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1. Introduction

This chapter addresses design issues of components realized with rubber-like PhotoPolymers
(PP) recently introduced in Rapid Prototyping. In particular, the determination of accurate,
hyperelastic, constitutive models which describe the PP behavior is discussed in detail. In
fact, Stereolithography and Polyjet processes allow the production of highly flexible objects by
using photosensitive resins whose mechanical properties are, in some cases, similar to natural
rubber. These parts, being fabricated with an additive approach, eventually represent a final
product instead of a mere ‘prototype’. Therefore, the term Additive Manufacturing (AM)
might be used in substitution to Rapid Prototyping (Gibson et al., 2010) in order to underline
a closer link to the end-use component. From a designer’s point of view, AM technologies
offer the possibility, before unknown, to customize and singularly optimize each product for
the end user, such that focused design methods are needed.
In the case of rubber-like PP, the considered materials usually experience deviatoric
(isochoric), fully reversible deformations which can be well described by hyperelastic
constitutive theories capable of dealing with large (finite) strains (Holzapfel, 2001). The
capability to undergo finite deformations may intrinsically solve several functional design
requirements but this requires an accurate representation of the material behavior through
proper constitutive models. Unfortunately, the only data which are available (e.g. data from
Objet Geometries Ltd., http://www.objet.com/docs/) are limited to basic material properties,
namely tensile strength, tensile modulus at few reference stretch ratios, compression set, and
hardness. Hence, the correct design and verification of AM rubber-like products become
impossible or, at least, very difficult. For example, every shape optimization through
nonlinear Finite Element Analysis (FEA) requires a constitutive material law (i.e. a relation
between stress and deformation) as a key input of the numerical model. In the same way,
the calculation of hardness and friction influence on the product contact behavior requires a
detailed description of its deformation state for given applied loads (Shallamach, 1952). If a
rough estimate of any stress-strain field based on the aforementioned data may be acceptable
for the first-attempt sizing of a prototype, nonetheless the design for direct manufacturing of
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2 Rapid Prototyping

end-products through AM technologies becomes critical. In this contest, the development of
virtual prototypes capable of correctly predicting the system response in the case of non-linear
large deformations is fully motivated and may lead to successful innovations. Therefore,
the knowledge of the numerical and experimental routines used to determine the material
hyperelastic parameters becomes fundamental and represents the foundation for any AM
custom design methods.
In summary, the chapter outline is the following:
• Section I summarizes relevant equations and definitions of continuum mechanics. Typical

hyperelastic models, which can be used to describe AM materials, are reviewed along with
their intrinsic limitations.

• Section II discusses the experimental tests which are necessary to determine the material
constitutive parameters. A Matlab code, implemented by the authors, which may be used
to numerically fit the experimental data is reported. As said, the correct determination of
the material constitutive parameters represents the first step in any design optimization
routine achieved by means of FEA.

• Section III presents a design case study: rubber pads made of photosensitive polymers
are studied through non-linear FEA (Berselli & Vassura, 2009.; Piccinini et al., 2009.). The
case study highlights that the use of different constitutive laws leads to different numerical
solutions for a given boundary-value problem.

2. General remarks on hyperelastic models for rubber-like polymers.

A constitutive equation is a physically-based mathematical model relating stress and
deformation. Among the many possible theories provided in the literature (refer to Holzapfel
(2001) for a review), the choice of the relation which best describes the actual material behavior
is based on both empirical observations and the capability to easily handle the formulation.
With reference to the class of materials considered here, at a macroscopical level, it is observed
that:
• The PP can experience large fully reversible deformations.
• At low deformation rates, hysteresis and viscous effects are negligible.
• The volume of the specimen does not change under arbitrarily high loads.
• There exist preferred directions of damage since the manufacturing process of the final

product is based on the subsequent deposition of thin layers (16 µm).
Therefore, it is reasonable to assume a hyperelastic, incompressible behavior in quasi-static
conditions. In addition, depending on manufacturing quality, layers direction and applied
loads, the material might be considered either orthotropic or isotropic. In the following, a
homogenous isotropic behavior is assumed. The material characterization on the basis of
orthotropic constitutive models is currently under development.

