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1. Introduction 

Pneumocystis pneumonia (PcP) in humans is caused by the opportunistic eukaryotic 
pathogen Pneumocystis jirovecii (previously known as Pneumocystis carinii f. sp. hominis), 
which has recently been reclassified as a fungus because its cell wall composition and gene 
sequences (Edman, 1988, Stringer, 1989). This atypical uncultured fungus remains a major 
cause of illness and death in patients who have HIV infection. PcP has been the most 
common AIDS-defining opportunistic infection in the United States and Europe during 
more than two decades. Before 1989, 60-80% of AIDS patients presented with PcP, and the 
infection was estimated to be the cause of the death of 20-25% of these patients (Dei-Cas, 
2000). Nowadays, despite the introduction of Pneumocystis chemoprophylaxis and advances 
in the treatment of HIV infection, mainly the development of highly active anti-retroviral 
therapy (HAART), PcP remains as a major opportunistic infection in patients with AIDS. 
While, the incidence of PcP among individuals with HIV infection has decreased in 
developed countries, the prevalence of AIDS-related PcP in developing countries remains 
high and poorly controlled. AIDS-related PcP continues to be an overwhelming illness 
among individuals who are unaware of their HIV infection, those without access to 
antiretroviral therapy, among patients who are intolerant or nonadherent to therapy, those 
who do not comply with prophylactic medications and in cases of failure of prophylaxis, 
probably relate to the emergence of drug-resistant strains (Calderon, 2010b). 

2. Epidemiology 

Pneumocystis jirovecii is probably one of the more frequent infectious agents faced by 
humans in everyday life. Today, it is recognized as an extracellular, obligate, host-specific, 
yeast-like parasitic fungus virtually restricted to lung tissue that can be directly transmitted 
among susceptible hosts by the airborne route. It is established that human PcP in not a 
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zoonotic disease, and this notion has important implications for the epidemiology of P. 

jirovecii  (Calderon, 2009). Although early studies reported the isolation of Pneumocystis 

DNA from the air surrounding apple orchards and the surface of pond water, no 
Pneumocystis forms were identified in environmental samples by microscopic analysis, and 
it is uncertain whether there is an ecological niche for Pneumocystis outside mammalian 
hosts (Wakefield, 1996). Animal sources of  P. jirovecii can be excluded, because the 

Pneumocystis organisms that infect mammalian species are characterized by strong, close 
host-species specificity (Aliouat-Denis, 2008). Thus far, the human being is the only known 
reservoir host for P. jirovecii, and humans probably acquire the infection only from other 
humans (Calderon, 2009). 
Serologic studies have shown that specific serum anti-Pneumocystis antibody  can be 
detected in most children early in life, indicating frequent exposure to this organism 
(Respaldiza, 2004). On the basis of this finding, disease in immunocompromised persons has 
long been thought to result from reactivation of latent infection acquired in childhood. 
However, animal and human studies have shown that elimination of Pneumocystis often 
occurs after infection, implying that the persistence of latent organisms is limited (Morris, 
2002). Recent demonstration of P. jirovecii transplacental transmission may explain the 
accumulating evidence that the primary infection is widely acquired very early in the life 
and support the commonly held view that human infants are a major natural reservoir for P. 
jirovecii, since they can remain colonized as their immune response matures (Montes-Cano, 
2009).    
Colonization with P. jirovecii in adults has recently gained attention as an important issue 
for understanding the complete cycle of human Pneumocystis infection (Calderón, 2010a). In 
general, colonization is defined as isolation of an infectious agent that does not result in 
sufficient damage to cause clinical disease, but that may alter host homeostasis. In the 
specific case of Pneumocystis, colonization is currently defined as the detection of the 
organism or its DNA in respiratory samples from subjects without signs or symptoms of 
pneumonia (Morris, 2008).   
Among adults, Pneumocystis colonization has been well documented in both HIV-infected 
and non–HIV-infected individuals, and certain populations appear to have a higher risk of 
colonization. Studies have shown that individuals who have an underlying HIV-infection or 
another cause of immunosuppression and those who are not immunosuppressed but have 
chronic lung disease may often be colonized by P. jirovecii (Calderón, 2009). These groups at 
risk for carriage probably represent a major species-specific reservoir of infection, although 
transient Pneumocystis colonization has been also identified in healthy individuals that could 
behave as a sort of dynamic reservoir for future Pneumocystis infection in other susceptible 
subjects (Medrano, 2005). 
Several outbreaks of PcP have been reported in hospitals. Molecular analyses of 
Pneumocystis in some of these studies suggested nosocomial acquisition of the infection (de 
Boer, 2007, Olsson, 2001, Rabodonirina, 2004). In addition, Pneumocystis colonization has 
been found more frequently in health care workers in close occupational contact with 
patients with PcP than in those who had no occupational exposure (Vargas, 2000, Miller 
2001). On the other hand, a recent study has provided molecular evidence that airborne 
transmission of P. jirovecii from colonized immunocompetent carrier hosts to susceptible 
persons may occur (Rivero, 2008). Therefore, interindividual airborne transmission seems to 
occur in humans in both hospitals, as a nosocomial infection, and in the community. 
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3. Pathogenesis  

Basic knowledge on Pneumocystis has been hampered by the lack of a reliable in vitro culture 
system. However, through the use of molecular techniques and experimental models of PcP in 
immunosuppressed animals, many progresses have been made over the last decades in our 
understanding of the complex pathophysiology and pathogenesis of this fungal infection.  
At the histopathological level has been shown that the proliferation of Pneumocystis is 
accompanied by anatomical and physiological changes. In animal models, alterations in 
alveolar-capillary permeability are followed by degenerative changes in type I 
pneumocytes, restorative hypertrophy of type II pneumocytes and diffuse alveolar damage 
leading to pulmonary fibrosis (Walzer, 1993). Studies in humans have also shown changes 
in the permeability of the alveolar-capillary membrane, pulmonary diffusing capacity and 
vital capacity in total lung (Coleman et al., 1984). These changes depend on the ability of 
Pneumocystis, demonstrated in animal models to induce in the very early stages of the 
infection alveolar macrophage activation, increased pro-inflammatory cytokines and 
changes in pulmonary surfactant even when small amounts of microorganisms are present 
(Prevost et al., 1998).  
In the infected host, Pneumocystis organisms dwell almost exclusively within lung alveoli. 
Within some hours after experimental intra-tracheal infection, Pneumocystis trophic forms 
attach to the alveolar epithelial cells. The host immune response against the infection 
involves complex interactions between CD4+ and CD8+ T-cells, alveolar macrophages, 
neutrophils and soluble mediators that facilitate clearance of the infection. Disease only 
occurs when cellular and/or humoral immunity is defective.  

3.1 Interactions of Pneumocystis with alveolar host cells 
Trophic forms adhere tightly to alveolar type I cells through interdigitation of their 
membranes with those of the host. The binding of Pneumocystis to the epithelium is 
facilitated by interactions with proteins of the alveolar fluid, such as fibronectin and 
vitronectin that bind to the surface of Pneumocystis and mediate the attachment to integrin 
receptors present on the alveolar epithelium. In infected tissues, type I alveolar cells with 
adherent Pneumocystis appear vacuolated and eroded (Benfield et al., 1997).  However, 
studies of cultured lung epithelial cells have shown that the adherence of Pneumocystis alone 
does not disrupt the structure or barrier function of alveolar epithelial cells, although 
proliferative repair of the epithelium is reduced. It is therefore unlikely that the adherence of 
Pneumocystis to alveolar epithelium is by itself responsible for the diffuse alveolar damage in 
severe pneumonia (Benfield et al., 1997; Thomas & Limper, 2007). Rather, the inflammatory 
responses in the host are primarily responsible for the compromise of the alveolar-capillary 
surface (Thomas & Limper, 2007).  
Electron microscopic studies have shown that Pneumocystis organisms are embedded in 
protein-rich alveolar exudates, which contain abundant fibronectin, vitronectin, and 
hydrophilic surfactant proteins A and D. In contrast, hydrophobic surfactant protein B and 
C are reduced during PcP. Both surfactant protein A and surfactant protein D interact with 
the Major Surface Glycoprotein (MSG) components of the surface at Pneumocystis. Surfactant 
protein A modulates the interactions of Pneumocystis with the alveolar macrophages. In 
contrast, surfactant protein D mediates the aggregation of the Pneumocystis organisms, but 
because the aggregated organisms are extremely poorly taken up by macrophages, they may 
escape elimination. Pulmonary surfactant phospholipids, which contribute to the low 
surface tension in the alveoli, are reduced during PcP, and abnormalities in the composition 
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and function of the surfactant are the result of the host's inflammatory response to 
Pneumocystis, rather than direct effects of the organisms on the surfactant components 
(Wright et al., 2001; Thomas & Limper, 2007). 

