
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322399502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


26 

Autoimmune Disorder and Autism 

Xiaohong Li and Hua Zou 
New York State Institute for Basic Research in Developmental Disabilities 

USA 

1. Introduction 

1.1 Diagnosis of ASD 

Autism (also known as classic autism or autism disorder) is a common neurodevelopmental 
disorder. Typically diagnosed before three years old, autistic children usually present with 
significant language delays, social and communication impairments, as well as abnormal 
repetitive and restrictive behaviors. Autism spectrum disorders (ASD) however, refers to a 
boarder definition of autism. Based on the severity of the clinical conditions, ASD is further 
divided into three subgroups namely autism (the most severe type of ASD), Asperger 
syndrome and pervasive developmental disorder – not otherwise specified (PDD-NOS; also 
called atypical autism) [1-3]. 
Of note, current diagnosis criteria of these disorders are based on behavior tests, no single 
biomarker has been clinically accepted, which mainly due to the difficulties for studying 
cellular and molecular etiology of ASD. First, subjects among different researches lack of 
comparability because of the diagnostic heterogeneity [4]. Second, the prevalence of ASD is 
relatively low therefore sample sizes are usually too small for statistical analysis. Third, 
comparing with other diseases, the young ages of the autistic subjects make biological study 
difficult. Forth, valid control groups require age-, gender-, IQ- and socioeconomic status-
matched developmentally normal subjects, which most studies failed to satisfy with [5]. 

1.2 Epidemiology 

ASD is reported to occur in all racial, ethnic and socioeconomic groups, and are about 
four times more likely to occur in boys than in girls probably due to the extremes of 
typical male neuroanatomy of autism [6, 7]. Studies in Asia, Europe and North America 
have identified individuals with ASD with an approximate prevalence of 6/1,000 to over 
10/1,000 [8]. Chronologically, the prevalence of ASD increased from 0.8/1,000 in 1983 to 
4.6/1,000 in 1999 in Western Australia, while this ratio increased from 6.6/1,000 in 2000 to 
9/1,000 in 2006 in United States [9-11]. This increase is probably because of changes and 
broadening of the diagnostic criteria and due to heightened awareness, but may also 
reflect, in part, a true increase due to environmental factors acting upon a genetically 
vulnerable background [12, 13]. 

2. Immune disorders and autism 

The relationship between immune disorders and ASD has been proposed for decades. Based 
on the epidemiological data, higher rate of autoimmune conditions, such as rheumatoid 
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arthritis, autoimmune thyroid disease, asthma, ulcerative colitis, exits in parents of autistic 
children [14-17]. Another line of evidence supporting immune dysfunction at least partly 
responsible for ASD comes from large population studies, which suggest maternal immune 
dysfunctions may be related to a later diagnosis of ASD in the offspring [18]. Furthermore, 
cumulative evidences support the theory that ASD is caused by a loss of self-tolerance to 
one or more neural antigens during early childhood. Using western blot for the presence of 
IgG antibodies against protein extracts from human brain or sera, multiple brain-specific 
autoantibodies are detected [19, 20]. Other groups measured the plasma concentration of 
immunoglobulins and/or cytokines, autistic subjects exclusively exhibited abnormal 
immunoglobin and/or cytokine profiles [21-24]. It’s not known yet whether immune 
activation plays an initiating or ongoing role in the pathology of ASD. But investigations of 
dynamic adaptive cellular immune function suggested dysfunctional immune activation, 
which may be linked to disturbances in behavior and developmental functioning [25]. 

2.1 Autoimmune diseases 

Autoimmune diseases are the most common type of immune disorders. And its relationship 

with autism has been widely studied. Very early study reported an increased number of 

autoimmune disorders in some families with autism, suggesting immune dysfunction plays 

a role in autism pathogenesis [26]. Consistent with this result, Sweeten et al investigated the 

frequency of autoimmune disorders in families that have probands with pervasive 

developmental disorders and autism, compared with control groups. Autoimmunity was 

increased significantly in families with pervasive developmental disorders compared with 

those of healthy and autoimmune control subjects [27]. More persuasive evidence comes 

from a multicenter study of 308 children with Autism Spectrum Disorder. Regression was 

significantly associated with a family history of autoimmune disorders. But the only specific 

autoimmune disorder found to be associated with regression was autoimmune thyroid 

disease [28]. 

2.2 Cytokines and chemokines 

Cytokines and chemokines are thought to mediate the pathogenesis of autism, although the 
exact mechanism remains unclear. Jyonouchi group determined innate and adaptive 
immune responses in children with developmental regression and autism spectrum 
disorders, developmentally normal siblings, and controls. Their results indicated excessive 
innate immune responses in a number of ASD children that may be most evident in TNF-
alpha production [29]. Similarly, Molloy et al reported children with ASD had increased 
activation of both Th2 and Th1 arms of the adaptive immune response, with a Th2 
predominance, and without the compensatory increase in the regulatory cytokine IL-10 [30]. 
But Li et al showed that proinflammatory cytokines (TNF-alpha, IL-6 and GM-CSF), Th1 
cytokine (IFN-gamma) and chemokine (IL-8) were significantly increased in the brains of 
ASD patients compared with the controls, but not the Th2 cytokines (IL-4, IL-5 and IL-10). 
The Th1/Th2 ratio was also significantly increased in ASD patients. Based on these results, 
the author concluded that ASD patients displayed an increased innate and adaptive 
immune response through the Th1 pathway, suggesting that localized brain inflammation 
and autoimmune disorder may be involved in the pathogenesis of ASD [31]. Most recently, 
Ashwood group used larger number of participants than previous studies and found that 
significant increases in plasma levels of a number of cytokines, including IL-1beta, IL-6, IL-8 
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and IL-12p40 in the ASD group compared with typically developing controls [32]. All these 
findings suggest that inflammatory responses may be related to disturbances in behavior. 
And the characterization of immunological parameters in ASD has important implications 
for diagnosis, therefore should be considered when designing therapeutic strategies to treat 
ASD. 

