
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322399498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


22 

Myasthenia Gravis: New Insights into  
the Effect of MuSK Antibodies and 

 Acetylcholinesterase Inhibitors  

 Anna Rostedt Punga 
Uppsala University Hospital, Institute of Neuroscience,  

Department of Clinical Neurophysiology 

Sweden 

1. Introduction  

Myasthenia Gravis (MG) is an autoimmune neuromuscular disorder in which 
autoantibodies are directed against muscle receptors. MG causes fluctuating muscle 
weakness, which often involves droopy eyelids, swallowing difficulties and generalized 
muscle fatigue in the neck and proximal muscles of the legs and arms. The prevalence of 
MG is two times higher in women than in men. Age is also a prevailing factor, affecting 
women whom are 20-30 years of age, whereas men are 60-80 years old (Osserman and 
Genkins 1971). The annual incidence of MG has been reported to be about 3-4 cases per 
million and the overall prevalence about 60 cases per million; however, higher rates have 
recently been suggested, indicating a potential prevalence as high as 20 per 100 000 persons. 
(Kalb, Matell et al. 2002; Phillips 2003). The most common form of MG is associated with 
antibodies against the nicotinic acetylcholine receptor (AChR), present in about 85% of 
patients with generalised MG (Vincent and Newsom Davis 1980). In 2001 antibodies against 
the muscle specific tyrosine kinase (MuSK) were identified in about 40-70% of patients 
without detectable AChR antibodies (Hoch, McConville et al. 2001). Furthermore, in 
approximately 5-10% of patients with the generalized disease no antibodies are present in 
the serum, but these cases all have the features of an autoimmune course. This chapter deals 
with the clinical phenotype, neurophysiology and consequences at the neuromuscular 
junction of the autoimmune attack associated with MG as well as treatment options. The 
focus will be on MuSK antibody seropositive (MuSK+) MG in human patients and the 
experimental murine model of MuSK+ MG.  

2. Myasthenia gravis: Targets, consequences and treatment of the 
autoimmune attack   

In 1960, the Scottish neurologist Simpson suggested that MG might be caused by an 

autoimmune mechanism based on the relatively high incidence of concomitant autoimmune 

diseases, e.g. rheumatoid arthritis and systemic lupus erytematosus, among the MG patients 

(Simpson 1960). Abnormalities of the thymus gland were discovered, as well as the presence 

of lymphorrages in muscles, which further supported Simpson´s hypothesis (Miller 1961). A 

www.intechopen.com



 
Autoimmune Disorders – Current Concepts and Advances from Bedside to Mechanistic Insights 

 

434 

humoral factor was also implicated in the development of MG after it was found that 

approximately 20% of babies whose mothers had a diagnosis of MG developed transient 

neonatal MG (Strickroot 1942). Over the years, the targets of the autoimmune response, the 

mechanism at the neuromuscular junction (NMJ), clinical and neurophysiological features 

and treatment options have been outlined and improved.  

2.1 Targets of the autoimmune attack 
The MG autoimmune attack is directed against the receptors and proteins of the 
neuromuscular junction. Some patients have a thymoma which presents with antibodies 
against other proteins, seen in the case of thymic pathology. It is not yet clear what triggers 
the production of autoantibodies but MG is considered to be both a B-and T-cell mediated 
disorder. The autoimmune attack results in disruption of the postsynaptic endplate 
morphology and subsequently impaired neuromuscular transmission, which in turn causes 
the typical symptoms of fatigable skeletal muscle weakness.  

2.1.1 Nicotinic acetylcholine receptors 
About 80-85% of patients with generalized MG and 55% of patients with ocular MG have 
autoantibodies directed against the nicotinic AChR (AChR+) (Lindstrom, Seybold et al. 
1976; Vincent and Newsom-Davis 1985). The AChR antibodies (Abs) are highly specific for 
MG and impair the function of the AChRs by three main mechanisms: (1) blocking of the 
acetylcholine (ACh) binding site (Lefvert, Cuenoud et al. 1981); (2) cross-linking of the 
AChRs that results in both a functional blockade and accelerated degradation of the AChRs 
(Drachman, Adams et al. 1981) and (3) complement activation that results in destruction of 
the postsynaptic muscle membrane (Engel, Lambert et al. 1977). The main immunogenic 
region (MIR), against which the majority of AChR-Abs in MG or experimental autoimmune 
MG (EAMG) are directed, is located at the extracellular end of ┙1 subunits. Pathologically 
significant autoantibodies must be directed at the extracellular surface of the AChR, where 
they can bind in vivo (Lindstrom, Luo et al. 2008). In MG and chronic EAMG in rats, 
autoantibodies bound to muscle AChRs target the postsynaptic membrane for complement-
binding, which results in focal lysis and reduces the number of AchRs. This chain of events 
in turn disrupts the architecture of the postsynaptic membrane  through an alteration of its 
normal position next to active zones of ACh release (Lindstrom 2000). The AChR-Abs are of 
IgG1 type and are typically measured using a standard radioimmunoassay in which the 
antigen consists of AChR from human muscle labelled with [125I]┙-bungarotoxin  

2.1.2 Muscle specific tyrosine kinase (MuSK) 
MuSK is essential in the early development of the NMJ, as well as in the maintenance of the 

organized structure of the postsynaptic apparatus through clustering of AChRs (Hopf and 

Hoch 1998; Liyanage, Hoch et al. 2002; Wang, Zhang et al. 2006)  (Figure 1). It is further 

necessary for maintaining the organized structure and integrity of the neuromuscular 

synapse, as perturbations in MuSK protein expression cause a pronounced disassembly of 

the NMJ (Kong, Barzaghi et al. 2004; Hesser, Henschel et al. 2006). MuSK mutant mice do 

not experience successful synaptic differentiation and agrin mutant mice, have small AChR 

clusters which are scattered abnormally throughout the muscle (DeChiara, Bowen et al. 

1996). Other players which are required for synaptogenesis include Dok-7, rapsyn and Lrp4. 

Dok-7 is a downstream adaptor protein to MuSK, and is important for maintaining the 
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structural integrity of the endplate (Okada, Inoue et al. 2006). Lrp4 was recently identified as 

the co-receptor for neural agrin and forms a complex which mediates MuSK activation upon 

agrin-binding (Kim, Stiegler et al. 2008; Zhang, Luo et al. 2008). Rapsyn is a membrane-

associated cytoplasmic protein that is concentrated at the NMJ and crucial for the clustering 

of AChRs (Colledge and Froehner 1998).  