3.2 Innate immunity (alveolar macrophages and neutrophils) 
Although parasite attachment to lung epithelial cells is essential for Pneumocystis infection 
and propagation, invasion of host cells does not occur (Krajicek et al., 2009). Alveolar 
macrophages are the first line of host defence to control the infection, since they are the 
principal phagocytes mediating the uptake and direct degradation of both trophic forms 
and cysts forms in the lung (Kelly & Shellito, 2010). Macrophages display several potential 
receptors for glucans, including CD11b/CD18 integrin (CR3), dectin-1, and toll-like receptor 
2. The activation of macrophages by Pneumocystis is augmented by host proteins such as 
vitronectin and fibronectin that bind the glucan components on the organism (Vassallo et 
al., 2001). When there are not opsonins in the epithelial-lining fluid, the uptake of 
Pneumocystis is mediated mainly through the macrophage mannose receptors, pattern-
recognition molecules that interact with the surface mannoprotein, MSG (also called 
glycoprotein A). After they have been taken up by macrophages, Pneumocystis organisms 
are incorporated into phagolysosomes and degraded. Macrophages produce a large variety 
of proinflammatory cytokines, chemokines, and eicosanoid metabolites in response to 
phagocytosis of Pneumocystis. Although these mediators participate in eradicating 
Pneumocystis, they also promote pulmonary injury (Limper et al., 1997).  
Neutrophils alone are unable to control the infection. Unlike other opportunistic fungal 
infections, Pneumocystis disease is rare in patients with neutropenia. Neutrophils are 
associated with inflammation and, therefore, have been implicated in severity of disease. In 
fact, decreased pulmonary function and local lung inflammation and damage have been 
correlated with elevated neutrophil counts in HIV-infected patients with PcP (Kelly & 
Shellito, 2010). The neutrophils recruited into the lungs release reactive oxidant species, 
proteases, and cationic proteins, which directly injure capillary endothelial cells and alveolar 
epithelial cells (Thomas & Limper, 2004).  

3.3 Adaptive immunity (T cells and B cells) 
Both cellular and humoral immune systems are important in defence against Pneumocystis 
infection.  
The activity of CD4+ T cells is pivotal in the host's defences against Pneumocystis, since most 
HIV-infected patients with PcP have CD4+ T-cell counts below 200 cells/mm3. CD4+ 
lymphocytes as memory cells coordinate and orchestrate the host inflammatory responses 
by means of the recruitment and activation of other immune effector cells, including 
monocytes and macrophages, which are responsible for elimination of the organism. 
Macrophage-derived TNF-┙ and interleukin-1 are believed to be necessary for initiating 
pulmonary responses to Pneumocystis infection that are mediated by CD4+ cells. The cells 
proliferate in response to Pneumocystis antigens and generate cytokine mediators, including 
lymphotactin and interferon gamma (IFN-┛). Lymphotactin, a chemokine, acts as a potent 
chemoattractant for further lymphocyte recruitment in PcP.  
Although T lymphocytes are essential for the clearance of Pneumocystis, experimental data 
suggest that T-cell responses may also result in substantial pulmonary impairment during 
pneumonia. For instance, in severe combined immunodeficiency (SCID) mice infected with 
Pneumocystis, normal oxygenation and lung function occur despite active infection until the 
late stages of the disease. When the immune systems in these animals are reconstituted with 
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the use of intact spleen cells, an intense T-cell–mediated inflammatory response ensues, 
resulting in substantially impaired gas exchange (Wright et al., 1999b). In the absence of 
brisk lung inflammation, Pneumocystis has little direct effect on pulmonary function. In a 
similar manner, in patients who have undergone bone marrow transplantation the clinical 
onset of PcP and of most marked alterations in lung function occur during engraftment 
(Thomas & Limper, 2004). 
The CD8+ T cells seem to play also an important role in control of Pneumocystis infection 
since in experimental animal models depletion of both CD4+ and CD8+ cells results in a 
more severe PcP than only depletion of CD4+ cells. However, their role may be less 
important than CD4+ T cells since CD8+ T-cell-depleted animals can still clear the infection 
(Lu & Lee, 2008). Pneumocystis infection results in the marked accumulation of CD8+ T 
lymphocytes in the lung. Although not as extensively investigated as CD4+ T cells, insights 
into the role of CD8+ T cells in host defence against Pneumocystis have been achieved, but 
that is not nearly enough. Recent data provide the concept that CD8+ T cells, most likely 
those of the Tc1 phenotype, are critical for clearance of some fungal organisms including 
Pneumocystis, particularly in the context of CD4+ T-cell deficiency or dysfunction. CD8+ T 
cells have also been shown to play a detrimental role in Pneumocystis infection. CD8+ T cells 
are considered to be part of the damaging inflammatory response in CD4+ T-cell-depleted 
mice. The presence of CD8+ T cells affected surfactant function and it also has been shown 
to exacerbate TNF-┙ production (Steele et al., 2005). 
Lastly, a significant role of humoral immune response in the host defence against 
Pneumocystis is supported by the observations that SCID animals require B cells to clear the 
infection (Burns et al., 1990), and that patients with agammaglobulinemia develop PcP 
despite of an intact cellular immune system (Alibrahim et al., 1998; Lu & Lee, 2008). B 
lymphocytes appears to play an important role in the generation of CD4+ memory cells in 
response to Pneumocystis (Lu & Lee, 2008). 

3.4 Cytokine and chemokine networks 
Various pro-inflammatory cytokines including IFN-┛, tumour necrosis factor alpha (TNF-┙), 
interleukin (IL)-8, IL-1 and IL-6 and chemokines such as RANTES (Regulated upon 
Activation normal T-cell Expressed, and Secreted), macrophage inflammatory protein 
(MIP)-1┙, MIP-1┚ and MIP-2 release by macrophages, neutrophils, epithelial cells and 
lymphocytes are involved in the host immune response and lung damage during 
Pneumocystis disease (Calderon et al., 2007).  
INF-┛ has a critical role for control lung inflammation during PcP, although is not directly 
toxic to Pneumocystis organisms. This cytokine is produced primarily by CD4+ T cells. There 
is an indirect correlation between IFN-levels and severity of PcP (Kelly & Shellito, 2010). 
IFN-┛ strongly activates the macrophage production of TNF-┙, superoxides, and reactive 
nitrogen species, each of which is implicated in the host defence against Pneumocystis 
(Wright et al., 1999a).  
TNF-┙ is a potent pro-inflammatory cytokine secreted primarily by macrophage that 
promotes the recruitment of neutrophils, lymphocytes, and monocytes. Although their 
recruitment is important for clearance of the organisms, these cells injure the lung by 
releasing oxidants, cationic proteins, and proteases. TNF-┙ also induces the production of 
other cytokines and chemokines, including IL-8 and IFN-┛, which stimulate the 
recruitment and activation of inflammatory cells during Pneumocystis infection (Wright et 
al., 2004). The cell wall of Pneumocystis contains abundant beta-glucans, and studies have 
confirmed that the production of TNF-┙ by alveolar macrophages is mediated by 
recognition of the beta-glucan components of Pneumocystis.  IL-8 is correlated with both 
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neutrophil infiltration of the lung and impaired gas exchange during severe PcP (Thomas 
& Limper, 2004).  
The most important function of chemokines is to recruit effector cells to the site of injury. 
Many studies have found an increase in chemokine expression during PcP. In a SCID 
experimental model of PcP it has been found that expression levels of RANTES, MIP-1┙, 
MIP-1┚ and MIP-2 were all upregulated after lymphocyte reconstitution of the SCID animal. 
In addition, the time course of chemokine expression correlates Pneumocystis clearance, but 
also with the lung inflammation (Wright et al., 1999a). Thus, the role of chemokines is 
essential for the resolution of infection, but overexpression may also result in a 
hyperinflammatory state and lung damage (Kelly & Shellito, 2010).  

