
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322399335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


13 

An Analytical Solution for Inhomogeneous 
Strain Fields Within Wurtzite GaN Cylinders 

Under Compression Test 

X. X. Wei 
State Key Laboratory of Explosion Science and Technology,  

Beijing Institute of Technology, 
China 

1. Introduction  

Compression test on solid circular cylinders of finite length is a popular method in obtaining 
the compressive strength, the elastic moduli and the electronic properties of semiconductors 
( Goroff & Kleinman, 1963; Pollak & Cardona, 1968). It was found that, by generating a 
strain field, the external stress may significant change the electronic energy structures and 
the optoelectronic behavior of semiconductors (Suzuki & Hensel, 1974; Mathieu et al, 1979; 
Bir & Pickus, 1974; Singh, 1992; Pollak, 1990). Several methods have been used to investigate 
the effect of stress and strain on band structures (Jiang & Singh, 1997; Hasegawa, 1963). For 
example, the multiband effective-mass theory was employed to study the electronic and 
optical-absorption properties of uniaxially stressed  quantum wells, the envelope-function 
approximation was used to describe the electronic structure of superlattices and quantum 
wells under arbitrary uniaxial stress,  the effect of uniaxial and hydrostatic  strain on the 
optical constants and the electronic structure of Copper was investigated, the strain 
dependence of effective masses in tetrahedral semiconductor under uniaxial stress was also 
studied. In all of these studies, the homogeneous strain distributions induced by an external 
uniform stress were considered. Pollak (1990) made good review on the effect of 
homogeneous strain on band structures and electronic properties of semiconductors.  
However, friction effect on the end surfaces is ignored in all of these studies. It has long 
been recognized that friction inevitably exists between two end surfaces of cylinders and the 
loading platens under compression test. The strain and stress distributions within cylinder 
are very sensitive to the external load acting on the surface of cylinders (Wei  et al, 1999). 
Although numerous efforts have been made to reduce the friction between the 
semiconductor cylinder and the loading platens, end friction inevitably exists. Techniques 
developed to reduce end friction include the insertion of Telfon sheet, lubrication, iron 
brush contact, and the use of a loading platen of the same Poisson's ratio as the cylinder.  
Nevertheless, the stress distributions within cylinders under compression are normally non-
uniform, and inhomogeneous strain fields are thus induced within semiconductor cylinders. 
Although the analytical solution for finite cylinders under arbitrary external load was 
obtained (Chau & Wei, 1999), the solution is for isotropic materials with force boundary 
condition only. Experimental results show that wurtzite GaN is a kind of transversely 
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isotropic crystal. There is no analysis for the inhomogeneous strain distributions within 
wurtzite GaN cylinders due to end friction under compression tests.  
Therefore, in the present work, the inhomogeneous strain distribution within a finite and 
transversely isotropic cylinder of wurtzite GaN subject to compression with non-zero end 
friction is studied. The friction between the end surfaces and two loading platens will be 
modeled as non-slip as well as partially slip. Unlike the force boundary condition for finite 
cylinders (Wei & Chau, 1999; Chau & Wei, 1999), displacement boundary condition will 
have to be involved in the present problem. The Lekhnitskii's stress function is employed in 
order to uncouple the equations of equilibrium for transversely isotropic solids. The Fourier 
and Fourier-Bessel expansion technique will be used in order to satisfy all of the boundary 
conditions exactly. In addition, Based on the theory of Luttinger-Kohn and Bir-Pikus (Bir & 
Pickus, 1974), the valence-band structure of the strained wurtzite GaN is described by a  
Hamiltonian in the envelope-function space, and the spin-orbit interaction is also 
considered, numerical discussion will focus on the effects of strain and end friction on the 
band structure of wurtzite GaN.  

2. Governing equations for wurtzite GaN solid 

Experimental results show that wurtzite GaN is a kind of transversely isotropic solids 
(Wright, 1997). Let’s consider a homogeneous wurtzite GaN cylinder of radius R and half-
length h with the two end surfaces parallel to a plane of isotropy.  
 