 

 

Fig. 1. Agrin-MuSK signalling at the neuromuscular synapse. Neural agrin is released from 
the motor nerve terminal and attaches to MuSK along with its co-receptor Lrp-4. This 
binding of agrin induces a cascade of phosphorylation on MuSK and then on other 
intracellular proteins, such as rapsyn, enabling the clustering of AChR. The autoantibodies 
in MuSK-antibody seropositive MG are mainly of IgG4-subtype and attach to the IgG-like 
domains in the extracellular domain of MuSK. The autoantibodies in AChR-antibody 
seropositive MG are of IgG1 subtype and bind to the main immunogenic region of the 
AChR, blocking the acetylcholine binding and activating complement pathways which 
destroy AChRs. Another important pathway at the synapse is ErbB with its 
neurotransmitter neuregulin.  

In 2001, antibodies against the MuSK (MuSK-Ab) were identified and found to be present in 
about 40-70% of patients who are seronegative for AChR-Abs (Hoch, McConville et al. 2001; 
Bartoccioni, Marino et al. 2003; Rostedt Punga, Ahlqvist et al. 2006). MuSK-Abs have also 
been identified in 14% of patients who have been characterized as having low titers of 
AChR-Abs; thus, MuSK-Abs are not entirely restricted to the AChR-Ab seronegative MG 
subgroup (Rostedt Punga, Ahlqvist et al. 2006). While MuSK-antibodies are predominantly 
of IgG4 subclass, up to 30% of the MuSK-antibodies belong to the IgG1 subclass 
(McConville, Farrugia et al. 2004). Despite the controversial pathogenicity of MuSK-Abs 
(Lindstrom 2004; Selcen, Fukuda et al. 2004), their role in disrupting the NMJ and 
development MG has been evidenced in animal studies with MuSK immunization 
(Shigemoto, Kubo et al. 2006) and passive transfer of sera from MuSK+ patients (Cole, 
Reddel et al. 2008). Patient-anti MuSK abs have been shown to inhibit neural agrin-mediated 
formation of AChR clusters in vitro (Hoch, McConville et al. 2001; Cole, Reddel et al. 2008).  
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2.1.3 Thymoma associated antibodies and rapsyn antibodies 
MG patients with a tumour of the thymus, thymoma, may have antibodies not only directed 
to the AChR but also to other components of striated muscle. Two of these components 
strongly associated with a thymoma are the sarcomeric cytoskeletal protein titin and the 
calcium release channel of the sarcoplasmic reticulum, the ryanodine receptor (Aarli, 
Stefansson et al. 1990; Mygland, Tysnes et al. 1992). On the basis of their cross-striational 
pattern by immunofluorescent staining, they have been named antistriational antibodies.  
A fifth antigen is the small postsynaptic AChR-associated protein rapsyn. Antibodies 

directed against rapsyn have been detected in about 15% of MG-patients, both in patients 

with and without AChR-Abs. Rapsyn is precisely colocalized with AChRs from the early 

stages of NMJ formation and similar to MuSK, rapsyn is necessary for the clustering of 

AChRs (Hall and Sanes 1993; Gautam, Noakes et al. 1995).  

2.1.4 Seronegative myasthenia 
A minority of MG patients is consistently negative for antibodies to the soluble native AChR 
or MuSK used in standard assays, and is often referred to as seronegative myasthenia gravis 
(SNMG). There could be antibodies to another neuromuscular junction protein, but given 
the clinical features which are very similar to AChR+ MG, it is likely that the failure of 
current assays to detect the antibodies due to a loss of antigenic determinants in the 
solubilized AChR used in the radioimmunoprecipitation assay, or because the AChR 
antibodies have only low affinity/avidity for the soluble AChR, is responsible. This was 
proven in 2008, when a cell-based assay showed that IgG from 66% of SNMG sera, binds to 
AChRs when they are clustered on the surface of a non-muscle cell line (HEK693 kidney 
cells) by co-transfecting with rapsyn (Leite, Jacob et al. 2008). This study also confirmed that 
these Abs are mainly complement activating IgG1, and some were able to induce 
complement deposition on the AChR clusters. SNMG patients typically behave as AChR+ 
MG with a similar clinical phenotype and improvement upon immunosuppressive 
treatment. Patients with symptoms of MG in whom no autoantibodies can be detected are 
called “seronegative” (AChR-). However, there are strong indicators that AChR- MG also 
has an autoimmune etiology. In fact a small proportion of AChR- patients were recently 
found to have autoantibodies to Lrp4, via an in-vitro luciferase-reporter 
immunoprecipitation method (Higuchi, Hamuro et al. 2011). These antibodies inhibit 
binding of Lrp4 to its ligand and predominantly belong to the immunoglobulin G1 (IgG1) 
subclass, a complement activator. Thus, in the future it is anticipated that antibodies in the 
sera from SNMG patients will be identified.  

2.2 Clinical picture in different subsets of MG  
The clinical hallmark of MG is painless, fatigable weakness, located primarily in the 

proximal muscle groups of the neck, face, shoulders, arms and legs. The muscle weakness 

may fluctuate daily, but typically worsens after physical activity and improves with rest. 

The course of MG is variable, although in most cases the disease is chronic and requires 

lifelong immunosuppressive medication. Long-lasting remissions are uncommon; however 

this has been reported in 10–20% of patients (Grob, Brunner et al. 2008). Many patients 

experience intermittent worsening of symptoms triggered by emotional stress, viral or 

bacterial infections, due to an upregulation of the immune system, and different 

medications, including certain antibiotics.  
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Weakness in the extraocular muscles results in ptosis and diplopia, whereas bulbar muscle 
weakness causes dysarthria, dysphagia and in worst cases also dyspnea necessitating 
respirator assistance (myasthenic crisis). Fatigue of the proximal leg and arm muscles causes 
difficulties in climbing stairs and holding the arms above the head. MG can be subdivided 
into an ocular and generalized form. In the ocular form, symptoms are restricted to the 
extraocular muscles resulting in ptosis and diplopia. Most patients, who generalize, i.e. 
develop symptoms of fatigue in muscles of proximal limbs, facial and bulbar muscles do so 
within 2 years. Studies have tried to identify factors to help predict prognosis but no such 
factors have been characterised, including neurophysiological examinations (Rostedt, 
Sanders et al. 2000). Patients with generalised MG can be divided into early-onset disease 
(onset <40 years of age) and late-onset disease. Female patients predominate the early-onset 
group, and often have AChR antibodies and an enlarged hyperplastic thymus gland. 
Patients with onset after the age of 40 years are more often male and usually have a normal 
appearance of the thymus. About 10–15% of patients with MG have a thymoma, a tumour of 
the thymus. MG associated with a thymoma, which is equally common in men and women, 
can occur at any age and the clinical presentation is often more severe with progressive 
generalized and oropharyngeal weakness (Evoli, Minisci et al. 2002)  
 

 

Fig. 2. Clinical and neurophysiological features which can be observed in MuSK+ MG. Left 
panel: A close-up of the tongue shows pronounced atrophy on the lateral sides of the 
glossus muscle. Right panel: EMG in these areas of the muscle revealed a myopathic picture. 