4. Clinical presentation and chest radiology  

In patients infected with HIV, PcP is a common AIDS-defining illness and occurs most 
frequently in subjects with a CD4+ count less than 200 cells per mm3. The symptoms of PcP 
are nonspecific and PcP in patients with HIV infection tends to run a more subacute 
indolent course and tends to present much later, often after several weeks of symptoms, 
compared with PcP associated with other immunocompromising conditions. A more acute 
illness with symptoms including a cough productive with purulent sputum should suggest 
an alternate infectious diagnosis, such as bacterial pneumonia or tuberculosis 
Patients with PcP often develop dyspnea (95%), which increases over time; cough 
productive of clear sputum or non-productive cough; low grade or no fever; malaise, and 
sometimes chest tightness or pain. However, the clinical picture in individual patients is 
variable and many infectious and non-infectious processes can present identically. Also, the 
general hallmarks of this disease such as fever, shortness of breath, and diffuse infiltrates do 
not invariably occur, especially early in the course while the disease is mild (Thomas & 
Limper, 2004). Acute dyspnea with pleuritic chest pain may indicate the development of a 
pneumothorax, which has been presented in 2% to 4% of patients (Sepkowitz et al., 1991). In 
all cases, a high index of suspicion and a thorough history are key factors in early detection 
of PcP. Physical examination may reveal tachypnea, tachycardia, and cyanosis. Lung 
auscultation usually reveals few abnormalities with dry cackles or rhonchi present in less 
than 50% of patients. Individuals with PcP can be hypoxemic with respiratory alkalosis but 
can also have normal alveolar-arterial gradients if identified early in the natural history of 
their disease. Elevated serum levels of lactate dehydrogenase (LDH) have been related with 
PcP and probably reflects lung parenchymal damage but is not specific and elevations can 
be seen in many pulmonary and non-pulmonary conditions. In general, laboratory 
abnormalities are less severe in HIV-infected patients than in non-HIV immunosuppressed 
patients (Hughes, 2004). 
Classically,  chest radiographic features of PcP are bilateral, symmetric, fine reticular 
interstitial infiltrates involving the perihilar areas (figure 1a), becoming more homogenous 
and diffuse as the severity of the infection increases  (Thomas & Limper, 2004).  Less 
frequently, PcP may present with unilateral or asymmetrical opacities. Thin-walled cysts or 
pneumatocele are seen in 10-20% of cases. Pleural effusions and intrathoracic adenopathy 
are rare. Patients who receive aerosolized pentamidine have an increased frequency of 
upper-lobe infiltrates, pneumothorax, or cystic lesions. Early in the course of PcP, the chest 
radiograph may be normal in up to 25% of cases (Schliep & Yarrish, 1999).  
A high-resolution computed tomography scan is more sensitive than chest radiograph and 
is helpful when the chest radiography findings are equivocal. The typical appearance is 
patchy areas of ground-glass attenuation with a background of interlobular septal 
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thickening or cystic lesions predominating in perihilar areas (figure 1b), even then chest 
radiographic findings are normal (Nyamande et al., 2007). While such findings are 
suggestive, they are not diagnostic. However, a negative high-resolution computed 
tomography scan may allow exclusion of PcP in patients with HIV. 
 

 
Fig. 1. Radiographic findings of Pneumocystis pneumonia in a patient with AIDS. (1a, left) 
Chest x-ray of a Pneumocystis pneumonia showing diffuse infiltrations in both lung fields. 
(1b, right) Chest high-resolution CT scan of a patient with AIDS revealing diffuse ground 
glass opacities and thickened alveolar septum in both lungs. 

Extrapulmonary manifestations of P. jirovecii infection (extrapulmonary pneumocystosis) 
are distinctly unusual but they has been reported primarily among HIV-infected patients, 
particularly those who receive aerosolized pentamidine for prophylaxis of PcP and in those 
with advanced HIV infection who are not taking any prophylaxis. Mainly, during the 
terminal stage of HIV-related disease Pneumocystis organisms may disseminate from the 
lungs to other organs where they induce secondary visceral lesions. However, sometimes 
pulmonary infection may not be apparent when extrapulmonary lesions are detected. 
Lymph nodes, spleen, kidneys, liver, thyroid and bone marrow are the most commonly 
infected organs, but microorganisms have been also found in the brain, pancreas, skin, 
heart, muscle and other organs (Ng et al, 1997). For HIV-infected patients, extrapulmonary 
pneumocystosis limited to the choroid layer or ear (external auditory canal or middle ear) 
has a better prognosis, with good response to specific treatment, than disseminated 
pneumocystosis in multiple noncontiguous sites. Lesions are frequently nodular and may 
contain necrotic material or calcification. Extrapulmonary pneumocystosis in solid organs 
appears on computed tomography scan as focal, hypodense lesions with well-defined 
borders and central or peripheral calcification (Schliep & Yarrish, 1999).   
Immunorestitution disease (IRD) is defined as an acute symptomatic or paradoxical 
deterioration of a (most probably) preexisting infection that is temporally related to the 
recovery of the immune system and it is due to immunopathological damage associated 
with the reversal of immunosuppressive processes. PcP manifesting as a form of IRD has 
been described in both HIV and non-HIV immunosuppressed patients (Cheng et al., 2004; 
Jagannathan et al., 2009; Mori et al., 2009). Among HIV-infected patients, PcP manifesting 
acutely during the initiation of HAART is a well-recognized phenomenon (Wislez et al., 
2001). AIDS-related PcP patients seem to be at risk of clinical deterioration due to IRD if 
antiretroviral therapy is started within one to two weeks after the initiation of treatment for 
PcP (Wislez et al., 2001). The onset of clinical deterioration is associated with an increase in 
the CD4+ lymphocyte count and a reduction in the HIV viral load (Wislez et al., 2001). 
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5. Prognosis 

Despite treatment, mortality of PcP still remains high. Several studies highlight that 
mortality rates are declining in patients with PcP. However, in other studies, PcP has 
remained the leading cause of death among those nor receiving o failing to comply with 
HAART or PcP prophylaxis. Predictors of mortality include older age, recent injection drug 
use, increased total bilirrubin, low serum albumin, and alveolar-arterial oxygen gradient 
>50 mm Hg (Fei et al, 2009).  

6. Management PcP 

There is no universally agreed approach on to the initial management of patients with 
suspected PcP. Many institutions treat patients with suspected PcP empirically, while others 
pursue a definitive microbiological diagnosis (Huang, 2004). Since PcP can be rapidly 
progressive and the mortality rate remains high, early therapy is essential (Calderon et al, 
2004; Roblot, 2005). Identification of patients having PcP into mild, moderate or severe 
disease allows to guide the choice of the drug for the treatment of PcP, as well as, to decide 
if adjuvant corticosteroids are indicated (table 1) (Miller et al., 1996). In AIDS-related PcP, 
the typical duration of therapy is at least 21 days because of the risk for relapse with shorter 
treatment duration. Patients generally improved after 4 to 8 days of therapy. Although the 
overall prognosis of patients whose degree of hypoxemia requires intensive care unit (ICU) 
admission or mechanical ventilation remains poor, survival in up to 50% of patients 
requiring ventilatory support has been reported. Patients with reasonable functional status 
and severe PcP should be offered ICU admission or mechanical ventilation (CDC, 2009).  
 

 Mild Moderate Severe 

Symptoms and signs Dyspnoea on exertion, 
with or without cough 
and sweats 

Dyspnoea on minimal 
exertion and 
occasionally at rest. 
Cough and fever 

Dyspnoea and 
tachypnoea at rest. 
Persistent fever and 
cough  

Arterial oxygen tension 
(PaO2) at rest 

> 11.0 kPa (82.7 mmHg) 8.0 to 11.0 kPa (60-82.7 
mmHg) 

< 8.0 kPa (60 mmHg) 

Arterial oxygen 
saturation (SaO2) at 
rest 

> 96% 91 to 96% < 91% 

Chest radiograph Normal, or minor 
perihiliar shadowing 

Diffuse interstitial 
shadowing 

Extension interstitial 
shadowing with or 
without diffuse alveolar 
shadowing 

Modified of Miller RF, et al., 1996. 

Table 1. Grading of severity of Pneumocystis pneumonia. 