2.1 Basic equations

Concerning hyperelastic isotropic materials, it is postulated the existence of a Helmholtz
free-energy function, W, which is defined per unit volume in the undeformed configuration
of the material. The scalar value, W, is called strain-energy function if it depends exclusively
on the material deformation. For instance, one can express the strain energy as W = f (B) or
W = f (F), where B = FF

T is the left Cauchy-Green (or Finger) deformation tensor and F is
the the deformation gradient tensor. Referring to Fig. 1, the tensor F maps an infinitesimal
line element in the undeformed configuration, dx

′, to a corresponding line element, dx, in the
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Hyperelastic Modeling of Rubber-Like Photopolymers for Additive Manufacturing Processes 3

-Reference configuration

-Time t=0

-Deformed configuration

-Time t

B
0

B
t

X

dX

x

dx

X
2
,x

2

X
3
,x

3

X
1
,x

1

P P

Deformation

Fig. 1. Deformation schematic. Adapted from Holzapfel (2001).

deformed configuration, that is (index notation):

dxi =
∂xi

∂Xj
dXj = FijdXj i, j ∈ {1, 2, 3} (1)

It can be shown (Holzapfel, 2001) that the tensor F can be uniquely decomposed into a pure
rotation and a pure stretch. In addition, the determinant of F represents the ratio between the
volume in the deformed configuration and the volume in the reference configuration. Hence,
in the case of incompressible media, J ≡ detF = 1.
The eigenvalues of F, namely λi, i ∈ 1, 2, 3, are called the principal stretches. The corresponding
eigenvectors are called principal direction of stretch and define an orthonormal basis along
which the principal stretches are measured.
The invariants of the tensor B are called strain invariants and are defined as:

I1(B) = Bii = λ2
1 + λ2

2 + λ2
3 (2)

I2(B) =
1

2
(BiiBjj − BjiBij) = λ2

1λ2
2 + λ2

2λ2
3 + λ2

1λ2
3

I3(B) = detB = λ2
1λ2

2λ2
3

Having defined principal stretches and invariants, the incompressibility constraint yields:

J ≡ detF = λ1λ2λ3 = 1 (3)

⇒ λ3 = (λ1λ2)
−1

I3(B) = 1 (4)

Regarding the formulation of the constitutive equations, the majority of nonlinear elastic
models assume a strain energy function written either in terms of strain invariants, such that
W = f (I1, I2, I3), or in terms of principal stretches, such that W = f (λ1, λ2, λ3). Naturally,
in the case of incompressible materials, one can write the strain energy only as a function
of two independent stretches or two independent invariants respectively. For instance

WR(λ1, λ2) = f (λ1, λ2, λ−1
1 λ−1

2 ). Concerning invariant-based strain energy functions, a
general representation was proposed by Rivlin (1948):

WR =
∞

∑
p,q=0

Cpq(I1 − 3)p(I2 − 3)q (5)
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4 Rapid Prototyping

where Cpq are material parameters to be determined experimentally, i.e. curve fitted over
experimental stress/stretch data (see Sec. II). By only keeping either the first term or the first
two terms in Eq. 5, the following models are obtained

WNH = C10(I1 − 3) Neo-Hookean model (6)

WMR = C10(I1 − 3) + C01(I2 − 3) Mooney-Rivlin model (7)

which are referred in the literature as Neo-Hookean (NH) and Mooney-Rivlin (MR) models. The
so-called Yeoh model (Yeoh, 1990) is also a particular form of the Eq. 5 and depends solely
on I1. For further details of the Yeoh model and for additional invariant-based strain energy
formulations, the interested reader can refer to Holzapfel (2001). Concerning stretch-based
strain energy functions, a well known model was proposed by Ogden (1972):

WO(λ1, λ2) =
N

∑
p=1

µp

αp
(λα

1 + λα
2 + λ−α

1 λ−α
2 − 3) Ogden model (8)

where N is the model’s order and µp, αp are material parameters to be determined
experimentally. Considerations of physically realistic response and material stability lead to
the inequalities:

µpαp > 0 p = 1, ..., N(no sum over i) (9)

N

∑
p=1

µpαp = 2µ (10)

where µ > 0 is the shear modulus of the material in its reference configuration. Note that the
condition given by Eq. 9 is NOT necessary for every i if N ≥ 3 (Ogden et al., 2004). Regarding
the connection between the different formulations, it is interesting to point out that the NH
and MR models of Eq. 6 and Eq. 7 can be deduced form Eq. 8, by setting N = 1, α1 = 2 and
N = 2, α1 = 1, α2 = 2, respectively:

WMR = C10(I1 − 3) + C01(I2 − 3) (11)

=
µ1

2

(

λ2
1 + λ2

2 + λ−2
1 λ−2

2 − 3
)

−
µ2

2

(

λ−2
1 + λ−2

2 + λ2
1λ2

2 − 3
)

where C10 = µ1/2 and C01 = −µ2/2. Having defined a strain energy function for an
incompressible medium in terms of invariants or stretches, the Cauchy stress tensor can be
found by (Holzapfel, 2001):

