.(108), by double integration, becomes 

 ( )
u

w F w w w gw h2 3 21

2 2

 ′ = = − − − − 
 

    (110) 

with g, h two integration constants and u the normalized phase velocity. If ( )F w has real 

roots, the equation (108) has the stationary solution 

 ( )
( )
( )

E s a u
s a a s

K s s
2, , 2 1 2 cn ;

02
φ ξ τ ξ τ ξ

    
= − + ⋅ − +          

   (111) 

where cn is the Jacobi’s elliptic function of s modulus (Bowman, 1953), a  is an 

amplitude, 0ξ is a constant of integration and 

 ( ) ( ) ( ) ( )K s s d E s s d
2 2

1 2 1 22 2 2 2

0 0

1 sin , 1 sin

π π

ϕ ϕ ϕ ϕ
−

= − = −    (112a,b) 

are the complete elliptic integrals (Bowman, 1953). As a result, the heat transfer is achieved 
by one-dimensional cnoidal oscillation modes of the temperature field (see Fig.13a). This 
process is characterized through the normalized wave length (see Fig.13b): 

 
( )sK s

a

2
λ =      (113) 

and normalized phase velocity (see Fig.13c): 

 
( )
( )

E s
u a

K s s2

1
4 3 1
 

= − − 
  

    (114) 

In such conjecture, the followings result: 

i. the parameter s becomes a measure  of the heat transfer. The one-dimensional cnoidal 

oscillation modes contain as subsequences for s 0=  the one-dimensional harmonic 

waves while for s 0→  the one-dimensional waves packet. These two subsequences 

describe the heat transfer through the non-quasi-autonomous regime. For s 1= , the 

solution (111) becomes a one-dimensional soliton, while for s 1→ the one-dimensional 

solitons packet results. These last two subsequences describe the heat transfer through 

the quasi-autonomous regime; 
ii. by eliminating the parameter a from relations (113) and (114), one obtains the relation: 

 
( )

( ) ( ) ( ) ( )( )
u A s

A s s E s K s s K s

2

2 2 216 3 1

λ =

 = − − 
  (115a,b) 

We observe from Fig.13d that only for s 0 0.7= ÷ , ( )A s const.≈ , and u 2 const.λ ≈ . 

According with previous transport regimes, this dispersion relation is valid only for the 

non-quasi-autonomous regime. For the quasi-autonomous regime it has no signification. 

Moreover, these two regimes (non-quasi-autonomous and quasi-autonomous) are separated 
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by the 0.7 experimental structure (Chiatti et al., 1970). We note that the cnoidal oscillation 

modes can be assimilated to a non-linear Toda lattice (Toda, 1989). In such conjecture, the 

ballistic thermal phononic transport can be emphasized.  
 

a) 

b) 
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c) 

d) 

Fig. 13. One-dimensional cnoidal oscillation modes of the temperature field (a) ; normalized 
wave length (b); normalized phase velocity (c); separation of the thermal flowing regimes 
(non-quasi-autonomous and quasi-autonomous) by means of the 0.7 experimental structure 
(Jackson, 1991) 

Let us study the influence of fractality on the heat transfer. This can be achieved by the 
substitutions: 

 
u

w f i
u

2 2
,

4

θ
β= =   (116a,b) 
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and the restriction 0=h in Eq.(110). We obtained a Ginzburg-Landau (GL) type equation 

(Jackson, 1991; Poole et al., 1995): 

 f f f3

ββ∂ = −     (117) 

The following result: 

i. The ┚ coordinate has dynamic significations and the variable f has probabilistic 

significance;  
ii. The general solution of GL equation (Jackson, 1991): 

 
s

f s
s s

2

0
02 2

2
sn ; , const.

1 1

β β
β

 −
= = 

+ + 
  (118a,b) 

where sn  is the Jacobi elliptic function of s modulus (Bowman, 1953) (see Fig14), i.e. the 

fractalisation of the thermal flowing regime,  implies the dependence on s of the following 
parameters: 
i. The relative pair breaking time 

 ( ) ( )r s K s2 21τ = +    (119) 

ii. The relative concentration 

 
( )
( )r

E s
n

s K s2

2
1

1

 
= −  +  

  (120) 

iii. The relative thermal conductivity 

 ( ) ( ) ( )( )rk K s K s E s2= −    (121) 

 

 

Fig. 14. The fractalisation of the thermal flowing regime  is introduced by means of GL equation 