7. Diagnosis of PCP 

7.1 Microscopic detection of Pneumocystis 
The single most important diagnostic tool for Pneumocystis infection is a high clinical 
suspicion. However, specific diagnosis of PcP requires documentation of the microorganism in 
respiratory specimens. Since Pneumocystis cannot be cultured, the diagnosis of PcP relies on 
microscopic detection of Pneumocystis organisms on stained respiratory specimens. 
Conventional stains such as toluidine blue O (TBO), Grocott’s methenamine silver nitrate 
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(GMS), or methanol Giemsa methods (figure 2) can be used to identify the organism (cysts or 
trophic forms) but immunofluorescent staining is the most common technique currently used.  
TBO or GMS stains facilitate rapid parasite detection, even at low magnification, in all kinds 
of clinical specimens. However, these dyes also stain the cell wall of yeasts or other fungi. 
For this reason, a good strategy to identify Pneumocystis organisms accurately in clinical 
specimens is to systematically associate the examination of both TBO- or GMS-stained 
smears and methanol-Giemsa–stained smears from the same specimen (table 2). Actually, 
methanol-Giemsa (or other equivalent panoptical Giemsa-like stains) makes it possible, on 
the one hand, to distinguish Pneumocystis organisms from other microorganism and, on the 
other hand, to identify the different Pneumocystis life-cycle stages. In fact, Giemsa and other 
stains with similar cytological affinities, such as Diff Quick or RAL-555, cause the parasite 
nuclei to stain pinkish purple and the cytoplasm to stain blue (Dei-Cas et al, 1998). They do 
not stain cystic or sporocytic walls, which appear like a clear peripheral halo around cystic 
forms. These polychrome stains make it possible accurately to distinguish Pneumocystis 
trophic or cystic forms from other fungi and also from host cells or cell debris. On the whole, 
the biggest advantage of methanol-Giemsa or Giemsa-like stain methods consists in staining 
trophic forms and sporocytes, which remain unidentified in TBO- or GMS-stained smears 
(Dei-Cas et al, 1998). 
 

 
Fig. 2. Stain with methanol–Giemsa stain 

Efficiency and cost-effectiveness of the different microscopic stains evoked here vary 
according to experience of groups, technical protocols, type and quality of the samples, local 
incidence of PcP,  and the number of organisms present (Chouaid et al., 1995) (table 2). It is 
generally accepted, however, that association of methods that stain cystic cell wall (e.g. TBO 
or GMS) with panoptical techniques (methanol-Giemsa or analogous staining methods) is 
usually required (Dei-Cas et al., 2006). Moreover, it is usually recognized that specific 
antibody staining is mainly helpful to detect Pneumocystis organisms in non-BAL smears 
(e.g. induced sputum, expectorated sputum, gastric wash) and to clarify conflicting light 
microscopic observations (Aderaye et al., 2008; Cruciani et al., 2002; Kovacs et al., 1998; 
Limawongpranee et al., 2007). 
Typically, the respiratory specimens are obtained by sputum induction or fiberoptic 
bronchoscopy with bronchoalveolar lavage (BAL).  Sputum induction by inhalation of a 
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hypertonic saline solution is the quickest and least-invasive method for definitively 
diagnosing PcP with a sensitivity between 50-90% and specificity of 99-100%. Sputum 
induced may also be less sensitive in patients receiving aerosolized pentamidine for 
prophylaxis. All of the direct organism visualization methods can lead to false-negative 
results, consequently, a negative sputum induction cannot rule out a diagnosis of PcP.  If 
sputum induction is nondiagnostic or cannot be performed, then bronchoscopy with BAL is 
the next step.  A BAL that is negative for Pneumocystis rules out the diagnosis of PcP. 
In order to detect Pneumocystis organisms in histological sections from lung or other organs, 
pathologists target usually the cystic forms, since trophic ones are uneasily identifiable in 
paraffin-embedded tissues. They use therefore GMS and, less frequently, TBO staining 
procedures adapted to tissue sections. Trophic forms can however be identified in epon-
embedded semi-thin sections stained with toluidine blue or other stains (Dei-Cas et al., 1998; 
Durand-Joly et al., 2000). Furthermore, Pneumocystis-specific fluorescein-, phosphatase or 
peroxidase-labeled monoclonal antibodies available from many suppliers may help to 
identify Pneumocystis organisms in BAL, induced sputum or tissue samples (table 2).   
 

Technique 
Suitable 
kind of 
sample 

Needed 
experience

Sensitivity Specificity Advantages Drawbacks 
Recommended 
combination 
with: 

Microscopy: 
 
PC/IC 
 
 
GMS/TBO 
 
 
 
 
 
 
 
 
Panoptical 
stains* 
 
 
 
FL Mab 
 
 
 
 
 
IP/AP Mab 

BALF wet 
smear 

very good variable  good rapidity 
needs 
confirmation by 
other methods 

panoptical 
stain 

BALF air-
dried 
cytospin 
smear or 
biopsy 
(histological 
section) 

average high average cost; rapidity 

false positive (poor 
experienced 
staffs); identifies 
only the cystic 
stages 

panoptical 
stain 

BALF air-
dried 
cytospin 
smear 

very good average very high 

cost; rapidity; 
identify all 
Pneumocystis 
stages 

limited sensitivity 
(poor experienced 
staffs) 

GMS/TBO 

BALF, IS or 
sputum air-
dried 
cytospin 
smear 

good high good 
good 
sensitivity/ 
specificity 

cost; time-
consuming 

- 

biopsy 
(histological 
section), air-
dried 
cytospin 
smear 

good good good good specificity 
cost; time-
consuming 

- 

PCR 
BALF, IS, 
OW, NPA, 
biopsy 

average very high very high 

Helpful in HIV-
negative 
patients; 
rapidity (real-
time PCR 
assays); non-
invasive 

cost; positive in 
colonized patients 

- 
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Technique 
Suitable 
kind of 
sample 

Needed 
experience

Sensitivity Specificity Advantages Drawbacks 
Recommended 
combination 
with: 

sampling; 
genotyping 

BG serum average good low 
rapidity; post-
therapeutic 
control 

positive in other 
deep fungal 
infections 

other tests 

KL-6 serum average good low - 
positive in other 
pulmonary 
infections 

 

Serum 
Pneumocystis 
antibody 
assay 

serum average 
depending 
on antigen 
and assay 

depending 
on antigen 
and assay 

helpful in 
epidemiology 
studies 

positive in people 
without PcP 

other tests 

*Giemsa or Giemsa-like stains. BALF: Bronchoalveolar lavage fluid; BG: serum beta-1,3-glucan; FL Mab: 
fluorescein-labeled Pneumocystis monoclonal antibody; GMS: Grocott-methenamine silver stain; IP/AP 
Mab: immuneperoxidase/alkaline-phosphatase labeled monoclonal antibody; IS: induced sputum; 
PC/IC: phase contrast/interference contrast; TBO: toluidine blue stain. KL-6: Mucin like glycoprotein. 

Table 2. Laboratory diagnostic methods for Pneumocystis pneumonia. 

7.2 Molecular detection of Pneumocystis 
Many Pneumocystis PCR assays have been developed during the last two decades. PCR tool 
revealed highly efficacious to amplify Pneumocystis DNA from diverse kinds of clinical 
specimens (BALF, IS, expectorated sputum, oropharyngeal or nasopharyngeal wash 
samples, biopsy specimens) (figure 3) (de la Horra et al., 2006; Durand-Joly et al., 2005; 
Olsson et al., 1993; Wakefield et al., 1990). In the clinical laboratory, the use of molecular 
methods is mainly warranted to increase the sensitivity of P. jirovecii detection in clinical 
specimens in order to establish earlier PcP diagnosis, detecting low parasite rates, mainly in 
non-HIV infected patients with PcP, and detecting Pneumocystis DNA in noninvasive 
samples (Durand-Joly et al., 2005; Respaldiza et al., 2006) (table 2). Moreover, PCR assays 
followed by direct sequencing or other strategies were used for typing Pneumocystis isolates 
in order to identify parasite strains and to explore correlation between specific genotypes 
and virulence, transmissibility or drug susceptibility. PCR, especially nested PCR assays 
applied to noninvasive samples, have also been used to detect Pneumocystis colonization 
either in susceptible individuals or in apparently healthy people, including health care 
workers in hospitals (Durand-Joly et al., 2003; Medrano et al., 2005; Nevez et al., 2008). 
 