σij = −pδij + 2Bij
∂WR

∂I1
− 2B−1

ij

∂WR

∂I2
Invariant-based model (12)

σij = −pδij + Fik
∂WO

∂Fjk
Stretch-based model (13)

The scalar δij is the Kronecker delta whereas the scalar p is an indeterminate Lagrange
multiplier which arises from the imposition of the incompressibility constraint J − 1 = 0. Note
that the scalar p may only be determined from equilibrium conditions or boundary conditions
and represents a reaction stress which is workless for every motion and deformation that are
compatible with the incompressibility constraint. In practice, it can be physically interpreted
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Hyperelastic Modeling of Rubber-Like Photopolymers for Additive Manufacturing Processes 5

as a hydrostatic pressure (that in fact does not produce any deformation on perfectly
incompressible materials).
The first Piola-Kirchoff (or nominal or engineering) (PK) stress is simply given by:

Pij = σil F
−1
il (14)

The PK stress represents a force measure per unit surface area defined in the reference
(undeformed) configuration. When testing rubber, this is a typical stress measurement since
the force is constantly monitored via the load cell whereas the cross-sectional area is usually
measured in the reference configuration only.

2.2 Rubber testing under pure homogeneous deformations

Concerning standardized tests for rubber characterization, particular loading conditions
are applied such that the mathematical relation between stress and deformation becomes
relatively simple. In this context, one defines as pure homogeneous deformations the
deformations for which the strain magnitude does not vary with position in the body and
the principal axes of stretch do not vary in direction relative to an inertial frame either
with position in the body or with strain. In such a case, the deformation gradient tensors
during deformation can be chosen as being always diagonal with diagonal elements being the
principal stretches:

Fij = λjδij ⇒

⎧

⎨

⎩

x1 = λ1X1

x2 = λ2X2

x3 = λ3X3

(15)

Typical pure homogeneous deformations are uniaxial (simple) tension/compression,
equibiaxial tension/compression, and planar tension/compression (Ogden, 1972). Planar
tension is also named pure shear mode of loading. In these cases, the associated true stress
tensors is always diagonal with diagonal elements being the principal true stresses:

σi = −p + 2
∂WR

∂I1
λ2

i − 2
∂WR

∂I2
λ−2

i Invariant-based model (16)

σi = −p + λi
∂WO

∂λi
Stretch-based model (17)

In the same manner, the nominal stress tensor is diagonal with diagonal elements being the
principal PK stresses:

Pi = σiλ
−1
i i ∈ {1, 2, 3} (18)

By simply introducing Eqs. 8 in Eqs. 16, the following expressions are trivially found:

σi =
N

∑
p=1

µpλi
αp − p (19)

Recalling that the NH and MR models can be seen as particular forms of the Ogden model
(Eq. 8), the expression of Eq. 19 will be used in the following for the general calculation of the
principal stresses.
As previously done by Ogden (1972), the mathematical forms to which Eqs. 19
reduces in uniaxial tension/compression, equibiaxial tension/compression and planar
tension/compression (Fig. 2) are derived explicitly. In all these cases, Eq. 19 is directly applied
instead of Eq. 13.
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Uniaxial tension

Uniaxial compression

Equibiaxial tension

Equibiaxial compression

Planar tension

(pure shear)

Planar compression

Constant

Constant

Fig. 2. Schematics of uniaxial tension/compression, equibiaxial tension/compression and
pure shear. Adapted from Bhashyam (2002).

2.2.1 Uniaxial tension/compression

Citing from Ogden (1972), let λ1 = λ be the stretch ratio in the direction of elongation and
σ1 = σS the corresponding principal Cauchy stress. The other two principal stresses are zero
since no lateral forces are applied, i.e. σ2 = σ3 = 0. Hence, by virtue of the incompressibility

constraint, λ2 = λ3 = λ− 1
2 . Using Eq. 19 and eliminating p yields:

σS = σ1 =
N

∑
p=1

µp(λ
αp − λ−

αp
2 ) (20)

Note that the condition of compression is characterized by 0 < λ1 < 1 and leads to negative
stress values.

2.2.2 Equibiaxial tension/compression

Citing from (Ogden, 1972), in equibiaxial tension/compression two of the principal stresses
are equal. For instance σ2 = σ3 = σE whereas σ1 = 0. The corresponding stretches are
λ2 = λ3 = λ whereas λ1 = λ−2. Using Eq. 19 and eliminating p yields:

σE =
N

∑
p=1

µp(λ
αp − λ−2αp ) (21)

Note that the condition of compression is characterized by 0 < λ2 = λ3 < 1 and leads to
negative stress values.