MuSK+ patients usually differ from the AChR+ patients by having a very focal distribution 

of the muscle weakness, sometimes being limited to only the neck extensor muscles or to the 

bulbar muscles. A large Italian cohort of MuSK+ patients revealed a specific pattern of 

muscle weakness, with prevalent involvement of cranial and bulbar muscles and a high 

frequency of respiratory crises, and less severe and inconsistent involvement of limb 

muscles (Evoli, Tonali et al. 2003). This selective muscle weakness of faciobulbar and neck 

muscles is often very focal, with relative sparing of other muscles. Additionally, muscles 

which are usually not affected in AChR+ MG, including the paraspinal and esophageal 

muscles, may be involved (Sanders and Juel 2008). Contrary to conventional AChR+ MG 

patients, the majority of MuSK+ patients do not experience symptomatic relief from 

acetylcholine esterase inhibitors (AChEI) (Evoli, Tonali et al. 2003), but may respond with 

pronounced nicotinic adverse effects, such as muscle fasciculations and cramps (Punga, 

Flink et al. 2006). Pronounced muscle atrophy of facial muscles has also been described in 

MuSK+ patients and verified on MRI examinations of the temporalis, masseter and lingual 

muscles (Farrugia, Robson et al. 2006; Zouvelou, Rentzos et al. 2009). This facial muscle 
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weakness is often seen as a flattening of the forehead and in some patients atrophy of the 

tongue (Figure 2) is pronounced.  

2.2.1 Neurophysiology in MG: disturbed neuromuscular transmission 
Neurophysiological tests are essential in the diagnosis of MG. There are two different in vivo 

examinations to confirm disturbed neuromuscular transmission: (1) Repetitive nerve 

stimulation (RNS) and (2) Single-fiber EMG (SFEMG). At low frequency RNS (3 Hz) there is 

typically a progressive decline in the compound muscle action potential (CMAP) amplitude. 

This decrement is due to the “run down” of the amplitude of individual end plate potentials 

(EPP). In MG, a certain proportion of potentials are reduced to a subthreshold level and 

therefore insufficient to depolarize the muscle fiber. Since the CMAP constitutes the sum of 

activated muscle fibers, its amplitude is successively reduced with an increasing block of 

individual muscle fibers. If the amplitude drop, or decrement, exceeds a certain limit, e.g. 

5%, the finding is considered significant. RNS is first performed at rest and then after 20 

seconds of maximal voluntary muscle contraction, when an improvement of the decrement 

is typically seen, known as post-exercise facilitation. Additional tests after 1 and 3 minutes 

explore post-exercise exhaustion.  

The amount of ACh released at the NMJ at different times varies minimally, resulting in 

comparable variations in the rise of EPP and the muscle fiber pair interpotential intervals. 

This variability is highly sensitive to neuromuscular transmission abnormalities and is 

increased in MG patients. SFEMG, which is the most sensitive test for MG, measures this 

variability and can be performed during voluntary muscle contraction or when the nerve is 

electrically stimulated (Stalberg, Ekstedt et al. 1974). SFEMG reveals deficits of 

neuromuscular transmission in 95%–99% of MG patients (Sanders 2002) and has proven to 

be a sensitive marker of early improvement in clinical trials in MG (Meriggioli and Rowin 

2003). With an uptake area of about 300 μm the SFEMG electrode selectively records action 

potentials from a small number (usually 2 or 3) of muscle fibers innervated by a single 

motor unit and can detect subclinical defects in neuromuscular transmission. The variations 

in the difference in conduction times taken by impulses from the nerve branching point via 

the motor end plates along each muscle fiber to the recording site are called jitter. The jitter 

reflects the safety factor of neuromuscular transmission and in normal conditions the jitter is 

low. When jitter measurements are made in voluntarily activated muscle, activity from two 

muscle fibers innervated from the same axon is recorded and one action potential used as a 

time reference (Figure 3a). Increased jitter indicates a disturbed neuromuscular transmission 

(Figure 3b). Neuromuscular blockings occur if the jitter if high enough (usually more than 

100 μsec), resulting from the failure of transmission of one of the potentials, when one of the 

muscle fibers fails to transmit an action potential because the EPP does not reach the 

necessary threshold (Figure 3c). Increased jitter is not pathognomonic for MG and can be 

seen in other conditions where there is denervation and reinnervation going on 

simultaneously, such as amyotrophic lateral sclerosis (ALS). Nevertheless, in combination 

with the clinical picture and immunological analysis of antibodies, the SFEMG is very 

sensitive for the MG diagnosis. Normal results on SFEMG in a clinically affected muscle 

basically rule out the diagnosis of MG. In most clinical neurophysiological laboratories, the 

arm muscle extensor digitorum communis (EDC) and either the facial muscles orbicularis 

oculi or frontalis are routinely examined.  
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Fig. 3. Single-fiber EMG recording from the orbicularis oculi muscle (A) in a healthy 
control person and in a patient with MG (B and C). The vertical dotted lines represent the 
time line of a single muscle fiber and in each box, signals from two muscle fibers 
belonging to the same motor unit are displayed. A) Normal jitter, i.e. constant time 
variation in the variability of neuromuscular signaling to fiber 1 and 2. B) Increased jitter,  
and C) blockings.  