2.3 Immunoglobulin 

Using human fetal and adult brains as antigenic substrates, maternal serum antibodies 
transferred through placenta are detected by four independent research groups, suggesting 
an association between the transfer of IgG autoantibodies during early neurodevelopment 
and the risk of developing of autism in some children [33-37].  
Singh et al provided more confirmative evidence by studying regional distribution of 
antibodies to rat caudate nucleus, cerebral cortex, cerebellum, brain stem and hippocampus 
of 30 normal and 68 autistic children. Autistic children, but not normal children, had 
antibodies to caudate nucleus (49% positive sera), cerebral cortex (18% positive sera) and 
cerebellum (9% positive sera). Brain stem and hippocampus were negative. Since a 
significant number of autistic children had antibodies to caudate nucleus, the author 
proposed that an autoimmune reaction to this brain region may cause neurological 
impairments in autistic children [38]. Agreed with this result, Trajkovski et al measured 
plasma concentration of IgA, IgM, IgG classes, and IgG1, IgG2, IgG3, and IgG4 subclasses in 
children with autism. Plasma concentrations of IgM and IgG in autistic children were 
significantly higher in comparison with their healthy brothers or sisters. Children with 
autism had significantly higher plasma concentrations of IgG4 compared to their siblings. 
Increased plasma concentration of IgG1 was found in autistic males as compared with their 
healthy brothers. Plasma concentrations of IgG and IgG1 in autistic females were increased 
in comparison with IgG and IgG1 in their healthy sisters [39]. More recently, Enstrom et al 
report significantly increased levels of the IgG4 subclass in children with autism compared 
with typically developing control children and compared with developmental delayed 
controls [40]. 
However, No consensus has been reached regarding the immunoglobin levels in autistic 

subjects. Morris and colleagues failed to find any useful biomarker in a small group of 

subjects, posing question to the current theory [41]. Stern et al found in their study most of 

the autistic children had normal immune function, suggesting that routine immunologic 

investigation is unlikely to be of benefit in most autistic children [42].   

2.4 Gastrointestinal disorders 

The report regarding the relationship between autism and gastrointestinal disorders was 
seen as early as 1971, when Goodwin et al described 6 of 15 randomly selected autistic 
children with symptoms of malabsorption [43]. Later Horvath et al investigated 412 autistic 
children, of which 84.1% had at least one of the eight abnormal gastrointestinal symptoms, 
comparing with 31.2% of the healthy siblings [44]. However, disagreements exit. Kuddo 
group and Molloy group failed to find any association between chronic gastrointestinal 
symptoms and autism based on the literature search or their own sample [45, 46]. Fernell et 
al tested two independent biomarkers of inflammatory reactions (faecal calprotectin and 
rectal nitric oxide) in 24 autistic children, but didn’t find clear link between active intestinal 
inflammation and autism [47]. 
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Morphological and histological studies provided consistent results with the clinical 
manifestations. Ileocolonoscopic examinations in 60 children with autism and other 
developmental disorders revealed that 8% (4/51) affected children but none in controls 
presented with active ileitis. Chronic colitis was identified in 88% (53/60) affected children 
compared with 4.5% (1/22) controls [48]. Similarly, another group conducted upper 
gastrointestinal endoscopy in 36 autistic subjects. 69.4% (25/36) of whom presented with 
grade I or II reflux esophagitis, 41.7% (15/36) with chronic gastritis, and 66.7% with chronic 
duodenitis [49]. 
In addition, biochemical researches reported evidences of abnormal intestinal cytokine 
profiles. Ashwood et al found enhanced pro-inflammatory cytokine production present in 
21 ASD children compared with 65 controls [50]. Furthermore, they investigated the 
peripheral blood and mucosal CD3+ lymphocyte cytokine profiles in 18 autistic children 
with gastrointestinal symptoms. In both peripheral blood and mucosa, CD3+ TNFalpha+ 
and CD3+ IFNgamma+ were increased, while CD3+ IL-10+ were markedly lower in ASD 
children. And mucosal CD3+ IL-4+ cells were increased in ASD compared with NIC [51]. 
Similarly, Jyonouchi et al provided evidence that intrinsic defects of innate immune 
responses in ASD children with gastrointestinal symptoms, suggesting a possible link 
between GI and behavioral symptoms mediated by innate immune abnormalities [52]. 
However, DeFelice et al assessed levels of proinflammatory cytokines, interleukin (IL)-6, IL-
8, and IL-1beta, produced by intestinal biopsies of children with pervasive developmental 
disorders but failed to find significant difference between autistic and control groups [53]. 
How do the gastrointestinal disorders affect brain functions? Currently available 
pathophysiological studies provided partial explanations. D'Eufemia et al investigated the 
occurrence of gut mucosal damage using the intestinal permeability test in 21 autistic 
children without known intestinal disorders. They found increased intestinal permeability 
in 43% (9/21) autistic patients, but in none of the 40 controls, which suggested an altered 
intestinal permeability could represent a possible mechanism for the increased passage 
through the gut mucosa of peptides derived from foods with subsequent behavioral 
abnormalities [54].  

3. Genetics of autism 

Similar to several other complex diseases, autism was not widely considered to have a 
strong genetic component until the 1980s. But increasing numbers of epidemiological and 
genetic studies are deepening our understanding of the genetic contribution autism. First, it 
is estimated that about 10% of children with ASD have an identifiable co-occuring genetic, 
neurologic or metabolic disorder, such as the fragile X syndrome and tuberous sclerosis [55]. 
Second, the relative risk of a newborn child to have autism, if he or she has an affected 
sibling, increases at least 25 folds comparing with general population [56]. Third, 
independent twin studies have suggested identical twins have a 60-90% chance to be 
concordantly diagnosed with autism, and this risk decreases sharply to the sibling risk of 0-
24% in non-identical twins [57, 58]. However, based on a large scale study of 503 ASD twins 
in California, Liu et al suggest the heritability has been largely overestimated [59]. They 
found the concordance rate for monozygotic male twins was 57% and for females 67%, 
while for same sex dizygotic twins the rate was 33%. Fourth, cumulative reports have 
confirmed mutations or structural variations of a number of specific genes significantly 
increase the risk of ASD [56]. 
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3.1 Genetic methodology 