 

Fig. 1. A sketch of a finite cylinder under compression test 

For the cylindrical coordinate system ( , ,r zθ ) shown in Fig.1, the generalized Hooke’s law 

for transversely isotropic solids can be written as (Wei, 2008) 

 11 12 13 12 11 13

13 13 33 44 44 66

,

, , ,
rr rr zz rr zz

zz rr zz z z rz rz r r

a a a a a a

a a a a a a
θθ θθ θθ

θθ θ θ θ θ

ε σ σ σ ε σ σ σ
ε σ σ σ γ σ γ σ γ σ

= + + = + +

= + + = = =
 (1) 

where 

 

11 12 13 33

44 66 11 12

1 1
, , , ,

1 2(1 ) 1
, 2( )

T L

T T L L

T

L T T

a a a a
E E E E

a a a a
G E G

ν ν

ν

= = − = − =

+
= = − = =

 (2) 
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The stress tensor is denoted by σ , and the normal and shear strains by   and ε γ  

respectively.  Physically, andT LE E  are the Young’s moduli governing axial deformations 

in the planes of isotropy (i.e. any plane parallel to two end surfaces) and along direction 

perpendicular to it (i.e. parallel to the z-axis) respectively.  The Poisson’s ratios Tν  and Lν  

characterize transverse reductions in the plane of isotropy under tension in the same plane 

and under tension along the z-axis respectively.  The shear moduli for the plane of isotropy 

and for planes parallel to the z-axis are denoted by andT LG G , respectively. 
For present axisymmetric problem, strains and displacements are related by 

 
1

, , , ( )
2

rr zz rz
u u w u w

r r z z r
θθ

∂ ∂ ∂ ∂
ε ε ε ε

∂ ∂ ∂ ∂
= = = = +  (3) 

where u and w are the displacements in the r- and z-directions, respectively. 

In the absence of body force, the equations of equilibrium are 

 0rr rz rr

r z r
θθ∂σ ∂σ σ σ

∂ ∂
−

+ + =  (4) 

 0zz rz rz

z r r

∂σ ∂σ σ
∂ ∂

+ + =  (5) 

3. Uniform strain in cylinders under compression without end friction 

When a solid cylinder of wurtzite GaN is confined by a uniform pressure 0p  on the curved 

surface and is compressed between two rigid smooth loading platens on the end surfaces 

without end friction. The stresses within the solid cylinder are uniform and can be 

expressed as 

 0 0, , 0zz rr rz r zq pθθ θ θσ σ σ σ σ σ= = = = = =  (6) 

where 2
0 /q F Rπ=  with P being the total load acting on the end surfaces as shown in Fig. 1. 

By adopting the usual sign convention of continuum mechanics, tension is positive, and 

compression is negative. 
The strains within the cylinder can be obtained by substituting (6) into (1) as: 

 0 0 0 0

0 0

2
( 1) , [(1 ) ] , 0L L

zz rr T L rz r z
L T L

p q p qE

q E E q E
θθ θ θ

ν
ε ε ε ν ν γ γ γ= − + = = − − = = =   (7) 

It is obvious that inhomogeneous strain filed is induced within cylinder under compression 

if the end friction is ignored. 

4. Boundary conditions for compression with end friction 

Friction, however, always inevitably exists between the loading platens and the two end 

surfaces in usual compression tests. The end surfaces are thus some what constrained from 

free expansion of the Poisson effect. The boundary conditions for a solid cylinder under 

compression test with end friction and a confine pressure p0 can be written as 
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  0 , on rr p r Rσ = =  (8)  

  0, on rz r Rσ = =  (9) 

 0 / , on ,u u r R z hβ= = ±  (10) 

 0, on ,
w

z h
r

∂
= = ±

∂
 (11)  

 
0

2 , on 

R

zzr dr F z hπ σ = = ±∫  (12) 

where F is the total load acting on the loading platens. Physically, these boundary conditions 

imply that the cylinder is subjected to an axial compression of magnitude F with confining 

stress of p0 and with no end rotation. Boundary condition (10) implies a uniform radial strain 

on the two end surfaces, and (11) ensures to loading platens to remain horizontal at all time, 

The factor β  represents the degree of constraint on the radial displacement on the end 

surfaces. If friction is negligible, the end surface is free to expand and we have 1β = ; if the 

radial displacement on the end surfaces is completely constrained, no slip occurs between the 

cylinder and loading platens and we have 0β = ; in usual compression test, we have  

0 1β≤ ≤ , depending on the contact condition of the loading platens. 