2.2.3 Planar tension/compression (pure shear)

Citing from Ogden (1972), in planar tension/compression one of the principal extension ratios
is held fixed, say λ3 = 1. Setting λ1 = λ and λ2 = λ−1, the stress-strain relations of Eq. 19
reduces to:

σP1 =
N

∑
p=1

µp(λ
αp − λ−αp) σP2 =

N

∑
p=1

µp(1 − λ−αp) σP3 = 0 (22)
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Hyperelastic Modeling of Rubber-Like Photopolymers for Additive Manufacturing Processes 7

Once again, the condition of compression is characterized by 0 < λ1 < 1 and leads to negative
stress values.

2.2.4 General expression for the PK stress

Concerning PK stress, simple calculations starting from Eqs. 20, 21, 22 lead to the following
expression, which turns useful when numerically fitting experimental stress-stretch curves:

P = fPK(λ, K, C) (23)

=
N

∑
p=1

(µp(λ
(αp−1) − λ(−1−αp/K))

where K = 2 for uniaxial tension/compression, K = 1/2 for equibiaxial tension/compression,
K = 1 for pure shear, and C = [µ1, α1, µ2, α2 . . . µN , αN ]t is a vector of (unknown) material
parameters.

2.3 Equivalence of different modes of deformation

As reported in Ogden et al. (2004), multiple modes of deformation are required to assess
the material constants that define the hyperelastic stress-strain relationship in quasi-static
conditions. Nonetheless, in the case of incompressible materials, some modes of deformation
theoretically provide the same information. In particular, the following modes of deformation
are equivalent:
• Uniaxial Tension and Equibiaxial Compression.

Uniaxial

tension

+

Hydrostatic

compression

Equibiaxial

compression

=

Uniaxial

compression

Hydrostatic

tension

Equibiaxial

tension

Planar tension

(pure shear)

Hydrostatic compression

(plane strain assumption)

Planar

compression

+ =

+ =x
1

x
2 x

3

x
1

x
1

x
2

x
3

x
2 x

3

X
2
,x

2

X
3
,x

3

X
1
,x

1

Fig. 3. Equivalence of different modes of deformation. Adapted from Bhashyam (2002).
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8 Rapid Prototyping

• Uniaxial Compression and Equibiaxial Tension.
• Planar Tension and Planar Compression.
These equivalences hold as long as any hydrostatic pressure superimposed to any stress field
arising in the specimen does not affect the deformation field. The concept is well explained
in Fig. 3. It is interesting to point out that the equivalence between equibiaxial tests and
compression tests turns useful when an equibiaxial test rig is not available. In fact, simple
tension/compression and pure shear tests can be easily performed by means of common
tensile stages (see, for instance, Figs. 4(a) and 4(b)). On the other hand, pure compression
requires the use of frictionless plates, which are rather difficult to achieve in practice. Hence,
some authors (e.g. Day & Miller. (2000)) suggest that equibiaxial tension tests should be better
suited to achieve information about the material behavior under compressive loads.

3. Determination of the material hyperelastic parameters

The PP under investigation is named Tango Plus � Fullcure 930 (hardness 27 Shore A).
This material is compatible with Polyjet processes and it is currently commercialized by
Objet Geometries in two colors (yellow or black) having identical mechanical properties.
The tests performed for material characterization are cyclic Uniaxial Tension (UT), Uniaxial
Compression (UC) and Pure Shear (PS) 1. As said, the material is considered isotropic and
incompressible. Note, once again, that the hypothesis of isotropy is a strong simplification of
the physical system yet supported by macroscopic experimental evidence.
The specimens were mounted on a tensile stage (GALDABINI SUN 500, Figs. 4(a) and 4(b))
capable of measuring lengths and tensile/compressive forces with an accuracy of less than
10µm and 0.01N respectively; the room temperature was 21◦C; the velocity of the tensile stage
was set to 10 mm/min.
The specimen geometry and loading cycles were as it follows:
• Uniaxial compression (Fig. 4(a)): parallelepiped test piece of size 18.69 x 21.67 x 21.786 mm

subjected to two loading cycles at increasing strain level, i.e. 25%, 50%, (four loading cycles
in total). Before the compression test, petroleum jelly was applied on the loading plates of
the tensile stage to reduce friction at the contact interface.

• Uniaxial tension (Fig. 4(c)): standardized 2 mm thick dumb-bell test piece with test length
of 25 mm subjected to three loading cycles at increasing strain level, i.e. 25%, 80%, 120%
(nine loading cycles in total);

(a) Uniaxial
compression. Test rig:
GALDABINI SUN
500

(b) Pure shear. Test
rig: GALDABINI
SUN 500

(c) Uniaxial tension
dumb-bell test pieces

(d) Pure shear test
pieces

Fig. 4. Test specimen and test rig.