However, unlike monogenic Mendelian disorders, the genetic and clinical heterogeneity of 
ASD poses a difficult challenge to precisely define the underlying genetics. This complexity 
has been blamed for the lack of replicability of the many reported chromosomal 
susceptibility regions. Therefore, multiple parallel approaches are needed for the 
exploration of the potential loci underlying the etiology of ASD. In general, there are a 
number of methods available for genetic studies of ASD, with each having different 
advantages as well as limitations. The most widely used methods include cytogenetic 
analysis, linkage and association studies, copy number variation and DNA micro-array 
analysis. 
A cytogenetic study is the most “classic” of genetic methods. Based on the assumption that 
ASD is a result of unique rare mutations that present sporadically or “de novo” in the 
population and are not usually inherited, cytogenetics helps to determine the contribution of 
chromosomal abnormalities in childhood diseases. Cytogenetics has transitioned from light 
microscopy to molecular cytogenetics to DNA-based microarray detections of structural 
variations [60]. Copy number variation (CNV) analysis is a newer molecular cytogenetic 
approach, aiming to detect the insertion or deletion of DNA fragments typically larger than 
50 kb [61]. However, extreme caution must be paid when interpreting CNV analysis since it 
is very dependent on the specific methods employed, which may partly account for the low 
replicability among studies [62]. 
Differing from cytogenetics, linkage studies trace genetic loci that are transmitted with 
autism in the families of affected individuals. Parametric and non-parametric linkage 
studies are two typical designs. While parametric analysis requires a model for the disease 
(i.e. frequency of disease alleles and penetrance for each genotype), and therefore is 
typically employed for single gene disorders and Mendelian forms of complex disorders, 
“model-free” non-parametric linkage analysis evaluates whether segregation at specific 
locations is “not-random”. Given the uncertainty of the mode of inheritance in ASD, non-
parametric linkage is more widely used, providing suggestive evidence of linkage on almost 
all of the chromosomes [63]. However, linkage studies are unable to identify mutations in 
critical genes in highly heterogeneous disorders involving many different genes and 
chromosomal loci [64].  
Genetic association studies, including case-control and family-based studies, examine 
differences in allele or genotype frequencies between two groups [63]. Typically, several 
microsatellite markers or SNPs are chosen based on linkage studies or biological evidence. 
The seemingly countless potential candidates make it hard to determine the causative 
relations between genes and ASD [61]. In addition, although association studies are suitable 
to identify common susceptibility alleles present in large numbers of patients compared to 
controls, they usually fail to identify rare, causal mutations [63, 64].  
Rapid advances in micro-array technologies have substantially improved our ability to 
detect submicroscopic chromosomal abnormalities. These tools have allowed for high-
output and high-resolution detection of rare and de novo changes in a genome-wide 
manner. Moreover, newly developed, commercially available whole-exome arrays are 
increasingly being employed to detect de novo mutations in complex disorders. Based on 
the fact that the protein coding regions of genes (i.e. exons) habor 85% of the mutations of 
disease-related traits, whole-exome sequencing offers the possibility to identify disease-
causing sequence variations in small kindreds for phenotypically complicated, genetically 
heterogeneous diseases when traditional linkage studies are impossible [65-69]. As such, 
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studies in this realm have been increasing in the past several years and there will surely 
benefit the etiological diagnosis and genetic counseling of ASD in the near future [70].  

3.2 Potential loci in autism 
3.2.1 Genome wide linkage analysis 
Although there is accumulating evidence supporting a genetic component to ASD, the 
specific genes involved have yet to be totally clarified. Genome-wide screening of autistic 
subjects and their first-degree relatives offers an attractive means to search for susceptibility 
genes. However there has been a disappointing lack of replication of many of the reported 
susceptibility regions. The reason for this could be due to the epistasis of many interacting 
genes. But it may also be due to the genetic and clinical heterogeneity present in ASD [71]. 
The noted effects of heterogeneity of the samples on the corresponding results, have led to 
attempts to decrease sample heterogeneity by various ways which include narrowing 
inclusion criteria and studies of specific, autism-related endophenotypes. 
A substantial body of evidence has resulted from genome-wide screening for the 
susceptibility genes of ASD (table 1). Significant replicability has been found for several 
chromosomal loci including 2q, 5, 7q, 15q and 16p. Two studies provided suggestive 
evidence for linkage to chromosome 2q using a two-stage genome screen [71, 72], while 
association tests for specific candidate genes in the chromosome 2q31-q33 region led to 
negative results [73]. Additional support for the presence of susceptibility loci on 
chromosome 2q is given by overlapping positive linkage findings in four other independent 
genomic scans [74-77].  
There are three reports about gene variants on chromosome 5. Philippi found strong 
association with autism for allelic variants of “paired-like homeodomain transcription factor 
1” (PITX1), a key regulator of hormones within the pituitary-hypothalamic axis [78]. Two 
other groups used genome-wide linkage and association mapping studies to analyze 
chromosome 5 gene variations finding that SNPs located at 5p14.1 and 5q15 respectively 
were significantly associated with autism [79, 80].  
Chromosome 16 linkage results have been fairly consistent in showing a peak at 16p11-13, 
which strongly suggested a gene in this region may contribute to the risk of ASD [81, 82]. 
15q11-q13 is another frequently identified locus by linkage studies. Several genes located in 
this region have been intensively studied and some have provided very promising results 
[83-86]. But in all of these linkage reports there is a certain lack of reproducibility, and 
therefore they require further validation based on using a combination of several methods.  
Besides these “hot spots”, there are other reports regarding associations of other loci with 
ASD [80, 87-90], including some evidence of linkage to the X chromosome [91]. However, 
there is little overlap of these potential loci involving potential candidate genes, suggesting 
that the genetic background of ASD is full of complexity. 