2.2.2 Focal neurophysiology in MuSK+ MG 
In patients with an extremely focal presentation of muscle fatigue and weakness, such as in 

MuSK+ MG, it may be necessary to specifically examine an involved muscle, such as the 

neck extensor muscles. Specific examination will help to prevent the oversight of selective 

defects of neuromuscular transmission (Sanders, El-Salem et al. 2003). In MuSK+ MG, 

SFEMG has been confirmed as the most sensitive examination in the neurophysiological 

diagnosis of MuSK+ MG, whereas repetitive nerve stimulation in limb muscles is only 

diagnostic in about 57% of cases (Evoli, Tonali et al. 2003). One of the standard limb muscles 

for SFEMG examinations, the EDC muscle, has been reported normal in many cases of 

MuSK+ MG, unlike AChR+ (Nemoto, Kuwabara et al. 2005; Stickler, Massey et al. 2005), 

which indicates differences in the distribution of abnormal neuromuscular transmission. In 

our experience, MuSK+ MG patients have comparable defects of neuromuscular 

transmission, on SFEMG; as AChR+ MG patients, when proximal muscles such as the 

deltoid or the orbicularis oculi muscles are examined (Rostedt Punga, Ahlqvist et al. 2006). 

One study has emphasized that the decrement in facial muscles, such as the orbicularis oculi 

muscle, is more often abnormal in the MuSK+ patients (Oh, Hatanaka et al. 2006), thus it is 

also important for RNS to be performed with recording from muscles in the faciobulbar 

region.   

Neurophysiological examinations are also important in MuSK+ MG to detect adverse effects 

from AChEIs. So-called extra discharges (EDs), which occur after the CMAP on motor nerve 

stimulation, are sometimes observed in MG patients who are receiving high doses of 

AChEIs and may signify impending cholinergic crisis (Punga and Stalberg 2009). EDs are 

more prominent in recordings from distal muscles, such as the abductor digiti minimi 

(ADM) in the hand (Punga, Sawada et al. 2008). In the same patient different 
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nerves/muscles display different grades of EDs. In some nerves, the discharges are clearly 

extra components, with increasing intervals from 4 to 12 ms (with a duration of at least 50 

ms) and with an amplitude of approximately one third of the CMAP. In other nerves the 

EDs are seen as irregular discharges of low amplitude (<0.5 mV), with a duration up to 100 

ms (Punga, Sawada et al. 2008). EDs may also occur directly after the neostigmine test in 

MuSK+ patients and then correlate with a worsening in muscle fatigue (Punga, Flink et al. 

2006).  

Examination using quantitative EMG (QEMG) is characterized by a myopathic pattern in 

approximately 70% of MuSK+ patients in neck extensor splenius capitis muscle and/or the 

deltoid muscle, which is considerably more than in the AChR+ group where it is found in 

approximately 23% of patients (Rostedt Punga, Ahlqvist et al. 2006). None of the above 

figures include patients treated with high doses of corticosteroids. An additional study 

using QEMG in MG revealed a myopathic pattern in the facial orbicularis oris muscle in 

62% of MuSK+ patients and 50% of AChR+ patients; however, concomitant treatment with 

corticosteroids confounds pathophysiological conclusion (Farrugia, Kennett et al. 2007). 

Although denervation is not seen in AChR+ MG and also not in most MuSK+ patients, 

denervation activity in conjunction with a myopathic picture on QEMG has been observed 

in the tongue (glossus) muscle  (Figure 2) (Punga, unpublished observations). 

2.3 Treatment  
Treatment of MG can be divided into two subclasses: immunosuppressive and 

symptomatic. Since MG is typically a chronic disorder, long-term immunosuppressive 

medications is often applied and include corticosteroids, corticosteroid sparing agents such 

as azathioprine and cyclosporine (which inhibit the T-cells) and antibody treatment with 

rituximab (which inhibits the B-cell response). Since autoimmune MG patients do not 

respond similarly to the same treatment, each regimen has to be tailored for each patient. 

For the acute treatment of exacerbations of weakness it may be necessary to employ 

plasmapheresis or intravenous immunoglobulins, which result in a prompt reduction of the 

autoimmune response. Patients with a thymoma or young patients usually undergo a 

thymectomy, removing the thymus which is hyperplastic, as in the majority of cases of 

AChR-antibodies. The most commonly used chronic symptomatic treatment consists of 

nonselective acetylcholinesterase inhibitors. These inhibitors render more acetylcholine 

available at the NMJ, thus temporarily decreasing fatigue. In general, patients with AChR-

abs respond better to both immunosuppressive and symptomatic medication than MuSK+ 

patients.  

2.3.1 Immunosuppressive treatment 

2.3.1.1 Corticosteroids 

Corticosteroids are generally considered to be an effective immunosuppressant for MG 

patients. Their therapeutic mechanism of action is through inhibition of transcription of 

inflammatory cytokines (interleukins, IL) and adhesion molecules, and a reduction in 

trafficking of inflammatory cells such as T-cells, thus reducing the inflammatory response. 

High doses may also induce apotosis of inflammatory cells (Barnes 2001). Although widely 

accepted as an appropriate immunosuppressive therapy, the efficacy of glucocorticosteroid 
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treatment in MG has only been tested in a few randomized controlled studies (Howard, 

Duane et al. 1976; Lindberg, Andersen et al. 1998). Lindberg et al reported significant 

improvement in muscle function in the group of MG patients who received 2 g i v 

methylprednisolone on two consecutive days compared to the placebo group, duration of 

improvement ranged from 4 to 14 weeks. Intriguingly, no change in serum concentration of 

AChR abs was found after treatment in either of the two groups.  

There is also a risk of worsening during the first days of initiation of the high doses, usually 

lasting less than one week. It appears that gradually increasing the steroid dose over one to 

two months may significantly reduce this risk. Pascuzzi et al reported improvement in as 

many as 95% of MG patients receiving long-term treatment with prednisone and remission 

(defined as no more than minimal eye closure weakness) in 28% of patients (Pascuzzi, 

Coslett et al. 1984). Additionally, corticosteroids appear to have direct effect on the 

neuromuscular junction, which may play a role for the early alterations and short-term 

fluctuations in myasthenic weakness seen in patients being treated with corticosteroids. In 

one study investigating the rat phrenic nerve-diaphragm, intracellular microelectrode 

recording of miniature end-plate potentials (MEPPs) was used to investigate the effect of 

prednisone on neuromuscular transmission. The results indicate that prednisone facilitates 

spontaneous release of acetylcholine (as manifested by a two- to three-fold increase in MEPP 

frequency) and decreases MEPP amplitude by about 50% (Wilson, Ward et al. 1974). The 

side effects, especially with long term treatment, are well known and include glucose 

intolerance, osteoporosis, weight gain, depression, mood swings, hypokalemia, septic 

ulcers, cushingoid features, myopathy and hypertension. Alternate day therapy is 

commonly applied in order to reduce side effects. It is also important to reduce the dose of 

corticosteroids slowly to a minimum that will maintain the remission or improvement in 

order to avoid worsening. 