 
Fig. 3. Nested PCR (mtLSU rRNA region) results.  
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M: molecular mass marker. Lane 1 (P1) negative specimen. Lanes 3 and 5 (P2, P3) positive 
specimens of oral wash in cystic fibrosis patients. Lane 7 (C+) positive control. Lanes 2, 4 
and 6 negative controls (water). 
For PcP diagnosis in humans, conventional or real-time PCR assays based on the 
amplification of the large subunit of mitochondrial ribosomal DNA (mtLSUrDNA) 
(Wakefield et al., 1990) are the most commonly used, but many other sequences have been 
targeted (Major Surface Glycoprotein, Internal Transcribed Spacers, Thymidylate Synthase, 
Dihydrofolate Reductase, heat-shock protein 70, etc.) (Durand-Joly et al., 2005; Hugett et al., 
2008). Comparative evaluating studies are uneasy to perform because of different clinical 
contexts, sampling methods, laboratory reagents or technical strategies used to DNA 
extraction, amplification or analysis of results (Durand-Joly et al., 2005).  
In general, conventional or real-time Pneumocystis PCR assays have represented a significant 
advance in PcP laboratory diagnosis. Actually, highly sensitive and specific PCR tools, 
especially real-time PCR assays, improved the clinical diagnosis of PcP allowing an 
accurate, early diagnosis of Pneumocystis infection (Durand-Joly et al., 2005), which should 
lead to a decreased duration from onset of symptoms to treatment. This period has a 
recognized impact on prognosis since PcP-associated respiratory failure requiring mechanic 
ventilation entails significant mortality (Huang, 2004). In addition, PCR assay may reveal 
PcP in patients with negative microscopic test. For instance, among 62 HIV-negative 
patients with clinical PcP diagnosed in the Lille University Hospital between 1998 and 2001, 
30 patients (48%) had positive PCR results with negative microscopic tests (Durand-Joly, 
2002).  
Notably, molecular techniques play a significant role when they are applied to noninvasive 
specimens as IS, oropharyngeal wash (OW, obtained by gargling 10 ml of 0.9% NaCl for >60 
seconds) (Respaldiza et al., 2006) or nasopharyngeal aspirates (NPA) (Richards et al. 1994). 
When DNA sequences used as primers or probe have been adequately defined, the 
analytical specificity of Pneumocystis-PCR assays applied to noninvasive or to BALF samples 
should usually be of 100% (Durand-Joly et al., 2005). With regard to sensitivity, 
Pneumocystis-mtLSUrDNA PCR showed high analytical sensitivity for the detection of 
Pneumocystis organisms on BALF samples from AIDS patients, with a detection threshold of 
0.5–1 organism/µl-1 (Tamburrini et al., 1998). The sensitivity of PCR assays applied to OW 
(or other noninvasive samples) is certainly lower (<80%) than that of PCR on BALF samples 
(>95%) (Tsolaki et al., 2008). However, OW can be easily repeated in order to monitor the 
evolution of infection and, potentially, the therapeutic response (Tsolaki et al., 2008). 
A significant problem of Pneumocystis PCR assays is raised by Pneumocystis colonization 
(Calderon, 2009). Actually, a positive PCR result associated with a negative microscopic test 
may result from either Pneumocystis colonization or PcP. In common practice, this difficulty 
is often solved on the basis of a careful clinical, radiological and laboratory assessment of the 
patient pathological condition, as it is usually done to other infectious diseases, especially 
when their agents are opportunistic pathogens. However, the alternative of quantifying 
parasite rates was also explored (Larsen et al., 2002). Thus, a quantitative real-time PCR 
assay that targeted Pneumocystis Major Surface Glycoprotein (MSG) multigene family was 
applied to OW samples, and revealed significant differences between PcP patients and 
Pneumocystis colonized subjects in the number of MSG copies. The authors suggested a 
cutoff value of 50 MSG gene fragment copies/tube for distinguishing between the two 
conditions (Larsen et al., 2002). However, quantitative PCR results seemed difficult to use on 
the field. The main problem was inability to control the volume of the sample. Another 
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difficulty is related with the kind of patients. Actually, it seems difficult to apply a same 
cutoff to AIDS patients, patients with other underlying diseases or individuals receiving 
chemoprophylaxis against Pneumocystis.  
There is no formal agreement about an unequivocal definition of Pneumocystis colonization. 
The notion may however be characterized on the basis of clinical and experimental 
observations. In clinical practice, the diagnosis of Pneumocystis colonization or subclinical 
carriage is usually retained when Pneumocystis DNA is detected by PCR methods in 
respiratory samples from immunodepressed or immunocompetent subjects without 
symptoms or signs of Pneumocystis infection, and who do not progress to PcP (Morris et al., 
2008) In these subjects, Pneumocystis organisms are only exceptionally detected by 
microscopy (Vidal et al., 2006). Interestingly, recent experimental data strengthened the 
biological significance of Pneumocystis colonization (Chabe et al., 2004). They demonstrated 
that Pneumocystis organisms can replicate in the lungs of immunocompetent carriers, 
stimulate an antibody response and be efficiently transmitted by airborne route to either 
naive immunocompetent hosts, who will develop a primary infection, or to 
immunosuppressed hosts, who may then develop PcP  (Chabe et al., 2004). In addition, 
many evidences suggest that beyond PcP, Pneumocystis colonization may induce local or 
systemic inflammation, a condition that could aggravate chronic pulmonary diseases. For 
instance, P. jirovecii pulmonary carriage in patients with chronic obstructive pulmonary 
disease (COPD) could favor the progression of this disease (Calderon et al., 2007; Morris et 
al., 2008).  
Efforts have been made to associate specific P. jirovecii genotypes with virulence, drug 
susceptibility or other medically important biological properties of parasite strains. Some 
studies reported some correlation between polymorphism and clinical features (Miller & 
Wakefield, 1999; Totet et al., 2003). Polymorphism of internal transcribed spacer (ITS1/ITS2) 
sequences was quite frequently used and more than 30 ITS1 genotypes and 40 ITS2 
genotypes with more than 90 haplotypes (combinations of ITS1 and ITS2 types) have been 
reported  (Beard, 2004). 
Most polymorphism studies targeted mutations of the P. jirovecii dihydropteroate synthase 
(DHPS) gene, which could potentially be linked with sulfa resistance.  Regarding this issue, 
and since effective P. jirovecii culture systems are unavailable, several groups have assessed 
putative trimethoprim-sulfamethoxazole (TMP-SMX) drug resistance by detecting 
Pneumocystis DHPS mutations. Indeed nonsynonymous DHPS point mutations at nucleotide 
positions 165 and 171 entail an amino acid change at positions 55 (Thr to Ala) and/or 57 
(Pro to Ser) (Friaza et al., 2009). Such mutations confer resistance to sulfa drugs in other 
organisms, including Escherichia coli, Streptococcus pneumoniae and Plasmodium falciparum. 
The P. jirovecii DHPS mutant form has also been shown to be more resistant to 
sulfamethoxazole in a Saccharomyces cerevisiae model (Iliades et al., 2004), but it is still 
uncertain if Pneumocystis DHPS mutations lead to drug resistance in patients (Huang et al., 
2000, 2004; Nahimana et al., 2004). Such mutations were shown to be associated with the use 
of TMP-SMX or dapsone (two DHPS inhibitors), the duration of sulfa or dapsone 
prophylaxis and with geographic areas in which sulfamethoxazole or dapsone were 
commonly used for PcP prophylaxis (Huang et al., 2004; Kazanjian et al., 2000). However, 
results of studies searching specifically to establish an association between the presence of P. 

jirovecii DHPS mutations and clinical outcomes, such as treatment failure or death, are 
contradictory (Alvarez-Martinez et al., 2008, Helweg-Larsen et al., 1999; Huang et al., 2004, 
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Stein et al., 2004; van Hal et al., 2009). Outstandingly, most PcP patients carrying P. jirovecii 

isolates with DHPS mutations responded well to TMP-SMX treatment and survived 
probably because these mutations may confer a low-level of resistance to sulfa-drugs that is 
overcome by high drug concentration achieved in lung tissues by sulfamethoxazole 
(Calderon et al., 2004; Huang et al., 2004).  

7.3 Other laboratory diagnostic methods 
7.3.1 Beta-D-glucan assay 

┚-1,3-glucan (BG) is the main structural component of the cell wall of all fungi, including 
Pneumocystis cysts (Thomas & Limper, 2007). Interestingly, high serum BG levels have been 
reported in patients with PcP (Desmet et al., 2009; Nakamura et al., 2009; Teramoto et al., 
2000). Consistently, such levels decreased with effective anti-Pneumocystis treatment 
(Teramoto et al., 2000). Serum BG appeared therefore as a good marker of Pneumocystis 
infection. The potential utility of this assay was analyzed in a retrospective case-control 
study of patients with suspected PcP comparing BG with microscopic examination on BAL. 
The BG assay had a sensitivity of 92% and a specificity of 86% for detecting PcP for a ut-off 
level of 31.1 pg/ml (Tasaka et al., 2007).  In a recent study, it has been observed that BG 
levels in HIV patients with PcP are higher than in non-HIV patients. This could be attributed 
to the fact that HIV patients have greater numbers of microorganisms that non-HIV patients 
(Nakamura et al., 2009). 
However, BG levels could not be correlated with PcP prognosis, and false positive results 
could exceed more than 30% (Nakamura et al., 2009). False positive results were reported in 
patients undergoing bacterial septicemia, hemodialysis with cellulose dialysis membranes, 
treatment with immunoglobulin, glucan-containing antitumor drugs, amoxicillin-
clavulanate, piperacillin-tazobactam or contact with gauze or surgical sponges containing 
BG (Ponton, 2009). Furthermore, since invasive fungal infections induce also an increase of 
serum BG, the test should often be associated with laboratory assays aiming at detecting 
such infections (Desmet et al., 2009). These preliminary studies suggest that in the right 
clinical setting serum BG may provide a useful noninvasive diagnostic adjunct for patients 
with Pneumocystis infection. However, additional information is necessary to address the 
general specificity of BG in diagnosing PcP versus other fungal infections in diverse 
immune-suppressed patient populations and to differentiate among patients with PcP and 
patients with Pneumocystis colonization. 