3.2.2 Copy number variation (CNV) 

Rapid advances in genomic DNA microarray technologies have substantially improved our 
ability to detect submicroscopic chromosomal abnormalities. Novel rare variants have been 
detected in association with ASD and these can be either de novo or inherited. De novo or 
noninherited CNVs are found in 7%–10% of ASD samples from simplex families (having 
only one child affected, the majority), in 2%–3% from multiplex families, and in ∼1% in non-
ASD controls. Further, about 10% of ASD subjects with de novo CNVs carry two or more 
CNVs [100-102]. Inherited CNVs reportedly are found in up to 50% of ASD subjects for 
whom one of the presumably normal parents also has the duplication/deletion. These 
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familial CNVs may include candidate genes relevant to ASD where they are rare in the 
normal population.  
 

Chrom- 
osome 

Loci Candidate genes Ref. 

1 1p34.2 Regulating Synaptic Membrane Exocytosis 3(RIMS3) [90] 
2 2q  [71, 72] 

 2q31-2q33 
GAD1,STK17B,ABI2,CTLA4,CD28,NEUROD1, 
PDE1A,HOXD1, DLX2 

[73] 

 2q31 SLC25A12 [92] 
 2q24-2q33 SLC25A12, CMYA3 [75] 
 2q24-2q33 SLC25A12, STK39, ITGA4 [77] 
 2q34 Neuropilin-2 (NRP2) [74] 
3 3q25-3q27 HTR3C [48] 
5 5q31 Paired-like homeodomain transcription factor 1(PITX1) [78] 
 5p14.1  [79] 
 5p15 SEMA5A [80] 
6 6q Abelson's Helper Integration 1 (AHI1) [88] 
 6q27  [80] 
7 7q22.1-7q31  [93] 

 7q31 
Laminin Beta-1 (LAMB1), 
Neuronal cell adhesion molecule (NRCAM) 

[94, 
95][96] 

 7q32 
NADH-ubiquinone oxidoreductase 1 alpha subcomplex 
5 (NDUFA5) 

[48] 

 7q31-7q33 
wingless-type MMTV integration site family member 2 
(WNT2) 

[97] 

11 11p12-p13  [76] 
12 12q14  [87] 
15 15q11-q13 Angelman syndrome gene (UBE3A) [85] 
 15q11-q13  [83] 
 15q13 Amyloid precursor protein-binding protein A2 (APBA2 ) [84] 

16 16p11-13 
4-Aminobutyrate Aminotransferase (ABAT), 
CREB-binding protein (CREBBP), 
Glutamate receptor, ionotropic, NMDA 2A (GRIN2A) 

[98] 

 16p11.2  
[81, 82, 
90] 

17 17q11.2  [99] 
19 19p13  [99] 
20 20q13  [80] 
22 22q13 SHANK3 [89] 
X Xp22.11 PTCHD1 [91] 

Table 1. Loci identified by genome wide linkage analysis 

Array comparative genomic hybridization (aCGH) is the most widely used method for 
detection of CNVs. A seminal early report used aCGH, with a mean resolution of one probe 
every 35 kb, to study a sample of 264 ASD families. After validation by higher-resolution 
microarray scans, G-banded karyotype, FISH, and microsatellite genotyping, 17 de novo 
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CNVs were confirmed [102]. A Korean group recently reported deletion CNVs at 8p23.1 and 
17p11.2 using whole-genome aCGH [103]. Using aCGH with a mean 19 kb resolution, 51 
autism-specific CNV were identified in 397 unrelated ASD subjects [100]. Similarly, Qiao 
and colleagues performed aCGH on 100 autistic subjects and identified 9 CNVs, three of 
which were unique to their cohort [104]. A Spanish group recently reported the 
identification of 13 CNVs containing 24 different genes in their sample of 96 ASD 
subjects [105]. 
Single-nucleotide polymorphism (SNP) array analysis, primarily developed to determine 

linkage, now is also employed to determine genomic CNVs [106]. Marshall performed a 

genome-wide assessment via SNP array analysis. They genotyped proximately 500,000 

SNPs for each sample and detected 13 loci with recurrent or overlapping CNVs in a sample 

of 427 ASD cases [101]. Using SNP markers, another group identified 6 CNVs within a 2.2-

megabase (Mb) intergenic Chr 2 region between cadherin 10 (CDH10) and cadherin 9 

(CDH9) in a combined sample set of 1,984 ASD probands of European ancestry [107]. In 

addition, SNP array analysis offers some special advantages in the exploration of potentially 

relevant gene networks. Two recent reports have provided strong evidence for the 

involvement of certain genes in important gene networks including neuronal cell-adhesion, 

ubiquitin degradation and GTPase/Ras signaling [108, 109]. 

Currently available aCGH methods for identifying CNV typically assay the genome in the 

40-kb to several Mb range. Methodological improvements that employ oligonucleotides are 

providing a high potential resolution down to approximately the 5-kb resolution level for 

aCGH with genome-wide detection of CNVs [106]. Thus, SNP or oligonucleotide aCGH 

analysis can detect a CNV as small as a few kilobases. Therefore, it is clear that the higher-

density oligonucleotide or SNP arrays offer the higher resolution for analysis of CNVs in the 

future. 

3.3 Selected candidate genes 

As it is becoming apparent, a genetic predisposition to ASD may involve one or more 

interconnected genetic networks involving neurogenesis, neuronal migration, 

synaptogenesis, axon pathfinding and neuronal or glial structure regionalization [110]. 

Function-targeted studies, mainly by association that focus exclusively on the candidate 

genes, including some of the most widely studied will be reviewed in the following section 

(table 2). 