These parameters are discontinuous at s 1=  (see Figs 15a-c), which allows us to say that this 

singularity can be associated with a phase transition, e.g. from self-structuring to normal 

state.  
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Fig. 15. The dependences on s for: relative pair breaking time rτ  (a); relative concentration 

rn  (b); relative thermal conductivity rk  (c) 
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Since the general solution of GL equation is (118a), the self-structuring process is controlled 
by means of the normalized fractal potential, 

 ( ) ( )d f s s
Q s f s

f d s s s

2 2 2
2 2 0

2 2 2 2

1 1 2
, 1 cn ;

1 1 1

β β
β

β

 − −
= − = − = +  

+ + + 
   (122) 

also through cnoidal modes. Thus, for → 0s  it results the non-quasi-autonomous regime (of 
wave packet type), 

 ( )
s s

Q s s
s s s

2 2
2 0

2 2 2

1 2
, 0 cos ;

1 1 1

β β
β

 − −
→ = +  

+ + + 
  (123) 

and for s 1→  the quasi-autonomous regime (of soliton packet type), 

 ( )
s s

Q s s
s s s

2 2
2 0

2 2 2

1 2
, 1 sech ;

1 1 1

β β
β

 − −
→ = +  

+ + + 
  (124) 

For s 1=  the soliton (118a) is reduced to the fractal kink, 

 ( )kf
0tanh

2

β β
β

− 
=  

 
  (125) 

and we can build a field theory with spontaneous symmetry breaking. The fractal kink 
spontaneously breaks the vacuum symmetry by tunneling and generates pairs of 
Copper’s type (Chaichian&Nelipa, 1984). 

iv. The normalized fractal potential (122) take a very simple expression which is 

proportional with the density of states of the Cooper pairs type. When the density of 

states of the Cooper pairs type, f 2 , becomes zero, the fractal potential takes a finite 

value, Q 1= . The fractal fluid is normal (it works in a non-quasi-autonomous regime) 

and there are no coherent structures (Cooper pairs type ) in it. When f 2  becomes 1, 

the fractal potential is zero, i.e. the entire quantity of energy of the fractal fluid is 

transferred to its coherent structures, i.e. to the Cooper pairs type. Then the fractal 

fluid becomes coherent (it works in a quasi-autonomous regime). Therefore, one can 

assume that the energy from the fractal fluid can be stocked by transforming all the 

environment’s entities into coherent structures (Cooper pairs type) and then 

“freezing” them. The coherent fluid acts as an energy accumulator through the fractal 

potential (122). 

6. Conclusions  

A new model on the heat transfer processes in nanostructures considering that the heat flow 
paths take place on fractal curves is obtained. It results: 
i. In the dissipative approximation of the heat transfer process, for Peano type heat flow 

paths and synchronous movements at differentiable and non-differentiable scales, the 
thermal transfer mechanism is of diffusive type. In such conjecture, numerical solutions 
in the absence and in the presence of “walls” are obtained. 
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For a nanofluid, the increasing of the thermal conductivity depends on the ratio of 
conductivitie (nano-particle/fluid), volume fraction of the nanoparticle and the 
nanoparticle radius. Moreover, a temperature dependence of the thermal conductivity 
is olso given. 

ii. In the dispersive   approximation of the heat transfer process, both at differentiable and 
non-differentiable scales, the thermal transfer mechanism is given through the cnoidal 
oscillation modes of the temperature field. Two thermal flow regimes result: one by 
means of waves and wave packets and the other by means of solitons and soliton 
packets. These two regimes are separated by the 0.7 experimental “structure”. 
Since the cnoidal oscillation modes can be assimilated with a non-linear Toda lattice, a 
ballistic thermal phononic transport can be emphasized. 

iii. It result an unique mechanism of thermal transfer in nanostructures in which the usual 
ones (diffusive type, ballistic phononic type, etc.) can be seen as approximations of the 
present approach.  

iv. For convective type behavior of a complex fluid, numerical studies of a coaxial heat 
exchanger using nanofluids are presented.  

Then single-phase model have been used for prediction of flow field and calculation of heat 
transfer coefficient. The study present here indicate the thermal performances of a particular 
nanofluid composed of aluminum oxide (Al2O3) particles dispersed in water for various 
concentrations ranging from 0 to 5 %. Results have shown that heat transfer coefficient 
clearly increases with an increase in particle concentration. 
The results clearly show that the addition of particles in a base fluid produces a great 
increase in the heat transfer (≈50%). Intensification of heat transfer increases proportionally 
with increasing of volume concentration of these nanoparticles.  
In the present model the values of convective heat transfer coefficient are dependent of flow 
regime and temperature values. When temperature is higher, the value of this coefficient 
increases. 
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