1 The standards ISO 37:1994, ISO 7743:1989 and ISO 2393:1994 were followed during sample preparation
and testing.
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Fig. 5. Nominal stress vs stretch test data for uniaxial compression, uniaxial tension and pure
shear.

• Pure shear (Figs. 4(b) and 4(d): 2 mm thick rectangular test piece of 200 x 20mm subjected
to three loading cycles at increasing strain level, i.e. 25%, 80%, (six loading cycles in total);
the specimen dimensions are chosen in order to make the deformation along X3 negligible
(refer to Fig. 3).

Test data, reported in Fig. 5, are then numerically fitted with a 5 − th order degree polynomial
(dotted curve in Fig. 5) which has been used to identify the strain-energy parameters.
Let λλλut = [λut

1 ..λut
k ..λut

r ]T ∈ R
r, λλλuc = [λuc

1 ..λuc
k ..λuc

s ]T ∈ R
s, λλλps = [λ

ps
1 ..λ

ps
k ..λ

ps
t ]T ∈ R

t be
the vectors of experimental stretch values imposed during UT, UC, and PS respectively (i.e.
k = 1 . . . r, k = 1 . . . s, k = 1 . . . t are the numerical indices of the data points concerning UT,

UC and PS respectively). Let P
ut

∈ R
r, P

uc
∈ R

s, P
ps

∈ R
t be the corresponding values

of experimental PK stress (referring to the polynomial fit, dotted curve in Fig. 5). Hence

(λλλut, P
ut
), (λλλuc, P

uc
), (λλλps, P

ps
) represent given pairs of experimental data.

In addition, let P
ut = [Put

1 ..Put
k ..Put

r ]T ∈ R
r, P

uc = [Puc
1 ..Puc

k ..Puc
r ]T ∈ R

s, P
ps =

[P
ps
1 ..P

ps
k ..P

ps
t ]T ∈ R

t be the vectors of theoretical PK stress values corresponding to λλλut, λλλuc,
λλλps during UT, UC, and PS respectively. In particular, the k-th value of each PK stress can be
found via Eq. 23 (i.e. Put

k = fPK(λ
ut
k , 2, C), Puc

k = fPK(λ
uc
k , 2, C), P

ps
k = fPK(λ

ps
k , 1, C)). The

vector C
∗ of optimal material parameters can be found by minimizing

min
C

S(C) where

S(C) = ‖P
us − P

us
‖2

2 + ‖P
uc − P

uc
‖2

2 + ‖P
ps − P

ps
‖2

2

=
r

∑
k=1

[

Put
k − Pk

ut]2
+

s

∑
k=1

[

Puc
k − Pk

uc]2
+

t

∑
k=1

[

P
ps
k − Pk

ps]2
(24)

The symbol ‖ · ‖2
2 identifies the squared 2-norm of a vector. For the purposes of the

present paper, the function Lsqcurvefit in the Optimization Toolbox of MATLAB has been
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Fig. 6. Nominal stress vs stretch data for uniaxial compression, uniaxial tension and pure
shear. Experimental (exp.) data, numerical fitting by means of Neo-Hookean (Eq. 6),
Mooney-Rivlin (Eq. 7), and Ogden (Eq. 8) models.

used (Ogden et al., 2004). The MATLAB code concerning the fitting procedure is reported
in Appendix I.
Figure 6 shows the best fit of the test data by using the hyperelastic models NH (Eq. 6), MR
(Eq. 7), and 4 − th order Ogden (Eq. 8) models respectively. It can be seen that the NH model
is not capable of well capturing the material behavior within the considered stretch range.
In order to allow a better comparison of the data fit, a plot of the relative error, e, is reported
in Fig. 7 concerning each test. The vector e is calculated as

ek =

∣

∣ fPK(λk, K, C
∗)− Pk

∣

∣

PK
(25)

Note that the values of stretch closed to 1 have been discarded in order to avoid very large
relative error values due to zero PK stress. In particular, the MR model provides acceptable
fitting accuracy (within 10% relative error) whereas a 4 − th order Ogden model is capable
of numerically fitting the data test within 5% relative error. Of course, the relative error
can be diminished in case the numerical fitting is restricted to smaller stretch ranges. The
constitutive parameters of the PP Tango Plus � Fullcure 930 are shown in Table 1. As a last
consideration, it is interesting to note that numerical fits performed over single sets of data
(e.g. uniaxial tension) returns unacceptable errors concerning the set of data which have been
left out from the fitting procedure (e.g. UT and PS). As an instance, Fig. 8 reports the relative
errors concerning UT, UC, and PS for a numerical fit performed over UT only. In such a case,
the MR model and the NH model return the same result (i.e. C01 = 0), with relative errors