Reelin is an extracellular matrix glycoprotein responsible for guiding the migration of 
several neural cell types and the establishment of neural connection. In the 1980s, it was 
discovered that reelin plays important roles in the positioning of neuronal cells in the 
inferior olivery complex, cerebral cortex and cerebellum early in embryonic development 
[203-205]. Further research has confirmed and further extended our knowledge about the 
widespread functions reelin plays in laminated regions of the brain, both embryonically and 
postnatally [206-208]. 
Given the critical functions of reelin in brain development, and knowing there are 
neuroanatomical abnormities in autism [209], the reelin gene (RELN) was a plausible 
candidate to investigate in ASDs. Significantly reduced levels of reelin in the human cortex, 
cerebellum and peripheral blood were confirmed in ASD at both the protein and mRNA 
levels [210-212]. Genome-wide scans also identified 7q22 as an autism critical region, where 
RELN is located [213].  
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Genes Loci 
Positive 
results 

Negative/Unconfirmed 
results 

RELN 7q22 
[111-
120] 

 

SLC6A4 17q11.1-17q12 
[121-
127] 

[128-140] 

GABR 15q11-15q13 
[141-
154] 

[155-157] 

NLGN 
3q26(NLGN1), 17p13 (NLGN2), Xq13 
(NLGN3), Xp22.3 (NLGN4), Yq11.2 
(NLGN4Y) 

[158-
163] 

[164-169] 

OXTR 3p24-3p25 
[170-
174] 

 

MET 7q31.2 
[175-
179] 

 

SLC25A12 2q31 
[180-
183] 

[184-186] 

GluR6 6q21 
[187-
189] 

[190] 

CNTNAP2 7q35 
[191-
196] 

 

GLO1 6p21.3-6p21.2 
[197, 
198] 

[199, 200] 

TPH2 12q21.1 [201] [197, 202] 

Table 2. Selected candidate genes 

i. Reelin gene (RELN) 

Additionally, case-control and family-based studies provided further evidence supporting 

the association of RELN and ASD. Persico identified a RELN–related polymorphic GGC 

repeat located immediately 5’ of the ATG initiator codon in Italian and American subjects 

[120]. Using the similar methods and 126 multiplex ASD families, Zhang et al examined the 

polymorphic CGG-repeat of RELN [118]. Family-based association tests showed that larger 

RELN alleles (≥11 repeats) were transmitted more often than expected to autistic children. 

Independant studies regarding the CGG-repeat of RELN have also supported its 

contribution to the genetic risk of autism [112, 113, 115]. Others have also reported 

significant differences in the transmission of the reelin alleles of exon 22 and intron 59 SNPs 

to autistic subjects [114]. However, results have not been uniformly positive. Krebs et al 

performed a transmission disequilibrium test (TDT) analysis of the CGG-repeat 

polymorphism in 167 Caucasian families and found no evidence of linkage or association 

[119]. Similarly, another two groups failed to find a significant association of RELN CGG 

repeat polymorphisms with liability to autism [116, 117]. 

The association between RELN and ASD were also found in other ethnic groups besides 
Caucasian populations. Recently, a significant genetic association between the RELN SNP2 
(located in intron 59) and ASD was reported in a Chinese Han population, and the 
combination of  RELN SNP1/SNP2/SNP3/SNP4, all in strong linkage disequilibrium, were 
reported to have a significant association with ASD [111]. 
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ii. Human serotonin transporter gene (SLC6A4) 

The human serotonin transporter, encoded by SLC6A4, localizes to chromosome 17q11.1-q12 
and consists of 15 exons [214]. SLC6A4 was considered as a candidate gene for autism 
primarily based on the elevated blood serotonin levels found in a number of autistic 
probands, as well as the efficacy of potent serotonin transporter inhibitors in reducing 
rituals and routines [215, 216]. Using the TDT, positive associations of a 5-HTTLPR 
polymorphism found in the promoter region of the SLC6A4 gene with autism have been 
identified by 4 family-based studies and 2 case-control studies [121, 123, 125-127]. Other 
groups have performed both family-based and case-control analysis and found significant 
associations of the SLC6A4 polymorphism with autism [122, 124]. In contrast to these 
positive reports, 9 family-based studies failed to find evidence for associations of the 
SLC6A4 polymorphism with autism [130, 132-134, 136-140], as well as a case-control study 
[128]. An Indian group performed a series of studies but found no persuasive evidence of 
the association of the SLC6A4 polymorphisms with autism [129, 135, 217]. In addition, a 
systematic review and meta-analysis failed to find a significant overall association of the 
serotonin polymorphisms examined and autism [131]. 

iii. Gamma-aminobutyric acid receptor gene (GABR)  

Gamma-aminobutyric acid (GABA) is the chief inhibitory neurotransmitter in the brain, 
acting by binding to a GABA receptor. The receptor is a multimeric transmembrane receptor 
that consists of five subunits arranged around a central pore. The GABA receptor subunits 
are homologous, but are both structurally and functionally diverse [144]. Three of the GABA 
receptor subunit genes (GABRB3, GABRA5 and GABRG3) are localized to chromosome 
15q11-q13, one of the most complex regions in the genome involved with genome 
instability, gene expression, imprinting and recombination [156].  
The region 15q11-q13 was originally associated with ASD based on several studies which 
reported a common duplication of this region in ASD subjects [147, 148, 152, 154]. A 
chromosome-engineered mouse model for human 15q11-13 duplication was developed with 
autistic features [141, 143, 153]. Cook et al examined markers across this region for linkage 
disequilibrium in 140 families with ASD, detecting significant linkage disequilibrium 
between GABRB3 and ASD [218]. This finding was confirmed by others as well [145, 146, 
151]. Also, two SNPs located within the GABRG3 gene were associated with ASD using the 
Pedigree Disequilibrium Test (PDT) [144]. An independent study demonstrated nominally 
significant associations between six markers across the GABRB3 and GABRA5 genes [142]. 
Moreover, using ordered-subset analysis (OSA) another group provided evidence of 
increased linkage at the GABRB3 locus [149]. Other research has also identified significant 
association and gene-gene interactions of GABA receptor subunit genes in autism [150]. 
Nonetheless, conflicting evidence has also been reported. Other groups have reported 
limited or no association between GABA receptor polymorphisms and autism [155, 156]. 
Similarly, another group conducted a full genome search for autism susceptibility loci 
including seven microsatellite markers from 15q11-q13, and found no significant evidence of 
association or linkage [157]. Thus the linkage results are at best inconclusive. 

iv. Neuroligin genes (NLGN) 