5. Stress function for transversely isotropic solids 

As suggested by Lekhnitskii (1963), a single stress function φ  can be introduced for 

transversely isotropic solids as 

 
2 2

2 2
( )rr

b
e

z r rr z

φ φ φ
σ

∂ ∂ ∂ ∂
= − + +

∂ ∂∂ ∂
 (13) 

 
2 2

2 2

1
( )b e

z r rr z
θθ

φ φ φ
σ

∂ ∂ ∂ ∂
= − + +

∂ ∂∂ ∂
 (14) 

                    
2 2

2 2
( )zz

c
c d

z r rr z

φ φ φ
σ

∂ ∂ ∂ ∂
= + +

∂ ∂∂ ∂
 (15) 

    
2 2

2 2

1
( )rz e

r r rr z

φ φ φ
σ

∂ ∂ ∂ ∂
= + +

∂ ∂∂ ∂
  (16) 

                    
2

11 12(1 )( )u b a a
r z

φ∂
= − − −

∂ ∂
 (17) 

                 
2 2

44 33 132 2

1
( ) ( 2 )w a a d a e

r rr z

φ φ φ∂ ∂ ∂
= + + −

∂∂ ∂
 (18) 
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where 

 

13 13 44 12 33 13 11 12 11 44
2 2

11 33 13 11 33 13

2 2
13 11 1211 12

2 2
11 33 13 11 33 13

( ) ( )
,

( )
,

a a a a a a a a a a
b c

a a a a a a

a a aa a
d e

a a a a a a

+ − − +
= =

− −

−−
= =

− −

 (19) 

To ensure force equilibrium, the stress function φ  should satisfy the following partial 

differential equation 

 
2 2 2 2 2 2

2 2 2 2 2 2

1 1
( )( ) ( ) 0

c
e c d

r r r r r rr r z z r z

φ φ φ φ φ φ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + =

∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
 (20) 

6. Series expressions for the stress function 

We seek for the following series solution forms for (20) as 

 0
1

' ( )sin( )n n
n

A I p nϕ ζ ρ πη
∞

=

= ∑  and   0
1

' sinh( ) ( )s s s
s

C q Jϕ γ η λ ρ
∞

=

=∑  (21) 

where / , /r R z hρ η= = ， sλ  is the s-th  root of 1( ) 0sJ λ = ; s sγ λ κ= and /n nζ π κ= ; κ  is a 

geometric ratio defined as /h Rκ = ; p and q are constants to be determined. '  and 'n sA C  

are constants. 0 1( ) and ( )J x J x  are the Bessel functions of the first kind of zero and first order 

respectively, and 0( )I x is the modified Bessel function of the first kind of zero order.  
Substitution of (21) into (20) yields 

  

1/2
2

1,2

( ) ( ) 4

2

c e c e
q

⎡ ⎤+ ± + −⎢ ⎥=
⎢ ⎥
⎣ ⎦

, 3,4 1,2q q= − ,  and 1,2 1,2p q= , 3,4 1,2p p= −  (22) 

By noting the fact that 0 0( ) ( )I x I x− =  and sinh( ) sinh( )x x− = − , it is clear from (21) that the 

solutions corresponding to 3,4p  and 3,4q  can be combined with those for 1,2p  and 1,2q . It 

has been found that 1,2q  are complex for wurtzite GaN solid. That is, 1,2q can be expressed 

in form of 1,2 iR Iq q q= ± , so we can rewrite the expression for stress function φ  as 

    

3 3 2
3

0 0 0 0 1 0 13
1

0
3

1

sin( )
{ { Re[ ( )] Im[ ( )]}

6 2

( )
[ sinh( )cos( ) cosh ( )sin( )]}

n n n n
n n

s
s R s I s s R s I s

s s

n
R q A C A I p B I p

J
C q q D h q q

κ η κηρ πη
ϕ ζ ρ ζ ρ

ζ

λ ρ
γ η γ η γ η γ η

λ

∞

=

∞

=

= − + + +

+ +

∑

∑
 (23) 

where 0q  is the mean normal stress on the end surfaces defined as 2
0 /q P Rπ= , and 

0 0, , , , , and n n s sA C A B C D  are real unknown constants to be determined.  Note that 

additional terms corresponding to 0 0and A C  have been added and they will lead to 

uniform normal stresses and strains for cylinders.  
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Before we consider the boundary conditions (8-12), stresses and displacements will first be 
expressed in terms of the unknown constants in the next section.   

7. Expressions for stress and displacement components 

Substitution of (23) into (13-18) yields the following expressions for the stress and 
displacement as  

 

0 0 0 1 1 1 1
1

1 2
1

2 1

/ ( ) cos( ){ Re[ ( , )] Im[ ( , )]}

{[ ( , , ) ( , , )]cosh( )cos( )

[ ( , , ) ( , , )]sinh( )sin( )}

rr n n
n

s R I s R I R s I s
s

s R I s R I R s I s

q A e a b C n A p B p

C q q D q q q q

C q q D q q q q

σ πη ρ ρ

ρ ρ γ η γ η

ρ ρ γ η γ η

∞

=
∞

=

= + + + Π + Π

+ Λ + Λ

+ − Λ + Λ

∑

∑   (24) 