2.3.1.2 T-cell inhibiting medications 

Azathioprine has been used extensively for treatment of MG patients and is considered 

important as a steroid-sparing agent. Its mechanism of action is to inhibit purine synthesis 

and hence cell proliferation (Elion 1972). The most rapidly dividing cells, including 

lymphocytes involved in the autoimmune response, are affected. Prolonged administration 

of  azathioprine prevents the appearance of experimental autoimmune MG (EAMG), for at 

least four months, in rabbits immunized with AChR (Abramsky, Tarrab-Hazdai et al. 1976). 

Azathioprine has a delayed onset of effect, on average four to six months, and maximal 

benefit is reached after a period of approximately 14 months. However, 70-90% of patients 

have reported a decrease in their myasthenic weakness after some months (Lewis, Selwa et 

al. 1995). Adverse effects include anorexia, gastrointestinal upset, hepatotoxicity and bone 

marrow suppression, commonly involving a reduction in white blood cell count. Close 

monitoring of the blood cell counts, along with liver enzymes, is necessary since a few 

patients develop a flu-like idiosyncratic reaction which includes fever and malaise and/or a 

skin rash, requiring discontinuation. Long-term treatment is also associated with an 

increased risk of developing malignancies (Confavreux, Saddier et al. 1996). Azathioprine is 

considered important as a steroid-sparing agent in MG treatment, although most studies 

have described its usefulness in conjunction with corticosteroids. Azathioprine is 

administered orally with a preferred maintenance dose of 2 to 3 mg/kg per day. The initial 

dose is 50 mg/d and increases by 50 mg/d every week while monitoring for adverse effects.  
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Cyclosporine A is another steroid-sparing medication which acts through prohibition of the 
transcription of cytokine genes, including those of IL-2 and IL-4, in activated T cells (Kronke, 
Leonard et al. 1984) . It is a highly specific inhibitor of T helper cell activation, and also acts 
to inhibit the phosphatase activity of calcineurin as well as the activation of c-Jun NH2-
terminal kinase (JNK) in T lymphocytes and p38 signaling pathways triggered by antigen 
recognition (Matsuda, Moriguchi et al. 1998). Cyclosporine is widely used to prevent 
transplant rejection but is used in MG patients not responding to other 
immunosuppressants. In a therapeutic trial where cyclosporine was compared to placebo, 
patients in the cyclosporine group had improved strength and a reduction in AChR-Ab titer 
(Tindall, Phillips et al. 1993). Adverse effects include nephrotoxicity, hypertension and 
headache; hence, monitoring of blood urea nitrogen and creatinine is necessary. Most 
patients improve maximally after two to four months of therapy. The usual dose is 3 to 5 
mg/kg per day, given orally at 12-hour intervals.  
Mycophenolate mofetil (MyM) is the 2-morpholinoethyl ester of mycophenolic acid, which 
inhibits the proliferation of B and T lymphocytes through noncompetitive, reversible 
inhibition of inosine monophosphate dehydrogenase, a key enzyme in the de novo synthetic 
pathway of guanine nucleotides. Mycophenolic acid blocks inosine monophosphate 
dehydrogenase, an enzyme that is responsible for conversion of inosine monophosphate to 
guanosine monophosphate; hence, synthesis of adenosine is enhanced. This results in 
inhibition of purine synthesis selectively in lymphocytes, thereby inhibiting their 
proliferation (Allison, Kowalski et al. 1993). In a larger retrospective study, MyM was 
associated with clinical improvement in approximately 70% of patients after a period of 
approximately 11 weeks (Meriggioli, Ciafaloni et al. 2003). MyM is also well tolerated in 
most patients and only discontinued due to the adverse effects in a very small fraction of 
patients, the most common reason being gastrointestinal intolerance, such as diarrhea. The 
long-term safety of MyM is not known, but rates of malignancy do not appear to be higher 
in transplant recipients who receive MyM chronically (Haberal, Karakayali et al. 2002).  

2.3.1.3 Other immunosuppressants 

Cyclophosphamide is a nitrogen mustard with potent immunosuppressant effects and is 
used to treat MG patients who are resistant to other therapies. It affects the proliferation of B 
cells and thereby reduces antibody production (Fig 1). The use of cyclophosphamide in MG 
is limited, but undoubtedly beneficial in severe cases (Perez, Buot et al. 1981). The usual 
dose range from 1 to 3 mg/kg per day, orally. Nevertheless, adverse effects are prominent 
and include alopecia, hemorrhagic cystitis, leukopenia and nausea. Long-term treatment 
brings the risk of infertility and malignancy.  
Etanercept, a soluble, recombinant human TNF-receptor that competitively blocks the 

action of TNF-, has been shown to have steroid-sparing effects in studies on small patient 

groups. In 54% of patients, with low plasma IL-6 and IFN- levels, the clinical scores 

improved and patients with increased cytokine levels (IL-6, IFN- and TNF-) had worse 

clinical outcomes (Tuzun, Meriggioli et al. 2005). TNF- is involved in the generation of 
AChR-specific T and B cell responses during the development of EAMG and preclinical 
studies on AChR-immunized mice have shown that etanercept can suppress established 
EAMG without inducing significant immunosuppression (Christadoss and Goluszko 2002).  
Rituximab (Mabtera®) Rituximab is a chimeric IgG1 κ monoclonal antibody that targets 
CD20, a transmembrane phosphoprotein on most B cells. Rituximab depletes B cells by 
binding to the CD20 molecule and initiating complement-dependent cytolysis or antibody-
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dependent cell-mediated cytotoxicity (Monson, Cravens et al. 2005). Several case reports 
have demonstrated the effect of Rituximab in MuSK+ MG patients on the clinical course of 
bulbar and respiratory symptoms, thus making it an important alternative for the MuSK+ 
MG patients who are refractory to other immunosuppressive treatment (Hain, Jordan et al. 
2006; Baek, Bashey et al. 2007).  

2.3.1.4 Thymectomy 

The reason for removing the thymus gland in MG patients has historically been due to the 

presence of hyperplastic germinal centers, mainly in AChR+ patients. Despite the absence of 

randomized, well-controlled studies, thymectomy in MG patients with and without 

thymoma is widely practised. Post-operative improvement can take months or years to 

appear, making it difficult to distinguish thymectomy effects from those of 

immunosuppressive drugs, which are often used concomitantly (Skeie, Apostolski et al. 