The marked difference in sex ratio for ASD justifies the exploration of genes on the sex 
chromosome, among which the neuroligin genes (NLGN) are perhaps the most widely 
studied. Five NLGN have been identified in the human genome, which are localized at 
3q26(NLGN1), 17p13 (NLGN2), Xq13 (NLGN3), Xp22.3 (NLGN4), and Yq11.2 (NLGN4Y) 
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respectively. They encode a family of cell-adhesion molecules, the neuroligans, essential for 
the formation of functional neural synapses [163, 169].  
The earliest report regarding the potential association of NLGN genes and ASD came from 
the study of multiple Swedish families [163]. The authors screened for NLGN3 mutations in 
36 affected sib-pairs and 122 trios with ASD. They found one de novo mutation in NLGN4 in 
one family. This mutation creates a stop codon leading to premature termination of the 
protein. In another family, a C to T transition in NLGN3 was identified that changed a 
highly conserved arginine residue into cysteine (R451C) within the esterase domain.  It was 
inherited from the mother. Following this report, several other groups studied this gene but 
found little support for common mutations of the gene. Limited support came from a 
Portuguese group, who found missense changes in NLGN4 as well as the protein-truncating 
mutations in ASD [162]. A Finnish group conducted a molecular genetic analysis of NLGN1, 
NLGN3, NLGN4, and NLNG4Y. Their results suggested neuroligin mutations most probably 
represent rare causes of autism and concluded that it was unlikely that the allelic variants in 
these genes would be major risk factors for autism [166]. Others have also failed to obtain 
positive results, casting doubt on the earlier conclusion  [164, 165, 167-169]. 
Other reports about mutations of NLGN3 or NLGN4 have identified splice variants in both 
genes [161]. Three groups recently reported one missense variant and two single 
substitutions in independent autistic samples, indicating that a defect of synaptogenesis 
may predispose to autism [158-160]. 

v. Human oxytocin receptor gene (OXTR) 

Oxytocin is a nine-amino-acid peptide synthesized in the hypothalamus. Apart from 
regulating lactation and uterine contraction, oxytocin acts as a neuromodulator in the 
central nervous system [219, 220]. Both animal experiments and clinical research have 
confirmed the role oxytocin plays in social and repetitive behaviors [221]. Therefore the 
oxytocin system might be potentially involved in the pathogenesis of ASD, and the human 
oxytocin receptor gene (OXTR) has been regarded as a most promising candidate gene to 
study.   
Indeed, research pertaining to the potential association between OXTR and autism has come 

to positive conclusions. Using family-based and population-based association tests, SNPs 

and haplotypes in the OXTR have been reported to confer risk for ASD in different ethnic 

groups [170, 172-174]. They have also been associated with IQ and adaptive behavior scale 

scores [172]. Furthermore, a recent study identified significant increases in the DNA 

methylation status of OXTR in peripheral blood cells and temporal cortex, as well as 

decreased expression of OXTR mRNA in the temporal cortex of autism cases, suggesting 

that epigenetic dysregulation may be involved in the pathogenesis of ASD [171]. 

vi. MET 

The human MET gene encodes a transmembrane receptor tyrosine kinase of the hepatocyte 
growth factor/scatter factor (HGF/SF) [222]. Though primarily identified as an oncogene, 
MET plays crucial roles in neuronal development [222-224]. Moreover, impaired MET 
signaling causes abnormal interneuron migration and neural growth in the cortex, as well as 
decreased proliferation of granule cells, which matches many of the features found in 
autistic brains [223, 225]. 
Campbell and colleagues have done a series of studies regarding the association between 
MET signaling and autism. They first reported the genetic association of a common C allele 
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in the promoter region of MET, which results in significant decrease in MET promoter 
activity and altered binding of specific transcription factor complexes [179]. Then they found 
significantly decreased MET protein levels and increased mRNA expression for proteins 
involved in regulating MET signaling activity [226]. Furthermore, they screened the exons 
and 5’ promoter regions for variants in the five genes encoding the proteins that regulate 
MET expression, finding that genetic susceptibility impacting multiple components of the 
MET signaling pathway contributes to ASD risk [178]. Most recently, they found that the 
MET C allele influences two of the behavioral domains of the autism triad [175]. Other 
groups have also provided supportive evidence that MET gene variations may play a role in 
autism susceptibility [176, 177]. 

vii. SLC25A12  

SLC25A12 locates in the chromosome 2q31 region, encoding the mitochondrial 
aspartate/glutamate carrier (AGC1), a key protein involved in mitochondrial function and 
ATP synthesis. Since the physiological function of neurons greatly depends on energy 
supply, any alteration in mitochondrial function or ATP synthesis could lead to 
corresponding changes in neurons [227]. Recently mitochondrial hyperproliferation and 
partial respiratory chain block were found in two autistic patients, suggesting SLC25A12 
could be a promising candidate gene [228]. 
Following this report, several studies for genetic variants of the gene were performed. Three 
different ethnic groups reported linkage and association between ASD and two SNPs (i.e. 
rs2056202 and rs2292813) in SLC25A12 [180, 182, 183], while another three independent 
groups failed to reveal significant association [184-186]. Another group associated one SNP 
(rs2056202) with ASD but not the other [181]. Thus, the findings so far are inconclusive. 

viii. Other candidate genes  

The glutamate receptor 6 gene (GRIK2 or GluR6) is located at chromosome 6q21. Given that 

glutamate is the principal excitatory neurotransmitter in the brain and it is involved in 

cognitive functions such as memory and learning, GRIK2 was proposed as a gene candidate 

for ASD [229]. Unfortunately, the limited reports have very different results. Genetic studies 

in a Caucasian population, Chinese Han and Korean trios provided positive evidence, but 

using different SNPs [187-189]. Another report failed to find any association of GRIK2 with 

autism in an Indian population [189].  

Contactin associated protein-2 (CNTNAP2) belongs to the neurexin family, within which 

several members have been identified as being related to autism [230]. A recent research 

report identified a homozygous mutation of CNTNAP2 in Amish children with pervasive 

developmental disorders, seizures, and language regression [196]. Five other studies have 

supported this finding that CNTNAP2 may be a genetic susceptibility factor in autism [191-

195]. Another group found that CNTNAP2 provided a strong male affection bias in ASD 

[193]. 