 

0 2 1 2 1
1

2 2
1

1

2 2

/ sin( ){ Re[ ( , )] Im[ ( , )]}

( ){[ ( ( ) 1) 2 ]sinh( )cos( )

[ 2 ( ( ) 1)]cosh( )sin( )}

rz n n
n

s s R I s R I R s I s
s

s R I s R I R s I s

q n A p B p

J C e q q D eq q q q

C eq q D e q q q q

σ πη ρ ρ

λ ρ γ η γ η

γ η γ η

∞

=
∞

=

= Π + Π

+ − − +

+ − + − −

∑

∑  (25) 

11 12 0 1 1 1 1 1 1
0 1

1

1

cos( )
(1 )( ){ { Re[ ( )] Im[ ( )]}

( )
[( )cosh( )cos( ) ( )sinh( )sin( )]}

n n n n
nn

s
s R s I R s I s s I s R R s I s

ss

u n
b a a C A p I p B p I p

q R

J
C q D q q q C q D q q q

πη
ρ ζ ρ ζ ρ

ζ

λ ρ
γ η γ η γ η γ η

λ

∞

=
∞

=

= − − + +

− + + − +

∑

∑
(26) 

44 0 0 33 13 3 1 3 1
0 1

2 20
44 33 13 33 13

1

33 13 44 33 13

sin( )
[2 ( 2 )] { Re[ ( , )] Im[ ( , )]

( )
{[ ( ( 2 )( )) 2 ( 2 )]sinh( )cos( )

[2 ( 2 ) ( ( 2

n n
nn

s
s R I s R I R s I s

ss

s R I s

w n
a C A a a e A p B p

q R

J
C a a a e q q D q q a a e q q

C q q a a e D a a a e

πη
κη ρ ρ

ζ

λ ρ
γ η γ η

λ

∞

=
∞

=

= − + − + Π + Π

+ − − − − −

+ − + − −

∑

∑
2 2)( ))]cosh( )sin( )}R I R s I sq q q qγ η γ η−

 (27) 

where 

           2 1
1 0

( )
( , ) ( ) ( ) ( ) n

n
n

I x
x ax e I x b a x

ζ ρ
ρ ζ ρ

ζ ρ
Π = − + −  (28) 

 3
2 1( , ) ( ) ( )nx ex x I xρ ζ ρΠ = −  (29) 

 2
3 44 33 13 0( , ) [ ( 2 )] ( )nx a x a a e I xρ ζ ρΠ = − + −   (30) 

 1
0

( )
( ) ( ) ( ) s

s
s

J
aJ a b

λ ρ
ρ λ ρ

λ ρ
Γ = − + −  (31) 
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      3 2
1 0( , , ) ( ) ( 3 ) ( )sx y x e x xy Jρ ρ λ ρΛ = Γ + −  (32) 

   3 2
2 0( , , ) ( ) ( 3 ) ( )sx y y e y x y Jρ ρ λ ρΛ = Γ − −  (33) 

with a=1. The expression for θθσ  can be obtained from (24) by replacing “a” and “b” by “b” 

and “1” respectively. While the expressions for zzσ can be obtained from (24) by replacing 

both “a” and “b” by “−c”, and “e” by “−d” respectively.  The next step is to use the boundary 

conditions (8-12) to determine the unknown coefficients. 

8. Determination of unknown coefficients 

The boundary condition 0rzσ =  on the curved surface 1 (or  )r Rρ = =  leads to 

    2 1 2 1Im[ ( ,1)], Re[ ( ,1)]n n n nA E p B E p= Π = − Π  (34) 

where nE  is a constant introduced to simplify the later presentation and it will be fixed later 

such that the subsequent formulas can be expressed in a more efficient manner. 

The boundary condition / 0w r∂ ∂ =  on the two end surfaces 1 (i. e.  )z hη = ± = ±  leads to 

 1( , )s s R IC F q qψ=  ,   2( , )s s R ID F q qψ= −  (35) 

where sF  is another constant introduced to simplify the subsequent presentation， and 

 
1 33 13

2 2
44 33 13

( , ) 2 ( 2 )sinh cos

[ ( 2 )( )]cosh sin

R I R I R s I s

R I R s I s

q q q q a a e q q

a a a e q q q q

ψ γ γ

γ γ

= − −

+ − − −
 (36) 

 
2 33 13

2 2
44 33 13

( , ) 2 ( 2 )cosh sin

[ ( 2 )( )]sinh cos

R I R I R s I s

R I R s I

q q q q a a e q q

a a a e q q q q

ψ γ γ

γ γ

= −

+ − − −
 (37) 