7.3.2 KL-6 

KL-6 is a mucin-like glycoprotein expressed on type II pneumocytes and bronchiolar 
epithelial cells. This marker has reached elevated levels in several studies in patients with 
PcP. However, the reported false-positive rate and level of detection were not as good as for 
the BG assay (Nakamura et al, 2009; Tasaka et al, 2007). Recent investigations indicate that 
KL-6 is more a generalized marker for alveolar epithelial injury (Sato et al, 2004) and high 
levels have also be found in non-fungal infections such as legionellosis, severe tuberculosis 
and respiratory syncythial virus bronchiolitis, and even in noninfectious interstitial lung 
disease (Inou et al., 1995; Kawasaki et al., 2009; Sukoh et al., 2001). Therefore, KL-6 elevation 
in PcP is thought to be related to lung damage and regeneration of epithelium lining and 
cannot be used as a specified marker of Pneumocystis infection.  
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7.3.3 S-adenosylmethionine (SAM) 
Some observations suggested that S-adenosylmethionine (SAM), which is a universal 
methyl donor synthesized from methionine and ATP by SAM synthetase, could stimulate 
Pneumocystis in vitro growth (Clarkson et al., 2004). Since SAM was depleted from both the 
culture medium and the plasma of rats with PcP, it was hypothesized that Pneumocystis cells 
could scavenge SAM from host fluids due to the lack of SAM synthetase (Clarkson et al., 
2004)  Consistently, plasma SAM levels were found to be low in patients with PcP and to 
increase gradually with treatment (Skelly et al., 2003, 2008). These findings strengthened the 
idea of using plasma SAM levels as a non-invasive PcP diagnostic method. However, recent 
data showed that SAM-related issue could be more complex than previously thought. 
Firstly, differences in SAM levels between laboratories could be influenced by the method of 
measurement. Thus, Wang and colleagues using Chromatography Tandem Mass 
Spectrometry found generally higher plasma SAM levels than those reported before (Wang 
et al., 2008). The same group was unable to distinguish patients with acute PcP from the 
ones without PcP on the basis of plasma SAM levels, though these levels increased 
significantly with effective anti-Pneumocystis treatment. Indeed, the concern needs to be 
further explored because fasting status, dietary intake of methionine and other medications 
can affect plasma SAM concentration (Wang et al, 2008). Secondly, and contrarily to the 
results of previous works (Clarkson et al., 2004), P. carinii, P. murina and P. jirovecii have 
genes that encoded SAM synthetase (Sam1) (Kutty et al., 2008) . Moreover, the 
corresponding Sam1 mRNA is transcribed, and the protein, which is enzymatically active, 
was immuno-localized in P. murina cells. Such data suggest strongly that Pneumocystis 
species do not depend on an exogenous source of SAM to survive (Kutty et al., 2008). 

7.3.4 Serological tests 

Serum antibody detection constitutes an adjunctive strategy currently used to diagnose 
systemic fungal infections, even in immunosupressed patients. This strategy was however 
only rarely used to PcP diagnosis because healthy subjects have frequently significant levels 
of serum anti-Pneumocystis antibody. Moreover, the antibody response against Pneumocystis 
infection is currently highly variable and the results reported by diverse groups are 
contradictory (Walzer, 2004). In contrast, Pneumocystis antibody assays, especially those 
using recombinant Pneumocystis antigens, constitutes an interesting tool in epidemiology 
(Daly et al., 2009).  

8. Treatment 

The recommended treatment of PcP has remained unchanged for many years, being Co-
trimoxazole, an association of trimethoprim and sulfamethoxazole, the drug of choice as 
first line of treatment. Regarding which agent of second line must be choice preferably, data 
are limited (table 3). Drug related toxicities are increasing in HIV-infected patients and 
organ transplant recipients. Because of the potential for additive or synergistic toxicities 
associated with anti-Pneumocystis and antiretroviral therapies, certain health-care providers 
delay initiation of HAART until after the completion of anti-Pneumocystis therapy, or until at 
least 2 weeks after initiating anti-Pneumocystis therapy, despite some suggestion of potential 
benefit of early HAART in the treatment of patients with AIDS-related opportunistic 
infections (CDC, 2009; Zolopa et al., 2009). In order to a correct management of PcP is 
important to distinguish between progressive PcP, drug toxicity and concomitant infection 
if clinical deterioration is detected.  
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Trimethoprim-sulfamethoxazole (TMP-SMX) 

TMP and SMX target sequential steps in the folate synthesis pathway. TMP inhibits 
dihydrofolate reductase and SMX inhibits dihydropteroate synthetase. TMP-SMX is the 
treatment of choice for PcP in all patients who tolerate this drug, and it achieves the most 
rapid clinical response of the anti-Pneumocystis agents (CDC, 2009; Helweg-Larsen et al., 
2009). The recommended dose of TMP-SMX for adults (or children aged > 2 months) is 15 to 
20 mg/kg/day of TMP and 75 to 100 mg/kg/day of SMX intravenously every 6 or 8 hours. 
With renal dysfunction, dosing must be reduced. The bioavailability of TMP-SMX from oral 
therapy is comparable to parenteral administration (CDC, 2009; Mofenson et al., 2009). 
Patients who have PcP despite the use of TMP-SMX prophylaxis, are usually successfully 
treated with TMP-SMX. In this way, the presence of mutations in the DHPS gene of P. 
jirovecii has been associated with resistance to sulfa drugs, although the clinical outcome is 
uncertain  (Crothers et al. 2005; Huang et al., 2004; Stein et al., 2004). Drug related toxicities 
from TMP-SMX are greater than that from therapy with other anti-Pneumocystis agents. The 
side effects of TMP-SMX are: rash (30-55%), (including Stevens-Johnson syndrome), fever 
(30-40%), leukopenia (30-40%), hepatitis (20%), thrombocytopenia (15%), azotemia (1-5%), 
and hyperkaliemia (Eeftinck et al., 1990; Gordin et al., 1984; Hughes et al., 1995). 
Nephrotoxicity occurs frequently in the renal transplantation recipient receiving full-dose of 
TMP-SMX. Liver transplant recipients are particularly susceptible to TMP-SMX toxicity. 
Leucovorin to prevent myelosuppression is not recommended because its uncertain efficacy 
and a higher rate of failure (CDC, 2009).  

Pentamidine 

Pentamidine is an aromatic diamidine that has broad spectrum anti-protozoal activity. This 
drug inhibits metabolism of P amino benzoic acid, interferes with anaerobic glycolysis, inhibits 
oxidative phosphorylation and impairs nucleic acid and protein synthesis. It was the first drug 
reported to treat PcP successfully and subsequent reports have confirmed the efficacy of 
intravenous pentamidine. Although intravenous pentamidine has been recommended as the 
main alternative to TMP-SMX for moderate to severe PcP (Gordin et al., 1984), a recent study 
has found a greater risk of death when pentamidine was used as first and second-line therapy 
for HIV-associated PcP with compared with TMP-SMX and clindamycin-primaquine 
(Helweg-Larsen et al., 2009). These findings could be due to toxicities related to pentamidine 
and the absence of an antibacterial effect, in contrast to TMP-SMX or clindamycin-primaquine, 
which might act against concomitant bacterial co-infection (Helweg-Larsen et al., 2009). 
Pentamidine for children and adults is administered once a day at 4 mg/kg (maximum 300 
mg daily) intravenously, infused slowly 1 to 2 hr in 5% glucose; due to its toxicity the dose 
can be reduced to 3 mg/kg. Aerosolized pentamidine should not be used because of limited 
efficacy and more frequent relapse, and intramuscular administration is not used due to the 
related complications (Conte et al., 1990). Side effects of pentamidine include azotemia, 
pancreatitis, hypo- or hyperglycemia, pancytopenia, electrolyte abnormalities, cardiac 
dysrhythmia and renal dysfunction (Conte et al., 1990). Pentamidine should be avoided in 
pancreas transplant recipients due to the potential for islet cell necrosis.  