2010). Thymectomy is usually performed using a transsternal approach, removing the entire 

thymus gland, usually in patients less than 60 years of age. In MG patients with a thymoma, 

the main aim of thymectomy is to preferentially treat the tumour. Once thymoma is 

diagnosed, thymectomy is indicated irrespective of the severity of MG. One study (Evoli, 

Tonali et al. 2003) could not prove any effect of thymectomy in 15 MuSK+ patients, whereas 

MuSK antibodies predicted a poor outcome of thymectomy in another study (Pompeo, 

Tacconi et al. 2009). Additionally, it has been reported that MuSK+ patients have normal 

histopathology of the thymus (Leite, Strobel et al. 2005). Thus, current evidence suggests 

that thymectomy should not be recommended in MuSK+ patients. However, early onset 

generalized MG without AChR and MuSK antibodies are recommended to have 

thymectomy in the same way as MG with AChR antibodies. 

2.3.1.5 Plasmapheresis and immunoglobulins 

Plasma exchange and intravenous immunoglobulin (IvIg) are used for short-term treatment 

of MG exacerbations and when it is desirable to achieve a rapid clinical response. Plasma 

exchange temporarily reduces the titer of circulating AChR- and MuSK-abs and usually 

produces immediate improvement (within days) in most MG patients (Newsom-Davis, 

Pinching et al. 1978). Circulating anti-AChR pathogenic factors can also be removed using 

immunoadsorption columns, some of which use immobilised AChR as an 

immunoadsorbent (Psaridi-Linardaki, Trakas et al. 2005). IvIg is widely used for patients 

with exacerbating MG. Support for its use comes from randomised controlled trials that 

show efficacy similar to plasma exchange (Gajdos, Chevret et al. 1997), equal efficacy of two 

doses (1 g/kg vs 2 g/kg) (Gajdos, Tranchant et al. 2005) and a recent double-blind, placebo 

controlled trial in patients with MG with worsening weakness (Zinman, Ng et al. 2007). The 

mechanisms by which intravenous immunoglobulins induce improvement are not clear, 

however studies in murine autoimmune models have implied that competition with 

autoantibodies and Fc-receptor binding are important factors in reducing the autoimmune 

response (Samuelsson, Towers et al. 2001).  

2.3.2.1 Acetylcholinesterase inhibitors (AChEIs) 

AChEIs interfere with the catalytic breakdown of the neurotransmitter ACh, rendering ACh 

available for a longer period of time at the NMJ and the nicotinic AChRs (nAChRs). The 

nonselective AChEIs affect both the nAChRs and the muscarinic receptors in exocrine 

glands. Common adverse effects include muscarinic symptoms, such as increased gut 
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motility, which may lead to stomach pain and diarrhea. Other muscarinic effects are 

increased gastric acid secretion, hyperhidrosis, increased sweating, salivation, and 

lacrimation. The presence of daily muscarinic adverse effects correlates with the baseline 

inhibition of AChE activity in the blood (Punga, Sawada et al. 2008). The most common 

form of nonselective AChEI is pyridostigmine bromide (PB Mestinon®), which is especially 

effective at the onset of MG. In some patients, typically those with purely ocular weakness, 

this treatment may be sufficient to manage the fatigue. Overdose of AChEIs can cause a 

cholinergic crisis, which is characterized by increasing muscle weakness, which results in 

dysphagia and respiratory insufficiency in severe cases. The distinction between a 

cholinergic and a myasthenic crisis, the latter being caused by myasthenic weakness, is 

important for the medical treatment of the patient. These two conditions have different 

clinical reactions related to the initial intake of the drug. During incipient overdose in 

cholinergic crisis, symptoms of weakness increase shortly after ingestion and wane before 

the next dose, a situation opposite to that seen in myasthenic crisis. This typical pattern may 

not always be easy to detect; therefore, other markers are useful. For example, the EDs 

observed on motor nerve stimulation are sometimes observed in MG patients who are 

receiving high doses of PB and may signify impending cholinergic crisis (Punga and 

Stalberg 2009).  

Recent reports imply that patients with EDs are more prone to have daily nicotinic side 

effects, including muscle fasciculations and fatigue as a possible sign of overtreatment 

(Punga, Sawada et al. 2008). In this study, elderly MG patients were more prone to develop 

cholinergic side effects, as well as EDs. Additionally, MuSK+ MG patients often have a 

negative edrophonium test and are also reported to clinically benefit less from 

pyridostigmine bromide (Evoli, Bianchi et al. 2008). Instead, MuSK+ patients may worsen or 

develop pronounced nicotinic side effects including muscle cramps and fasciculations in 

response to PB treatment (Evoli, Tonali et al. 2003; Punga, Flink et al. 2006). Based on these 

observations of hypersensitivity to increased amounts of acetylcholine in MuSK+ patients, 

the general guidelines do not recommend AChEIs as a form of treatment in this group of 

patients (Skeie, Apostolski et al. 2010).  

EN101 is a selective AChEI, an antisense oligodeoxynucleotide that acts at the mRNA level 
and selectively reduces the production of the enzymatic isoform of stress-related “read-
through” (AChE-R) through destruction of AChE-R mRNA. This compound selectively 
lowers the levels of AChE-R in both blood and muscle, yet leaves the synaptic variant of 
AChE-S unaffected. EN101 treatment in rats with EAMG, in which daily oral or intravenous 
administration of EN101 reduced AChE in blood and muscle and improved survival, 
muscle strength and disease severity (Brenner, Hamra-Amitay et al. 2003). In this study, 
stabilization of the CMAP decrement on RNS and muscle strength over the entire course of 
treatment was also observed. Interestingly, a Phase 1b open-label trial with oral EN101 
(Monarsen) was recently conducted in 16 MG patients who were receiving at least 180 mg 
ofpyridostigmine bromide daily (Argov, McKee et al. 2007). This study reported an overall 
clinical improvement in approximately 47% of patients, as well as an improvement in the 
swallowing time component. Further, the effects of EN101 lasted for greater than 24 hours, 
indicating the possibility of a reduction in multiple dosing through the use of antisense 
therapy. Further studies are needed to conclude whether EN101 may also have 
immunomodulatory effects through an effect on the immune cholinergic system and thus 
mediation of neuroimmune interactions. 
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2.4 Establishment and phenotype of murine models of experimental autoimmune MG 
(EAMG) 
Naturally occurring MG in animals is present in canine MG. This canine form of MG has a 

natural course of clinical and immunological remission in the majority of dogs, even without 

initiation of immunosuppressive treatment (Shelton and Lindstrom 2001). Therefore, the use 

of the canine MG in determining the effect of immunosuppressant medication is limited. 