The radial stress rrσ  on the curved surface 1 (i. e. )r Rρ = =  can be obtained by setting 

1ρ =  in (24) as 

 

0 0 0 1 1 1 1
1

1 2
1

2 1

/ ( ) cos( ){ Re[ ( ,1)] Im[ ( ,1)]}

{[ ( , ,1) ( , ,1)]cosh( )cos( )

[ ( , ,1) ( , ,1)]sinh( )sin( )}

rr n n
n

s R I s R I R s I s
s

s R I s R I R s I s

q A e a b C n A p B p

C q q D q q q q

C q q D q q q q

σ πη

γ η γ η

γ η γ η

∞

=
∞

=

= + + + Π + Π

+ Λ + Λ

+ − Λ + Λ

∑

∑  (38) 

By applying a Fourier expansion for the hyperbolic cosine in (38) and then expressing the 

result in terms of the constants nE  and sF , we have  

 0 0 0 0
1 1 1

/ ( 1) / 2 [ ]cos( )rr s s n n s sn
s n s

q A e b C F Q E F Q nσ πη
∞ ∞ ∞

= = =

= + + + + ∆ +∑ ∑ ∑  (39) 

where 
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 2 1 1 1 2 1 1 1Im[ ( ,1)]Re[ ( ,1)] Re[ ( ,1)]Im[ ( ,1)]n p p p p∆ = Π Π − Π Π   (40) 

 0 1 2

3 1

( ){[ sinh cos cosh sin ]

[ sinh cos cosh sin ] }
sn s R s I s R s I s sn

R s I s R s I s sn

Q J T q q T q q L

T q q T q q G

λ γ γ γ γ
γ γ γ γ

= +

+ +
 (41) 

  2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2( 1)

[ ] cosh sin [ ] sinh cos

[ ( ) ][ ( ) ]

s s

n
sn

s R I R s R s I s s R I I s R s I s

s R I s s R I s

G

q q n q q q q q n q q q

q q n q q n

γ γ π γ γ γ γ γ π γ γ γ

γ γ π γ γ π

= − ×

+ + − + −

+ − + +

(42) 

 2 2 2 2 2 2 2
1 44 33 13 33 13{[ ( 2 )( )][ ( 3 ) 1] 2( 2 ) [ ( 3 ) 1]I R I I R R R IT q a a d a e q q e q q a d a e q e q q= − − − − + − − − −  (43) 

 2 2 2 2 2 2 2
2 44 33 13 33 13{[ ( 2 )( )][ ( 3 ) 1] 2( 2 ) [ 3 ) 1]R R I R I I I RT q a a d a e q q e q q a d a e q eq q= − − − − − + − − +  (44) 

2 2 2 2 2 2 2
3 44 33 13 33 13{[ ( 2 )( )][ ( 3 ) 1] 2( 2 ) [ ( 3 ) 1]R R I R I I R IT q a a d a e q q e q q a d a e q e q q= − − − − − − + − − +  (45) 

The boundary condition 0rrσ =  on 1ρ =  can now be applied and the following relations 

between 0A  and 0C  and between nE  and sF  are obtained as 

 0 0 0( 1) / 2 0s sA e b C F Q+ + + =∑  (46) 

 
1

0n n s sn
s

E F Q
∞

=

∆ + =∑  (47) 

Substitution of (34) and (35) into (26) and set 1η = ±  yield the following expression for the 

radial displacement on the two end surfaces (i.e. z h= ±  

11 12 0
0

1
2 1 1 1 1 2 1 1 1 1

1 1

(1 )( ){

( 1) ( )
[Im[ ( ,1)]Re[ ( )] Re[ ( ,1)]Im[ ( )] }

n
n s s

n n s
n sn s

u
b a a C

q R

E J F
p p I p p p I p

ρ

λ ρ
ζ ρ ζ ρ

ζ λ

∞ ∞

= =

= − −

−
+ Π − Π + Ω∑ ∑

 (48) 

where  

    
1 2

1 2

{[ ( , ) ( , ) ]cosh cos

[ ( , ) ( , ) ]sinh sin }
s R I R R I I R s I s

R I I R I R R s I s

q q q q q q q q

q q q q q q q q

ψ ψ γ γ

ψ ψ γ γ

Ω = − −

− +  (49) 

To apply the end boundary condition (11), we first expand (48) into a Fourier-Bessel series as 

 1 0
11 12

0 01 1

( ) 2
(1 )( ) [ ]