Ogden µ1 = 6.8989e + 5Pa α1 = 0.0235

(4thOrder) µ2 = 2.2271e + 4Pa α2 = 2.93
µ3 = −7.3759e + 4Pa α3 = −2.7366
µ4 = 1.0673e + 3Pa α4 = 5.5084

Mooney-Rivlin C10 = 6.7664e + 4Pa C01 = −9.1133e + 4Pa

Table 1. Tango Plus � Fullcure 930
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concerning UT within 3%. The Ogden model returns relative errors of less than 0.5%. On the
other hand, the errors concerning UC and PS become unacceptable.

4. Design case study: soft pads under normal contact load

As a design case study, the nonlinear Finite Elements Analysis (FEA) of soft artificial
fingertips (pads) in contact conditions is discussed. The purpose is to test the reliability
of the proposed constitutive models when designing soft pads for robotic devices such as
anthropomorphic hands, prostheses and orthoses (Berselli & Vassura, 2010; Cabibihan et al.,
2009; Dollar & Howe, 2006; Tiezzi & Kao, 2006; Xydas & Kao, 1999). It is self evident that the
knowledge of the constitutive behavior of the material composing the pads is fundamental in
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Fig. 9. Soft pad concept and prototype. 3D model (a), longitudinal cross section (b),
prototype comparison with human thumb dimensions, material: Tango Plus Black (c),
comparison between homogenous pad (PAD I) and DLD Pad (Pad II), material: Tango Plus
Yellow (d).

order to achieve the desired performance and to optimize the overall design.
With respect to previous literature about pad design and modeling, early works concerned
hemispherical coreless pads (Li & Kao, 2001; Xydas & Kao, 1999), or homogenous pads
shaped over an internal rigid core (Tiezzi & Kao, 2006). Recently (Berselli, Piccinini & Vassura,
2010.), the concept of Differentiated Layer Design (DLD) has been introduced, in order to
overcome fundamental limitations of homogenous pads. A DLD pad basically consists in a
multi-layered pad constituted by a continuous external skin coupled with a discontinuous
internal layer. A 3D model of a DLD pad and its longitudinal cross section are depicted in
Figs. 9(a) and 9(b) whereas Figs. 9(c) and 9(d) depict pad prototypes realized by means of
AM. In particular, Pad I indicates a homogenous pad whereas Pad II indicates a DLD pad.
For given hyperelastic material and pad thickness, a multi-layered solution is used in
order to tailor the overall pad compliance to the application by properly shaping the inner
discontinuous layer. For instance, particular inner layer morphologies (Berselli et al., 2010)
allow to replicate the compliance behavior of the human finger, with great advantage
in prosthetic/orthotic applications. In this context, it is fundamental to assess reliable
engineering methods and tools to firstly design the optimal morphologies and then to reach
the final product. In particular, design optimization through FEA allows the generation of
purposely shaped force-displacement curves (Berselli, Piccinini & Vassura, 2010.) whereas, in
parallel, the recent availability of elastic materials compatible with AM allows an easy, fast
and cheap implementation of items, featuring the very complex shapes that are required to
achieve those force-displacement characteristics.