EAMG can be induced in rabbits, rats and mice either by passive transfer of human 

antibodies/sera or by immunization of the antigen in adjuvant. In 1978 it was first shown 

that active immunization with AChR from Torpedo (ray fish) electric organ, in rabbits leads 

to flaccid paralysis and an MG-like disease. Since in rabbits the disease has an acute action 

and shortly leads to death, these animals are not routinely used for EAMG studies. Some 

studies have used guinea pigs and even primates, but the current most widely used model 

is EAMG induced in female young mice or rats. The disease in rats has a short acute phase 

and a chronic phase, which mimics the human disease, excluding the involvement of the 

thymus (Meinl, Klinkert et al. 1991). In the mice only a chronic phase is induced. EAMG is 

more difficult to induce in mice and usually requires multiple immunizations and only a 

fraction of the mice develop disease symptoms. However, the murine model has an 

advantage of a plethora of mouse-specific reagents and knock-out mouse strains, which 

enable analyses that cannot be performed in rats. One further advantage of using the mouse 

is that its immune system is well characterized and the availability of inbred and genetically 

modified strains permit genetic analysis.  

2.4.1 AChR+ EAMG: Clinical phenotype 
Immunization with purified denatured Torpedo AChR ┙1, ┚1, ┛, or ├ subunits can cause 

EAMG, but it is inefficient compared to native AChR (Lindstrom, Einarson et al. 1978). 

Purified ┙1-subunit is the most potent, as might be expected since its sequence is the most 

conserved. Also, there are two ┙1 in an AChR which permit cross-linking by antibodies, 

which may utilize renaturation to provoke antibodies to the main immunogenic region 

(MIR) (Lindstrom, Luo et al. 2008). It is of outmost importance to use a mouse strain which 

possesses IL-6, since mice deficient in IL-6 have been shown to be resistant to the 

development of EAMG upon immunization (Deng, Goluszko et al. 2002). In the acute phase 

of active EAMG or EAMG passively transmitted with serum, binding of AChR antibody 

and its complement target the postsynaptic membrane for attack by macrophages 

(Lindstrom 2000). Mice immunized with AChR in Complete Freund´s Adjuvant (CFA) 

develop a flaccid paralysis (Figure 4a), a drooping of the head and tail and weakness 

primarily of the forelimbs, which may rapidly progress to respiratory failure (Berman and 

Patrick 1980). The myasthenic phenotype in the AChR+ EAMG mice has been reported to be 

restored in all cases to nearly normal after treatment with neostigmine intraperitoneally 

(Berman and Patrick 1980).  

2.4.2 MuSK+ EAMG: Clinical phenotype 
The antibodies in MuSK+ MG are directed against the extracellular domain of MuSK, which 
contains IgG-like domains. The first study which proved the pathogenic role of MuSK-
antibodies in animals was done in 2006, when New Zealand White rabbits were repeatedly 
injected with 100-400 μg of purified chimeric protein composed of the MuSK ectodomain  
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Fig. 4. A) One mouse with typical flaccid paralysis, especially of the limbs, after 
immunization with torpedo AChR. The clinical course in the AChR+ mice is progessive, 
however the response to intraperitoneal injection of neostigmine induces an improvement in 
clinical weakness. B) The phenotype of the mice immunized with rat MuSK shows a severe 
weakness of the neck extensor muscles, demonstrating a prominent cervical kyphosis and 
inability to raise the head. The mice are not as affected in the hind limbs as in the forelimbs 
and faciobulbar area, with difficulties ingesting food and water and subsequent significant 
weight loss. The MuSK+ mice do not show any clinical improvement from neostigmine 
injection, on the contrary muscle fasciculations and twitches are seen.  

and the Fc region of human IgG1 (MuSK-Fc) (Shigemoto, Kubo et al. 2006). All of the 4 

recipient rabbits manifested flaccid weakness after 3 or 4 repeated injections with MuSK-Fc. 

The actively induced murine model can be produced produced by injection of the 

extracellular domain of 10 g of recombinant rat MuSK (aa 21-491) (Jones, Moore et al. 1999) 

in a mix with CFA in emulsion (Jha, Xu et al. 2006). The prominent features of MuSK+ 

EAMG in mice resemble the human MuSK+MG phenotype with kyphosis, indicating 

weakness in the cervical extensor muscles and the thoracic paraspinal muscles (Figure 4b). 

Additionally, one prominent clinical feature of the MuSK+ mice is the weight loss, which is 

significant compared to the control mice (Punga, Lin et al, 2011). This finding further 

supports the involvement of faciobulbar weakness, preventing the MuSK+ EAMG mice to 

chew and swallow and therefore explaining the irreversible weight loss. Passively induced 
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MuSK+ EAMG has been accomplished by i.p. injections of plasma (Benveniste, Jacobson et 

al. 2005) or purified IgG from MuSK+ MG patients (Cole, Reddel et al. 2008) in C57BL6 

mice. Cole et al also reported that mice injected with IgG from two of three anti-MuSK-

positive patients lost weight, developed myasthenic muscle weakness and a prominent 

cervicothoracic hump, which may reflect cervical extensor weakness.   

2.4.3 Morphological changes at the neuromuscular junction and muscle atrophy in 
EAMG 
In experimental mice injected with anti-MuSK-positive patient IgG, postsynaptic AChR 
staining is reduced to as little as 22% of that seen in control mice in both the tibial and 
diaphragm muscles (Cole, Reddel et al. 2008). The mice which develop MuSK+ EAMG 
following this injection show reduced apposition of the nerve terminal  and the postsynaptic 
AChR cluster. In later studies, mice injected with MuSK+ patient IgG have also been found 
to have reductions in postsynaptic MuSK staining and this loss preceded the impairment of 
postsynaptic AChRs (Cole, Ghazanfari et al. 2010). In this study, the residual level of MuSK 
correlated with the degree of impairment of postsynaptic AChR packing. The sera obtained 
from mice immunized with MuSK inhibit agrin-induced AChR aggregation in C2C12 
myotubes (Jha, Xu et al. 2006). Further, disruption of neuromuscular junctions have been 
observed and it has been proposed that so called delayed synapsing muscles, including the 
diaphragm, tibalis posterior and sternomastoid are more severely affected than the so called 
fast-synapsing muscles (Xu, Jha et al. 2006). 
In a recent study, morphological changes presynaptically and postsynaptically in whole 

mount preparations of muscle fibers from the bulbar sternomastoid and omohyoid muscles 

were examined in control mice and in mice immunized with MuSK (Punga, Lin et al, 2011). 