Clindamycin-primaquine 

Clindamycin is a lincosamide antibiotic used to treat infections with anaerobic bacteria but can 
also be used to treat some protozoan diseases. Primaquine is an 8-aminoquinoline anti-
protozoan agent. This combination is effective in adult patients with mild to moderate PcP, but 
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data for children are not available (Toma et al., 1998). Clindamycin is given at 600 to 900 mg 
intravenously or 300-450 mg orally every 6 to 8 hours and primaquine is given orally at 15 to 
30 mg/day. Clindamycin component can be administered intravenously in severe cases; 
primaquine is only available orally. Recently, clindamycin-primaquine appeared superior to 
pentamidine as second-line therapy for PcP in patients failing or developing toxicity with 
TMP-SMX (Helweg-Larsen et al., 2009). Side effects of clindamycin include rash, anemia, 
neutropenia and the development of Clostridium difficile colitis. The main toxicity of 
primaquine is methemoglobinemia, thus, patients should be tested for glucose-6-phosphate 
dehydrogenase deficiency before administration of primaquine (Larsen, 2004). 

Dapsone 

Dapsone is a sulfone drug that inhibits DHPS and it is used as alternative therapeutic 
regimen for mild-to-moderate PcP. Dapsone must be taken with TMP (Medina et al., 1990). 
Although this association might have similar efficacy and fewer side effects than TMP-SMX, 
is less recommended due to the number of pills. The dosage of dapsone for adolescents and 
adults is 100 mg orally once daily (among children aged < 13 years, 2 mg/kg/day). The 
dosage of TMP for children and adults taken orally is 15 mg/kg/day divided into three 
doses (CDC, 2009; Mofenson et al., 2009). The most common adverse effects associated to 
dapsone are methemoglobinemia and hemolysis, especially in those with glucose-6-
phosphate dehydrogenase deficiency. Thus, patients should be tested for glucose-6-
phosphate dehydrogenase deficiency (Larsen et al. 2004). 

Atovaquone 

Atovaquone is a unique naphthoquinone that target the cytochome B complex and, thus, 
inhibits mitochondrial electron transport. This drug was developed clinically in the 1990s 
and it is available only as oral agent. It is used as second-line agent for treatment of mild to 
moderate PcP if TMP-SMX cannot be used. The standard dosing regimen for adults is 
atovaquone 750 mg orally twice a day with food  for increasing gastrointestinal absorption 
(30-40 mg/kg/day for children < 3 months and > 24 months of age; between 3-24 months of 
age, 45 mg/kg/day are required) (Medina et al., 1990; Mofenson et al., 2009). Mutations of 
the cytochrome b gene have occurred in atovaquone-resistant isolates of Pneumocystis, but 
the clinical significance of gene mutations has not been determined (Kazanjian et al., 2001). 
The advantages of atovaquone include oral administration and fewer side effects. 
Disadvantages are its high cost and its bioavailability, although it has been improved with 
the micronized suspension formulation (Baggish & Hill, 2002). The most frequently reported 
adverse effects are rash, nausea, diarrhea, elevation of liver enzyme levels and headache. 
Atovaquone does not cause bone marrow suppression (Larsen et al., 2004). 

Trimetrexate 

Trimetrexate is an analogue of methotrexate that is an inhibitor of dihydrofolate reductase, 
and in vitro it is 1500 times more potent than trimethoprim (Kovacs et al., 1988). This drug is 
effective for treating PcP but is available only in an intravenous formulation. Because this 
drug also inhibits human folate metabolism, leucovorin must be administered 
concomitantly to prevent cytopenias (Larsen et al., 2004). A clinical trial showed that 
trimetrexate is less effective but better tolerate than TMP-SMX against AIDS-related PcP 
(Sattler et al., 1994). Trimetrexate with folinic acid have been approved for use in patients 
with moderately severe PcP, however, it is not longer available commercially. The dosage 
recommended for treatment of PcP is trimetrexate, 45 mg/m2 intravenously once daily, plus 
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leucovorin 20 mg/m2  orally or intravenously four times daily (Sattler et al., 1994).. 
Leucovorin therapy must extend for 72 hours past the last dose of trimetrexate. For adults, 
trimetrexate may alternatively be dosed on a mg/kg basis, depending on the patient's body 
weight: <50 kg, 1.5 mg/kg; 50-80 kg, 1.2 mg/kg, and >80 kg, 1.0 mg/kg. Also, leucovorin 
may be dosed on a mg/kg basis (<50 kg, 0.6 mg/kg, and >50 kg 0.5 mg/kg) administered 
every 6 hours. Despite the suggestion that leucovorin impairs the efficacy of TMP-SMX, 
there is no indication that the coadministration of leucovorin impairs the efficacy of 
trimetrexate for PcP (Larsen et al., 2004). In some cases trimetrexate plus leucovorin could be 
used as salvage treatment for PcP (Short et al., 2009). 

Adjunctive therapies 

The use of corticosteroids may reduce pulmonary inflammation response caused by the lysis 
of Pneumocystis in the lung after initiating treatment of PcP. Corticosteroids have been 
related with a significant benefit in terms of preventing deterioration in oxygenation in the 
first seven days of therapy, mortality, and reduction of intubations in AIDS patients (Briel et 
al., 2005). Corticosteroids are indicated in HIV-infected patients with a moderate-to-severe 
PcP who have hypoxemia (the partial pressure of arterial oxygen under 70 mm Hg with the 
patient breathing room air or an alveolar-arteriolar gradient greater than 35). In these cases, 
corticosteroids should be administered as early as possible within 72 hours after starting 
anti-Pneumocystis therapy (Thomas & Limper, 2004; CDC, 2009). Recommended dose are 
showed in table 3.  
 

 Moderate to severe Pneumocystis pneumonia 

Therapeutic 
use 

Drug Dose Route 

First line Trimethoprim-
Sulfamethoxazole 

15-20 mg/Kg daily divided into 3 or 4 doses 
75-100 mg/Kg daily divided into 3 or 4 doses

Intravenous 

Second line Primaquine plus 
Clindamycin 

30 mg daily 
600-900 mg three times daily 

Oral 
Intravenous 

Second line Pentamidine 4 mg/Kg daily (3 mg/Kg if toxicities) Intravenous  
Salvage 
therapy 

Trimetrexate plus 
Leucovorin 

45 mg/m2 daily 
20 mg/m2 four times daily 

Intravenous 
Intravenous or 
oral 

Adjunctive 
therapy  

Prednisone 
 
 
 
 
Methylprednisolone

Days 1–5:  80 mg daily divided into 2 doses 
Days 6–10: 40 mg daily 
Days 11–21: 20 mg daily 
 
75% of prednisone dose 

Oral  
 
 
 
 
Intravenous 

 Mild to moderate Pneumocystis pneumonia 

First line Trimethoprim-
Sulfamethoxazole 

15-20 mg/Kg daily divided into 3 doses 
75-100 mg/Kg daily divided into 3 doses 

Oral 

Second line Dapsone plus 
Trimethoprim 

100 mg daily 
15-20 mg/Kg daily divided into 3 doses 

Oral 
Oral or 
intravenous 

Second line Primaquine plus 
Clindamycin 

15-30 mg daily 
300-450 mg 3 or 4 times daily 

Oral 
Oral 

Second line Atovaquone 750 mg two times daily Oral with food 

Table 3. Drugs therapy for treatment of Pneumocystis pneumonia in adults according to 
severity 
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Novel agents 

Novel agents undergoing clinical investigation include echinocandins and pneumocandins, 
which target synthesis of beta 1,3 glucan, a cell wall compound of Pneumocystis and other 
fungi. 
Caspofungin is an echinocandin that acts on the cell wall by inhibiting ┚-1,3-glucan 
synthesis and it has been approved for several fungal infections as Candida and Aspergillus 
species. Caspofungin has shown activity against Pneumocystis in experimental animal 
models and it has strong activity on cyst forms and weak activity on trophic forms (Powles 
et al., 1998). Due to TMP-SMX affects only the trophic forms, it has been suggested that the 
association of TMP-SMX and caspofungin by fully inhibiting the organism life cycle, may 
provide a synergistic activity against Pneumocystis. According to this, it has been reported 
cases of PcP where the association of caspofungin and TMP-SMX achieved a complete cure 
of PcP (Utili et al., 2007). However, this promising therapeutic approach needs to be 
assessed by controlled clinical trials.  