4.1 FEA modelling

The specimens under investigation, similar in size to a human fingertip (Fig. 9(c)), are
manufactured using either black or yellow Tango Plus � Fullcure 930 (Fig. 9(c) and 9(d)
respectively) and are characterized by a surface hardness similar to that of the human thumb
(about 25 Shore A). Concerning the specimen geometries, Pad I (Fig. 9(d) on the left) is
composed of a thick layer of homogeneous material shaped around a rigid core whereas Pad
II is designed following a DLD concept. The inner layer morphology of Pad II (Fig. 9(d) on the
right) is characterized by circumferential ribs connecting the rigid core to the skin layer. Each
rib is inclined by 45◦ with respect to the normal to the external surface, thus transforming
normal loads acting on the contact into bending actions applied on each rib. It has been
previously shown (Berselli et al., 2010), that a 3mm thick DLD pad represents a substantial
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step forward in human finger mimicry in terms of stiffness, when compared to previously
published solutions where different materials and higher pad thicknesses were used.
As for the experimental tests, the pads are pushed against a flat surface (rigid wall) while
imposed displacement and resultant force are recorded. The rigid wall is made of plexiglass,
characterized as a linear elastic material with Young’s modulus E = 3000MPa and Poisson’s
ratio ν = 0.3. The rigid wall is covered with petroleum jelly before every compression
experiment. As for the FEA model, the simulating software is ANSYS Classic 12.0. Geometry
and loads allow to adopt a bi-dimensional axis-symmetric model instead of tridimensional
ones. PLANE182 is the element used to mesh the model. This bidimensional element has
quadrilateral shape, is composed by 4 nodes and ensures good performances when simulating
finite deformations. CONTA172 and TARGE169 are the elements chosen for the contact pairs.
With regard to solution controls, the element’s technology is based on the Selective Reduced
Integration Method (also named B method) that helps to prevent volumetric mesh locking that
usually occurs in nearly incompressible models, where a purely hydrostatic pressure can be
added without changing the displacement history. In such a case, the displacement field
is augmented with a hydrostatic pressure field using a mixed (hybrid) formulation named
Mixed U/P Formulation (Bhashyam, 2002), that allows to spawn mesh without volumetric
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incompressibility problems.
Meshed models and dimensions are shown in Figs. 10(a) and 11(a): green elements for rigid
core and rigid wall, purple elements for hyperelastic soft layer, red color for constraints and
displacements. In order to investigate the pad response, a displacement in the y (vertical)
direction is imposed to the rigid wall and a measurable reaction force is generated on the rigid
core on which the soft pad is mounted. The parameters of the Ogden and MR strain energy
functions reported in Tab. I have been used within the FEA models of the pads. Similarly
to previously published results (Korochkina et al., 2008; Xydas et al., 2000), the simulations
include a simple Coulomb friction model which is easier to handle than other friction laws
presented in the literature (for example Shallamach (1952)) and allows a better prediction
of the experimental values. In order to reproduce the experimental tests, different friction
coefficients are used. The friction coefficient between outer pad surface/rigid wall is set to
µ = 0.1 whereas the coefficient between inner pad surface/inner rigid core is set to µ = 0.4.
Note that petroleum jelly was applied on the rigid wall to reduce friction.
Figures 10(b) and 11(b) shows the Von Mises stress field for Pad I and Pad II, respectively, in
the case of Ogden model. At last, Fig. 12 depicts the experimental and numerical compression
forces as a function of the indentation displacement. The numerical results achieved by both
MR and Ogden model are acceptable.

5. Conclusions

After a discussion about basic concepts of incompressible isotropic hyperelasticity, this
chapter reports numerical methods to be used in the design of AM Rubber-Like components
and customized products. Within this scenario, the explicit fitting of numerical hyperelastic
models to experimental data is a fundamental design issue and a focused engineering method
has been exposed.
In particular, it has been shown that numerically fitting a single mode of deformation, (for
instance, uniaxial tension) leads to unacceptable results when general modes of deformation
must be predicted. Hence, in accordance to the results presented in Ogden et al. (2004),
multiple modes of deformation (namely uniaxial tension, uniaxial compression and pure
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shear) have been employed for a simultaneous fit. The engineering method have been applied
for characterizing Tango Plus � Fullcure 930, a rubber-like photopolymer widely used in
Additive Manufacturing processes. The obtained material data, which fits the specimen
deformation up to an imposed strain of 120%, are presented for the first time and can be used
when performing finite element analysis. As a design case study, the finite element analysis
of soft fingertips for robotic hands have been presented and validated through experiments.

6. Appendix I

The Matlab files tension.mat, compression.mat, pure_shear.mat contains experi-
mental data concerning UT, UC and PS. The first and second columns contain, respectively,
the vectors of displacements imposed to the specimens and the corresponding forces as read
by the load cell. The following variables are defined:
• d_UT, d_UC, d_PS: displacements imposed during UT, UC, PS respectively.
• f_UT, f_UC, f_PS: force read during UT, UC, PS respectively.
• L_UT, L_UC, L_PS: stretch values during UT, UC, PS respectively.
• L_max_UT, L_max_UC, L_max_PS: maximum imposed stretch value for UT, UC, PS re-

spectively.
• S: PK stress calculated via Eq. 23.
• C=[mu1 alpha1 ... mu4 alpha4]: Optimal material parameters.
• P_UT, P_UC, P_PS: PK stress values during UT, UC, PS respectively.
• Pol_UT, Pol_UC, Pol_PS: coefficients of the 5− th order polynomial functions approx-

imating the experimental data (dotted curve in Fig. 5).
• PKF_UT, PKF_UC, PKF_PS: PK stress values corresponding to L_UT, L_UC, L_PS and

calculated by means of the 5 − th order polynomial functions whose coefficients are given
by Pol_UT, Pol_UC, Pol_PS.