Glyoxalase 1 is a cytosolic, ubiquitously expressed, zinc metalloenzyme enzyme involved in 
scavenging toxic α-oxoaldehydes formed during cellular metabolic reactions. Proteomics 
analysis found glyoxalase 1 increased in autism brains, and subsequent sequencing of its 
gene (GLO1) identified that homozygosity for a polymorphism of the gene, A419 GLO1, 
resulted in decreased enzyme activity and association with autism [198], although this 
conclusion was not confirmed by other studies [199, 200]. In addition, one group found a 
protective effect of the A419 allele of GLO1 [197]. 
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TPH1 and TPH2 encode rate-limiting enzymes that control serotonin biosynthesis. TPH1 is 
primarily expressed peripherally, while TPH2 is found exclusively in brain tissue. However, 
despite evidence for the potential involvement of the serotonin system in the etiology of 
autism, only one of three reports to date conservatively has supported the notion that TPH2 
plays a role in autism susceptibility [197, 201, 202].  

4. Environmental factors 

4.1 Prenatal factors 

The association between prenatal insults and the pathogenesis of autism has been reported 
recent decades. Early in 2005, Beversdorf et al. conducted surveys regarding incidence and 
timing of prenatal stressors. They found a higher incidence of prenatal stressors in autism at 
21-32 weeks gestation, which peaks at 25-28 weeks. Their finding supported the hypothesis 
of prenatal stressors as a potential contributor to autism, and the timing was consistent with 
the embryological age suggested by neuroanatomical findings seen in the cerebellum in 
autism [231]. More specifically, Meyer et al demonstrate that the effects of maternal immune 
challenge between middle and late gestation periods in mice are dissociable in terms of 
several neuropsychiatric disorders including autism [232]. However, this conclusion was 
challenged by another group of scientists. Ploeger et al. proposed pleiotropic effects during a 
very early and specific stage of embryonic development, namely early organogenesis (day 
20 to day 40 after fertilization) in order to explain the effect of uterine disturbances to the 
development of autism [233]. They provided ample evidence from literature for the 
association between autism and many different kinds of physical anomalies such as limb 
deformities, craniofacial malformations, brain pathology, and anomalies in other organs, 
which agrees with the hypothesis that pleiotropic effects are involved in the development of 
autism.  
Drugs are the most important prenatal factors affecting embryo and fetal development. 

Cumulating data support the relationships between maternal medication and fetogeneous 

diseases including autism. The obnoxious drug thalidomide turned out not only to relate to 

fetal abnormality but also to autism. Stromland group retrospectively investigated 100 

Swedish thalidomide embryopathy cases and found possible association of thalidomide 

embryopathy with autism [234]. Another example of drug relating to autism is valproate. 

Williams et al reported six cases whose clinical phenotype was compatible with both fetal 

valproate syndrome (FVS) and autism. Although the sample size is small, the authors 

claimed the association between this known teratogen and autism had both clinical and 

research implications [235]. Similarly, Rasalam group provided another line of evidence that 

prenatal exposure to sodium valproate is a risk factor for the development of an ASD [236]. 

Another prenatal factor is intrauterine inflammation. Kannan et al conducted an animal 

study to demonstrate intrauterine inflammation results in alterations in cortical serotonin 

and disruption of serotonin-regulated thalamocortical development in the newborn brain 

therefore resulting in impairment of the somatosensory system, such as autism [237]. More 

persuasive evidence comes from Girard’s report. According to their results, end of gestation 

exposure of pregnant rats to systemic microbial product such as lipopolysacharide (LPS) is 

an independent risk factor for neurodevelopmental diseases such as cerebral palsy, mental 

deficiency, and autism. And coadministration of IL-1 receptor antagonist with LPS 

alleviated the detrimental effects caused by LPS [238].  
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In addition, maternal complications of pregnancies are proved to be associated with autism. 
One group performed a discriminant analysis to explore perinatal complications as 
predictors for autism. They found three maternal medical conditions including urinary 
infection, high temperatures, and depression to be highly significant and contribute to the 
separation between the autistic and normal subjects [239].  

4.2 Postnatal factors 

Heavy metals have also been generally considered to contribute to the pathogenesis of 
autism. Mercury is one of the most widely studied heavy metals. Palmer et al studied the 
association between environmentally released mercury, special education and autism rates 
in Texas using data from the Texas Education Department and the United States 
Environmental Protection Agency, and found there was a significant increase in the rates of 
special education students and autism rates associated with increases in environmentally 
released mercury. They reported a 43% increase in the rate of special education services and 
a 61% increase in the rate of autism [240]. Windham group included 284 children with ASD 
and 657 controls from the San Francisco Bay area in order to explore possible associations 
between autism spectrum disorders (ASD) and environmental exposures. Their results 
suggested a potential association between autism and estimated metal concentrations 
including mercury, cadmium, nickel [241].  Consistent with previous results, Geier et al 
conducted a prospective study which provided biochemical/genomic evidence for mercury 
susceptibility/toxicity in ASDs indicating a causal role for mercury [242, 243], and they 
further explored the threshold effect of mercury in a recent publication [244]. In spite of 
these different pieces of evidence, disagreement exists. IP et al performed a cross-sectional 
cohort study to compare the hair and blood mercury levels of autistic children and a group 
of normal children. There was no difference in the mean mercury levels. Thus, they 
concluded that there is no causal relationship between mercury as an environmental 
neurotoxin and autism [245]. 
In addition of mercury, lead is also associated with autism. Very early evidence came from a 
case report, which explored the interaction and possible casual relationship of an elevated 
blood-lead and autism, as well as treatment of the behavioral symptoms [246]. Later, 
Canfield et al concluded that blood lead concentrations, even those below 10 microgram per 
deciliter, were inversely associated with children's IQ scores at three and five years of age, 
and associated declines in IQ were greater at these concentrations than at higher 
concentrations [247]. Supporting these results, Yorbik group reported that autism could be 
associated with significant decrease in excretion rate of lead [248]. 
Hazardous air pollutants have long been related to the development of autism and more 
evidences have begun to emerge in recent years. Kalkbrenner et al conducted a case-control 
study to screen perinatal exposure to 35 hazardous air pollutants using 383 children with 
autism spectrum disorders and, as controls, 2,829 children with speech and language 
impairment. Although the results were biased by exposure misclassification of air pollutants 
and the use of an alternate developmental disorder as the control group, they provided 
evidence based on their analysis that methylene chloride, quinoline, and styrene were the 
plausible candidate exposures for autism spectrum disorders [249]. In another study 
conducted by Windham group, trichloroethylene, and vinyl chloride have also been related 
to autism [241]. 
However, one should notice that the currently available data are mainly derived from 
epidemiological studies. Considering the limited sample sizes and the different populations, 
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the previous results are hardly conclusive. Further research is needed to explore the possible 
mechanisms underlying these results. 