( )
s

s s n sn
s ss n

J Cu
b a a F E R

q R J

λ ρ
λ λ

∞ ∞

= =

= − − − + Ω +∑ ∑  (50) 

where 
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 2 1 1 2 1 1
( 1)

{Im[ ( ,1)]Re[ ( )] Re[ ( ,1)]Im[ ( )]}
n

sn sn sn
n

R p H p p H p
ζ
−

= Π − Π  (51) 

 
2

1
2 2 2

0

2 ( )
( )

[ ] ( )

s n
sn

S n s

x I x
H x

x J

λ ζ

λ ζ λ

−
=

+
 (52) 

To match the boundary condition (11) with the radial displacement given in (50), (11) is also 
expanded into a Fourier-Bessel series as 

 0 1
1

( ) ( )     for   (0 1)s s
s

u u a Jρ β λ ρ ρ
∞

=

= ≤ ≤∑  (53) 

where 

 
0

2
 

( )
s

s s

a
Jλ λ
−

=  (54) 

Finally, by comparing the coefficients of (50) and (53), we have  

 0 0

0 11 121

2

( ) (1 )( )
s s

s s n sn
s n

C u a
F E R

J b a a E

ν βλ
λ

∞

=

−
− + Ω + =

− −∑  (55) 

As remarked earlier, the expressions for zzσ   can be obtained by replacing both  “a” and “b“ 

by "−c", and “e” by “−d" in (24) as  

   

0 0 0 1 1 1 1
1

1 2
1

2 1

/ 2 cos( ){ Re[ ( , )] Im[ ( , )]}

{[ ( , , ) ( , , )]cosh( )cos( )

[ ( , , ) ( , , )]sinh( )sin( )}

zz n n
n

s R I s R I R s I s
s

s R I s R I R s I s

q A cC n A p B p

C q q D q q q q

C q q D q q q q

σ πη ρ ρ

ρ ρ γ η γ η

ρ ρ γ η γ η

∞

=
∞

=

= − − + Π + Π

+ Λ + Λ

+ − Λ + Λ

∑

∑  (56) 

Substitution of (56) into (12) with 1η = ±  leads to 

 0 0
1

2 1n n
n

cC dA E
∞

=

− − + ℜ =∑  (57) 

where 

 
2 3 2 31 1 1 2
1 2 2 1 2 2 1 1 1 1

1 2

( ) ( )2( 1)
[(1 )( ) ( ) (1 )( ) ( ) ]

n
n n

n n n
n

I p I p
cp ep p I p cp ep p I p

p p

ζ ζ
ζ ζ

ζ
−

ℜ = − − − − −  (58) 

In summary, for the unknown coefficients 0 0,A C , nE  and sF , the coupled system of 

equations, (46), (47), (55) and (57), has to be solved simultaneously.  In our numerical 

implementation, we can truncate the infinite series in these equations and retain only the 

first n and s terms.  Then, there will be (s+n+2) equations for the (s+n+2) unknown 
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coefficients of 0 0,A C , nE  and sF . Finally, , ,  and n n s sA B C D  can be obtained by substitution 

of sF  and nE  into (34) and (35). Once these coefficients are determined, the stress and 

displacement fields inside the cylinder can be evaluated according to (24-27), and by 

substituting (24-25) into (1), the strain distribution can be exactly obtained. 

9. Numerical results and discussions 

The exact analytical solution for the inhomogeneous stress and strain distribution within a 

finite and transversely isotropic cylinder of wurtzite GaN under compression test with end 

friction given in the previous section involves the calculation of systems of coupled 

equations for the coefficients of the infinite series. We choose wurtzite GaN as an example to 

get the numerical results, and five independent elastic constants were 11 293C GPa= , 

12 159C GPa= , 13 106C GPa= ， 33 398C GPa= ， 44 105C GPa=  (wright, 1997). Another group 

of independent constants can be easily obtained as 322 , 357 ,T LE Gpa E Gpa= =  

0.32, 0.21, 52.5T L LG Gpaν ν= = = . In actual computation, the infinite series have to be 

truncated and only finite number of terms can be retained. It was found that 50 terms in 

both the summations of n and s are sufficient to yield a steady solution for the solutions for 

displacements expressed in (26-27), while about 80 terms are need to get a converge values 

for the series solutions for stresses and strain given in (24-25) and (1). This is not totally 

unexpected since our end boundary is displacement-controlled, and the computed stresses 

are proportional to the derivative of the displacement. In general, more terms in n than in s 

are needed if 1κ > , while more terms in s than in n are needed to get the same error control 

if 1κ < .  We found that 100 terms in both s and n are enough to get a specific error control 

less than 0.1%.  Moreover, the inhomogeneous strain and stress distributions within the 

finite circular cylinder for one quarter of the meridian plane are investigated, and the rest 

being symmetrical.  
 