• X1, X2, X3: specimen undeformed dimensions.
• r,s,t: number of experimental points (i.e. r, s, t in Eq. 24). If any of these values is set to

0, the corresponding test is discarded.
The following Matlab script is used to identify a polynomial fit of UT experimental data.
Similar scripts are used for UC and PS experimental data.

1 %read uniaxial test data

2 load('tension.mat')

3 d_UT=tension(:,1); %imposed displacement

4 f_UT=tension(:,2); %force in Newton

5

6 %undeformed dimensions in meters

7 X1=25e-3; X2=6e-3; X3=3e-3;

8

9 %calculation of stretch vector and corresponding nominal stress

10 L_UT=(d_UT+X1)/X1; %Stretch values

11 P_UT=f_UT./(X2*X3); %Engineering stress

12

13 %polynomial fit of experimental stress-stretch curve

14 Pol_UT=polyfit(L_UT,P_UT,5); %fifth order polynomial

The following script recall the non-linear least square algorithm Lsqcurvefit in the Opti-
mization Toolbox of MATLAB.
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1 r=220; s=70; t=180;

2

3 L_max_UT=2.2; L_max_UC=0.7; L_max_PS=1.8;

4

5 %calculate tension data to be fitted with Ogden function

6 L_UT=linspace (1, L_max_UT, r); %stretch values equally spaced ...

between 1 and 'L_max_UT'

7 if r==0

8 L_UT=[];

9 end

10 PKF_UT=polyval(Pol_UT,L_UT); %PK stress corresponding to 'L_UC'.

11

12 %calculate compression data to be fitted with Ogden function

13 L_UC=linspace (L_max_UC, 1, s); %stretch values equally spaced ...

between 'L_max_UT' and 1

14 if s==0

15 L_UC=[];

16 end

17 PKF_UC=polyval(Pol_UC,L_UC); %PK stress corresponding to 'L_UC'.

18

19 %calculate pure shear data to be fitted with Ogden function

20 L_PS=linspace (1, L_max_PS, t); %stretch values equally spaced ...

between 1 and 'L_max_PS'

21 if t==0

22 L_PS=[];

23 end

24 PKF_PS=polyval(Pol_PS,L_PS); %PK stress corresponding to 'L_PS'.

25

26 %Calculation of optimal material parameters

27 STRETCH=[L_UT L_UC L_PS]; %Overall stretch vector

28 STRESS=[PKF_UT PKF_UC PKF_PS]; %Overall stress vector

29 C0 = [2.1007e+005, 8, 6.3623e-008, 26, -5.7116e+004, -25.6149 1 1]; ...

%Initial guess

30 lb = [0, 0, 0, 0, -inf, -inf,0,0]; %Lower bound of the optimal ...

solution vector

31 ub = [inf, inf, inf, inf, 0, 0,inf,inf]; %Upper bound of the optimal ...

solution vector

32 optnew = optimset('DiffMaxChange',0.000001,'DiffMinChange',1e-15,...

33 'TolFun',1e-15, 'TolX',1e-15,'MaxFunEvals',3000,'MaxIter',3000); ...

%Curve fit options

34 [C] = lsqcurvefit(@energy,C0,STRETCH,STRESS,lb,ub,optnew) %optimal ...

solution

The following function is connected to the previous script and returns PK stress calculated via
Eq. 23.
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1 function S = energy(C,L)

2 global r s t

3

4 L_tot=L %input stretch vector

5

6 %material constants

7 mu1=C(1); alpha1=C(2);

8 mu2=C(3); alpha2=C(4);

9 mu3=C(5); alpha3=C(6);

10 mu4=C(7); alpha4=C(8);

11

12 %K=1 for pure shear, K=2 for simple tension/compression

13 if t==0

14 K=[2*ones(r+s),1)']

15 elseif (r+s)==0

16 K=[1*ones(t,1)']

17 else

18 K=[2*ones(r+s,1)' 1*ones(Npunti_sh,1)']

19 end

20

21 S=...

22 mu1.*(L.^(alpha1-1)-L.^(-(1+alpha1./K)))+ ... %Strain energy first term

23 mu2.*(L.^(alpha2-1)-L.^(-(1+alpha2./K)))+ ... %Strain energy second term

24 mu3.*(L.^(alpha3-1)-L.^(-(1+alpha3./K)))+ ... %Strain energy third term

25 mu4.*(L.^(alpha4-1)-L.^(-(1+alpha4./K))); %Strain energy fourth term
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