5. Mouse models for autism research 

Mouse models provide a powerful strategy to explore experimentally candidate genes for 
autism susceptibility, and to use environmental challenges to induce gene mutations and 
cell pathology early in development. Mouse models have also been used to investigate the 
effects of alterations in signaling pathways on neuronal migration, neurotransmission and 
brain anatomy, which are relevant to findings in autistic subjects [250]. These models have 
elucidated neuropathology that might underlie the autism phenotype.  
There are currently several mouse models for autism research, most of which are primarily 
developed by knocking out different candidate genes for other neuropsychiatric diseases 
such as fragile X syndrome [250, 251], Rett syndrome [252], but now are used as autistic 
models because of their autistic-like behaviors. Other examples include Engrailed 1&2 and 
PTEN genetic mice [253, 254]. In addition, there is another group of models constructed by 
surgical or toxic treatments of candidate regions in the brain, in general during development 
[255]. Some other reports regarding autistic-like behaviors in BALB/c and A/J mice have 
also been seen [250, 256-258]. 
Here the author would like to stress an inbred mouse strain for autistic research. BTBR 
T(+)tf/J mouse, also named as BTBR mouse, is an inbred strain with black top coat and blond 
undercoat. Anatomically BTBR mice get total absence of the corpus callosum, and severely 
reduced hippocampal commissure, which are also attributed to their phenotypes [259-262]. 
Although primarily used as type 2 diabetes model [263-268] and phenylketonuria (PKU) 
model [269-274], BTBR mice were recently found to be a promising mice model for autism 
research because they exhibited the three core symptoms for diagnosing autism [275-282]. 
Using this strain, several groups have begun to explore the pathogenesis of autism. It was 
well documented that circulating corticosterone is higher in the BTBR than in B6. And 
higher basal glucocorticoid receptor mRNA and higher oxytocin peptide levels were 
detected in the brains of BTBR as compared to B6, although their relationship to autism 
remain disputable [283, 284]. In the meanwhile, potential treatments for autism have been 
proposed based on the experimental results using BTBR mice. Two independent groups 
confirm the efficacy of the SERT blocker, fluoxetine for enhancement of social interactions 
[285, 286]. Another experiment reported repetitive self-grooming behavior in the BTBR 
mouse model of autism was blocked by the mGluR5 antagonist Methyl-6-phenylethynyl-
pyridine (MPEP) [287]. Behavioral therapies offer another option for autism treatment, 
Young group reported social peers rescued autism-relevant sociability deficits in adolescent 
BTBR mice, but not cross-fostering [288, 289]. 
However, the tools to analyze these animals are not yet standardized, and an important 
effort needs to be made. Crawley et al proposed three standards to evaluate animal model, 
namely face validity (i.e. resemblance to the human symptoms), construct validity (i.e. 
similarity to the underlying causes of the disease) and predictive validity (i.e. expected 
responses to treatments that are effective in the human disease) [290]. Using these standards, 
newly developed tests are used to screen more animal models for autism research. 

6. Summary and conclusions 

Autism spectrum disorders (ASD) is a common neurodevelopment disorder. Diagnosed 
before three years old, autistic children present significant language delays, social and 
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communication challenges, as well as abnormal repetitive and restrictive behaviors. It is 
reported that ASD occur in all racial, ethnic and socioeconomic groups, yet are about four 
times more likely to occur in boys than in girls probably due to the extremes of typical male 
neuroanatomy of autism.  
The relationship between immune disorders and ASD has been proposed based on series of 
evidences.Secondly, genetic predisposition is considered to be involved in the etiology of 
ASD. Cumulative evidences indicated ASD had a strong genetic background, both gene-
gene and gene-environment interactions attribute to the etiology of autism. Also, it’s now 
generally accepted that ASD is a group of multi-genetic diseases, in which environmental 
factors play an important part. Given the early onset of the symptoms, prenatal exposures to 
environmental challenges are considered the major risk factors leading to subsequent 
mortality of ASD. Various factors have been proven to be potentially detrimental to early 
neurosystem development, including maternal use of pharmaceutical agents with 
neurotoxic effects, intrauterine exposure to viral infections or maternal stress , as well as 
exposure to high levels of environmental pollutants such as heavy metals . Similarly, 
neonatal exposure to such risk factors may also lead to mortality of ASD, which has been 
proven in animal studies as well as clinical reports. 
At last, ASD animal models provide a feasible and relatively easy way to morphologically 
and functionally study the etiology of ASD in different levels, and to testify the effectiveness 
of the potential interventions. Recent advances in this field provide both inbred strains such 
as BTBR T+ tf/J mice and mutant lines. Other mice models for fragile X syndrome, Rett 
syndrome have also been used for autism related studies due to the autistic-like behaviors 
exhibited in these patients.  
In conclusion, data remain inconclusive for the majority of candidate genes tested so far. 
Still, we have good reason to be optimistic regarding gene discovery in ASD now and in the 
future. Cytogenetic, linkage, association studies and array analysis have provided 
promising results. Emerging genetic technologies and analysis tools offer even more 
powerful approaches for developing insights into the etiology of ASD. In addition, genetic 
studies facilitate other autism research such as biochemical and neuroimaging studies, 
which will, in turn, provide evidence and valuable clues to direct future genetic studies. 
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