9. Prevention 

Many studies have demonstrated that PcP can largely be prevented by administration of 
chemoprophylaxis to susceptible individuals (Di Cocco et al., 2009; Green et al., 2007; 
Podzamcser et al., 1995; Rodriguez & Fishman, 2004) and according with the American 
Thoracic Society recommendations patients infected with HIV (Huang et al., 2006) need to 
receive prophylaxis to prevent disease depending on specific risks to the patient’s system.  
Recommendations for chemoprophylaxis should be based on weighing the efficacy against 
the risk of adverse events, the risk of developments of antimicrobial resistance, and the cost 
of the intervention (Roblot et al., 2005). Medications recommended for chemoprophylaxis 
against PcP are listed in table 4.  

9.1 Primary prophylaxis 

The majority of recommendations are based in studies performed in HIV-infected patients. 
Guidelines recommend starting primary prophylaxis against PcP in HIV-infected 
adolescents and adults, including pregnant and patients under HAART, when the CD4 cell 
count is less than 200 cells/mm3 or the patient has a history of oropharyngeal candidiasis. 
Patients with a CD4 cell percentage of <14% or a history of an AIDS-defining illness should 
be considered for chemoprophylaxis (CDC, 2009). Prophylaxis recommendations for HIV-
infected children are age-based. Chemoprophylaxis should be provided for children 6 years 
or older based on adults guidelines, for children aged 1 to 5 years if CD4 counts are less than 
500 cells/mm3 or CD4 percentage is less than 15%, and for all HIV-infected infants younger 
than 12 months (Zolopa et al., 2009).  
TMP-SMX is the recommended prophylactic agent in both primary and secondary 
prophylaxis for PCP, because of its high efficacy, relative safety, low cost, and broad 
antimicrobial spectrum (CDC, 2009; Di Cocco et al., 2009;  Roblot et al., 2005; Rodriguez & 
Fishman, 2004). TMP–SMX also is effective in preventing Toxoplasma gondi, Isospora belli, 
Cyclospora cayetanensis and some bacterial infections such us, Streptococcus pneumoniae, 
Salmonella, Haemophilus, Staphylococcus, common gram-negative gastrointestinal and urinary 
pathogens (Rodriguez & Fishman, 2004). Either one single-strength tablet daily or one 
double-strength tablet daily are the preferred regimens, but the first regimen might be better 
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tolerated than the second (CDC, 2009). An alternative choice can be one double-strength 
tablet three times per week (CDC, 2009; Roblot et al., 2005). TMP-SMX at a dose of one 
double-strength tablet daily confers cross-protection against toxoplasmosis and selected 
common respiratory bacterial infections. Lower doses of TMP-SMX also likely confer such 
protection (CDC, 2009; Di Cocco et al., 2009).  
For patients who have an adverse reaction that is not life threatening, prophylaxis with 
TMP-SMX should be reinstituted. These patients might better tolerate reintroduction of the 
drug with a gradual increase in dose or reintroduction of TMP-SMX at a reduced dose or 
frequency (CDC, 2009). If TMP-SMX is not tolerated, a second choice would be dapsone 
given 100 mg daily, dapsone 50 mg daily plus pyrimethamine 50 mg weekly plus leucovorin 
25 mg weekly or dapsone 200 plus pyrimethamine 75 mg plus leucovorin 25 mg weekly, 
aerosolized pentamidine 300 mg monthly administered by an ultrasonic or jet-nebulizer, 
and atovaquone 1500 mg daily (CDC,2009). Dapsone is effective and inexpensive but  
 

 
Drug Dose for adults Dose for children Route Comments 

Trimethoprim-
Sulfamethoxazole 

160/800 mg (DS tablet) 
per day or 3 times per 
week  
80/400 mg (SS tablet) 
per day 

150/750 mg/m2 body 
surface area (max: 
320/1600 mg) as single 
or 2 divided doses 3 
times per week 

Oral First choice 
Weekly regimen is 
recommended if daily 
therapy in not tolerated 

Dapsone 100 mg per day 2 mg/Kg body weight 
(max: 100 g) per day  
4 mg/Kg body weight 
(max: 200 g) per week 

Oral Alternative choice 
Ensure patient does not 
have Glucose-6 
phosphate 
dehydrogenase 
deficiency 

Pentamidine 300 mg per month 300 mg per month  
(aged ≥ 5 years) 

Aerosol Alternative choice 

Atovaquone 1500 mg per day 30-45 mg/Kg body 
weight according to age 
per day 

Oral Alternative choice 
Take with high-fat 
meals for maximal 
absorption 

Dapsona + 
Pyrimethamine + 
Leucovorin 

50 mg per day 
50 mg per week 
25 mg per week 

 Oral 
Oral 
Oral 

Alternative choice 
Ensure patient does not 
have Glucose-6 
phosphate 
dehydrogenase 
deficiency 
Effective in preventing 
toxoplasmosis 

Dapsona + 
Pyrimethamine + 
Leucovorin 

200 mg per week 
75 mg per week 
25 mg per week 

 Oral 
Oral 
Oral 

Alternative choice 
Ensure patient does not 
have Glucose-6 
phosphate 
dehydrogenase 
deficiency 
Effective in preventing 
toxoplasmosis 

Table 4. Prophylaxis regimens for Pneumocystis pneumonia. 
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associated with more serious adverse effects than atovaquone (El-Sadr et al., 1998). 
Atovaquone is effective, safe and it is effective against Toxoplasma gondii but it is more 
expensive (Rodriguez & Fishman, 2004). The widespread concept that TMP-SMX is 
contraindicated for prophylaxis in patients treated with methotrexate might be obsolete 
because the safety of one single-strength tablet daily or one double-strength tablet thrice-
weekly has been proved in clinical studies (Langford et al., 2003). However, these patients 
need to receive folate supplementation besides blood counts and liver-function tests should 
be closely monitored (Roblot, 2005). 
Primary prophylaxis should be discontinued for HIV-infected adult and adolescent patients 
who have responded to HAART with an increase in CD4 counts major than 200 cells/mm3 
during more than 3 months (Lopez Bernaldo et al., 2001). Prophylaxis should be 
reintroduced if the CD4 cell count decreases to less than 200 cells/mm3.  

9.2 Secondary prophylaxis 

HIV-infected adults and adolescents patients who have developed previous episodes of PcP 
should receive secondary prophylaxis (Thomas & Limper, 2004). Chemoprophylaxis should 
be discontinued for adult and adolescent patients when CD4 cell count increases to more 
than 200 cells/mm3 for a period of 3 months as a result of HAART (Lopez Bernaldo et al., 
2001). Prophylaxis should be reintroduced if the CD4 count decreases again to less than 200 
cells/mm3. If PcP recurs at a CD4 count higher than 200 cells/mm3, continuing PcP 
prophylaxis for life would be prudent (CDC, 2009). 

10. Conclusions 

Pneumocystis jirovecii is an atypical fungus that causes PcP mainly in HIV-infected 
individuals. Today, PcP is still a major cause of morbidity and mortality among AIDS 
patients, and constitutes a worldwide problem to public health.  While the incidence of PcP 
among HIV infected individuals has decreased in developed countries, the prevalence of 
AIDS-related PcP in developing countries remains high and poorly controlled. The 
epidemiology of this infection is only beginning to be understood. The accumulating 
evidence suggests that P. jirovecii is a highly infectious organism with low virulence that 
takes advantage of hosts as temporary reservoirs of infection. In this sense, colonization 
with P. jirovecii (that is infection without disease) has recently gained attention as a 
important issue for understanding the complete cycle of human Pneumocystis infection. The 
clinical presentation in HIV-infected patients may differ from that in other 
immunosuppressed patients and its diagnosis continues to be challenging. Clinicians must 
be familiar with its presentation and management because mild cases are sometimes 
difficult to diagnose. The emergence of highly sensitive and specific molecular methods for 
PcP diagnosis have represented a significant advance in order to establish earlier PcP 
diagnosis, detect low parasite rates, and detect Pneumocystis DNA in non-invasive samples. 
Co-trimoxazole is the most effective medication for its prevention and treatment but other 
alternative medications are also available. Future clinical research should include studying 
the transmission and epidemiology of PcP in populations worldwide, improving the 
diagnosis of PcP, improving regimens for prophylaxis and treatment in various patient 
populations, and determining the significance of the DHPS mutations in various 
populations and in different geographic locations. Furthermore, the threat of emerging 
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resistance to available anti-Pneumocystis drugs highlights the need to continue investigating 
the biology of this organism in the hope of developing novel treatment strategies. 
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