 
Fig. 2. The normalized strain 0/

rrrrε ε  versus the normalized distance z/h along the axis of 

loading for (a) r/R=0.0 and (b) r/R =0.5 
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Fig. 3. The normalized strain 0/
θθθθε ε  versus the normalized distance z/h along the axis of 

loading for (a) r/R=0.0 and (b) r/R=0.5 

 
 

 
 

Fig. 4. The normalized strain 0/
zzzzε ε  versus the normalized distance z/h along the axis of 

loading for (a) r/R=0.0 and (b) r/R=0.5 
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Fig. 5. The normalized strain 0/
HHε ε  versus the normalized distance z/h along the axis of 

loading for (a) r/R=0.0 and (b) r/R=0.5 

9.1 The strain distributions within cylinder along the loading direction 

Strain distributions along the loading direction in a quarter of the meridian plane are 

studied in this section. In particular, Fig. 2 shows the normalized strain 0/
rrrrε ε  versus the 

normalized vertical distance z/h from the center of the cylinder for various values of α  for 

r/R=0.0 and r/R=0.5. The results are obtained for / 2.0h R = , which are the standard shape 

for compression tests. 0
rr

ε  is the radial strain of the cylinder under compression without 

end friction and can be calculated according to (7). As mentioned earlier, the factor α  

represents the degree of friction on the end surfaces. More specially, 1β =  is for the case 

without end friction, while 0β =  is for the largest end friction and no slip occurs between 

the cylinder and the loading platens. In usual compression test, partial slip may occur and 

we have 0 1β≤ ≤ , depending on the contact condition of the loading platens. Fig. 2 

indicate that the strain distribution within the cylinder along the loading direction is not 

uniform for 0 1β≤ < , a strain concentrations are usually induced in the region of  

0.5 / 1.0z h< < , and the maximum values can be as more than 99%  and 65% for  r/R=0.0 

and  r/R=0.5 respectively, comparing to that without end friction, which is the line for 

1α = in Fig. 2. However, the strain distributions in the central region, say 0 / 0.5z h< <  

are relatively uniform, and only 2% extra strain value of  0/
rrrrε ε can be induced by end 

friction. Fig. 3 shows the normalized circumferential strain 0/
θθθθε ε  versus the 

normalized vertical distance z/h for various values of β  for r/R=0.0 and r/R=0.5, and 0
θθ

ε  

is the circumferential strain of the cylinder under compression without end friction and 

can be calculated according to (7). The other parameters used in Fig. 3 and the following 

Figs. 4-12 are the same as those in Fig. 2 unless specially mentioned. Fig.3 shows that 

strain concentrations are also induced in the region of 0.5 / 1.0z h< < , and the maximum 

values can be as more than 57% and 34% for  r/R=0.0 and  r/R=0.5 respectively, comparing 
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to constant strain without end friction and 1α = . Fig. 4 shows the normalized axial strain 
0/
zzzzε ε  versus the normalized vertical distance z/h for various values of α  for r/R=0.0 

and r/R=0.5, and 0
zz

ε  is the axial strain of the cylinder under compression without end 

friction and can be calculated according to (7). Fig.4 shows that the axial strain is also 

inhomogeneous, and the maximum values can be more than 40% and 30% for r/R=0.0 and 

r/R=0.5 respectively, comparing to that without end friction.  Fig. 5 shows the normalized 

strain 0/
HHε ε  versus the normalized vertical distance z/h for various values of α  for 

r/R=0.0 and r/R=0.5, and 0
H

ε  is the strain of the cylinder under compression without end 

friction and can be calculated according to (58). Fig.5 shows that the normalized strain 
0/
HHε ε  is quite inhomogeneous, and the maximum values can be 100% and 53% more 

than those without end friction for r/R=0.0 and r/R=0.5 respectively. Overall, the 

inhomogeneous strain distributions are induced in the cylinder as long as friction exists 

between the end surface and the loading platens, and the larger the friction on the end 

surfaces, that is, the smaller the value of β , the more non-uniform inhomogeneous strain 

is induced within the cylinder. 