In the control mice, the postsynaptic clusters (labeled with ┙-bungarotoxin) were closely 

aligned with the presynaptic motor nerve terminal (Figure 5a). However, in the MuSK+ 

EAMG mice, a severe disruption of the NMJ morphology was observed, especially 

prominent in the facial and neck muscles (Punga, Lin et al, 2011). The AChR clusters were 

fragmented and dispersed along the muscle fiber (Figure 5b). Except for disruption of the 

postsynaptic area with less clustering of AChRs, the nerve terminal area was found to be 

smaller than in the control mice (Figure 5b), suggesting a secondary presynaptic effect of 

reduced MuSK signalling. When comparing the morphology of the NMJs in the bulbar 

omohyoid muscle, the AChR clusters were arranged in the junctional folds in the control 

mice (Figure 6a). In parallell rounds of mice immunized with MuSK or AChR confocal 

images revelaled that the AChR clusters were severely fragmented in the MuSK+ mice 

(Figure 6b), whereas in the AChR+ EAMG mice a similar fragmentation of the AChRs was 

not observed, although the AChR clusters and the folding of the NMJs were simplified 

(Figure 6c).  

Benveniste et al found increased protein levels of the muscle RING-finger protein 1 (MuRF-
1), a marker for skeletal muscle atrophy, in the masseter muscle, but not in the 
gastrocnemius muscle, of mice injected with plasma from MuSK+ MG patients (Benveniste, 
Jacobson et al. 2005). Increased mRNA levels of MuRF-1 and atrogin-1 have also been found 
in the masseter of MuSK+ EAMG mice, but not in the limb muscles, further in support of a 
atrophy process localized to the facial muscles (Punga, Lin et al, 2011; Punga, unpublished 
data). There is a difference in the reaction to disturbed or exaggerated agrin-MuSK 
signalling in different skeletal muscles in the sense that muscles with high MuSK levels have  
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Fig. 5. The effect of MuSK-antibodies at the neuromuscular junction (NMJ) in mice 
immunized with MuSK. Confocal microscopy images with 100x magnification of 
immunostained whole mount muscle fibers from the sternomastoid muscle. A) A normal 
NMJ, where ┙-bungarotoxin labels the AChR clusters (green) and antibodies against 
synaptophysin and neurofilament labels the nerve terminal (red). Note the close alignment 
between the motor nerve terminal and clustered postsynaptic AChRs. B) In MuSK+ MG, the 
presynaptic nerve terminal area is significantly smaller and the AChR clusters are 
fragmented and scattered along the muscle fiber. Scale bar is 10 μm.  

 

 

Fig. 6. Immunolabeling of whole mount muscle fibers from the omohyoid muscle, where 
postsynaptic acetylcholine receptors (AChRs) are labelled with ┙-bungarotoxin (white). In 
the control mice (A) a normal pattern with postsynaptic AChR clusters are seen in the 
junctional folds, adjacent to the motor nerve. In MuSK+ EAMG mice (B), the AChRs are very 
faint, with a subsequent reduction in postsynaptic AChR cluster area. In AChR+ EAMG 
mice (C), the staining intensity of the ┙-bungarotoxin was less reduced than in the MuSK+ 
EAMG mice, however there is a disruption in AChR cluster morphology with simplification 
of the postsynaptic morphology and less folding. Scale bar is 10 µm.  

an increased plasticity (Punga, Maj et al, 2011). n the contrary, low muscle-intrinsic MuSK 

levels render some muscles, such as the masseter, more vulnerable to the postsynaptic 

perturbation of MuSK antibodies with subsequent denervation and atrophy (Punga, Lin et 

al, 2011). This is hypothesized to play a role for the muscle selectivity also in MuSK+ MG 

and EAMG.  
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2.4.4 Cholinergic hyperactivity after AChEIs in EAMG 
Evaluation of the response to AChEIs is usually performed by i.p. injection of a mix of 
neostigmine bromide (0.0375 mg/kg) and atropine sulfate (0.015 mg/kg) in mice with 
EAMG grade 2 and 3 (Berman and Patrick 1980).  
In 3 MuSK+ EAMG mice, the opposite response to the common restoration of weakness in 

AChR+ EAMG was seen with more pronounced weakness which manifested itself as chin 

down even more along with nicotinic side effects including muscle fasciculations in the 

back- and limb muscles and abnormal twitches of the tail (Punga et al, unpublished 

observations). The observed fragmentation and dispersion of AChR clusters could explain 

why MuSK+ MG patients do not respond beneficially to AChEIs, since an increased 

acetylcholine level would not be able to induce a synchronous endplate potential due to the 

temporal dispersion of AChRs. Additionally, the reason for the cholinergic hyperactivity in 

MuSK+ MG, here also displayed in the MuSK+ EAMG mice, may be explained by the loss of 

MuSK at the NMJ, which in turn also diminishes the binding between MuSK-ColQ and 

AChE. This means that in the MuSK+ EAMG mice where MuSK antibodies disrupt the NMJ 

and reduce the amount of MuSK, the AChE is also down-regulated (Punga, Lin et al, 2011). 

Then, when exogenous AChEI is administered, a further blocking of AChE is taking place 

and consequently this mimics an overdose of AChEIs which causes the nicotinic side effects 

and in worst cases also cholinergic crisis.  

3. Conclusion  

In summary, studies in the recent years of the murine EAMG model provide further insights 
regarding the action of MuSK antibodies at the NMJ and give evidence for their 
pathogenetic role, especially in facial and bulbar muscles. The results of the MuSK antibody 
attack is fragmentation and dispersion of nicotinic AChRs, postsynaptic perturbation and a 
subsequent impaired neuromuscular transmission. Since MuSK+ MG is very focal in its 
clinical manifestations it is very important to examine the clinically weak muscles also 
neurophysiologically to confirm the diagnosis, and for morphological purpose when 
examining the NMJ pathophysiology. The findings of dispersion of AChRs may also 
indicate irreparable changes at the NMJ, explaining muscle atrophies in these patients. It is 
therefore of importance to identify MG patients as early as possible, and especially MuSK+ 
MG, since delayed treatment may result in muscle atrophies and even functional 
denervation due to long time of blocked neuromuscular transmission. Immunosuppressive 
treatment should always be the main medication in MG and AChEIs is not receommended 
as symptomatic treatment in MuSK+ patients due to the cholinergic hypsersensitivity and 
unbeneficial effects.  
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