9.2 The strain distributions within cylinder for different shape of cylinder 

All of the numerical calculations given above are for / 2.0h R = . In order to investigate the 

shape effect on the strain distribution within cylinder under compression with end friction, 

Figs. 6-8 plot the normalized strains 0/
rrrrε ε , 0/

θθθθε ε and 0/
zzzzε ε versus the normalized 

vertical distance z/h from the center of the cylinder for various values of h/R for r/R=0.0 and 

0.0β = . Figs. 6-8 show that a larger deviation may be induced for shorter cylinder. For 

example, 35% error in 0/
HHε ε can be induced even at the center of the cylinder for h/R=0.5. 

But the strain distributions for long cylinders are more homogeneous, especially the strains 

are relatively uniform at the central part of the cylinder if / 2h R ≥ . So a relatively long 

cylinder should be suggested for compression test. 
 
 

 
 

Fig. 6. The normalized strain 0/
rrrrε ε  versus the normalized distance z/h along the axis of 

loading for various ratios of h/R 
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Fig. 7. The normalized strain 0/
θθθθε ε  versus the normalized distance z/h along the axis of 

loading for various ratios of h/R 

 

 

 
 

Fig. 8. The normalized strain  0/
zzzzε ε  versus the normalized distance z/h along the axis of 

loading for various ratios of h/R 

10. The effect of strain on the valence-band structure of wurtzite GaN 

The band structure of wurtzite GaN deserves attention since the valence bands, such as the 
heavy-hole, light-hole and split-off bands are close each other. The strain effects on wurtzite 
GaN are less understand (Chuang & Chang, 1996). Based on the deformation potential 
theory of Luttinger-Kohn and Bir-Pikus (Bir & Pickus, 1974), the valence-band structure of 
the strained wurtzite GaN can be described by a 6x6Hamiltonian according to the envelope-
function method, and the basis function for wurtzite GaN can be written as 
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*

*

*

*

*

*

1 ( ) ( )
2 2

2 ( ) ( )
2 2

3

4 ( ) ( )
2 2

5 ( ) ( )
2 2

6

X iY X iY

X iY X iY

Z Z

X iY X iY

X iY X iY

Z Z

α α

β β

β β

α α

β β

β β

= − + ↑ + − ↓

= − − ↑ − + ↓

= ↑ + ↓

= − + ↑ − − ↓

= − ↑ + + ↓

= − ↑ + ↓

 (59) 

where (3 /4 3 /2) ( /4 /2)(1 / 2 ) , (1 / 2 )i ie eπ φ π φα β+ += = and 1tan ( / )y xk kφ −= . 

The 6x6 Hamiltonian is obtained as 

 
3 3

3 3

( ) 0
( )

0 ( )

U

L

H k
H k

H k

×

×

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 (60) 

and 

 3 3

t t t
U

t t t

t t t

F K iH

H K G iH

iH iH λ
×

−⎡ ⎤
⎢ ⎥= ∆ −⎢ ⎥
⎢ ⎥∆ +⎣ ⎦

  (61) 

 3 3

t t t
L

t t t

t t t

F K iH

H K G iH

iH iH λ
×

⎡ ⎤
⎢ ⎥= ∆ +⎢ ⎥
⎢ ⎥− ∆ −⎣ ⎦

 (62) 

 1 2t t tF λ θ= ∆ + ∆ + +  (63) 

 1 2t t tG λ θ= ∆ − ∆ + +  (64) 

 
2

2 2 2
1 2 1 2

0

[ ( )] ( )
2

t t z t x y zz xx yyA k A k k D D
m

λ ε ε ε= + + + + +
¥

 (65) 

 
2

2 2 2
3 4 3 4

0

[ ( )] ( )
2

t t z t x y zz xx yyA k A k k D D
m

θ ε ε ε= + + + + +
¥

  (66) 
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2 2
5

0
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2

2 2 1/2
6

0

( )
2

t t x y zH A k k k
m

= +
¥

 (68) 

 32∆ = ∆  (69) 

where 

 3 4 2 12t t t tA A A A= − = −  (70) 

 3 5 64 2t t tA A A+ =  (71) 

 3 2∆ = ∆  (72) 

The valence-band structure can be determined by  

 det[ ( ) ] 0H k EI− =  (73) 

which leads to  

 3 2 2
2 1 0( ) 0t t tE C E C E C+ + + =  (74) 

where 

 2 ( )t t t tC F G λ= − + +  (75) 

 2 2 2
1 2t t t t t t t t tC F G G F K Hλ λ= + + − ∆ − −  (76) 

 0 3 3det[ ]UC H ×= −  (77) 

so we obtained 

 HH tE F=  (78) 

 
2

2( )

2 2
t t t t

LH
G G

E
λ λ+ −

= + + ∆  (79) 

 
2

2( )

2 2
t t t t

SO
G G

E
λ λ+ −

= − + ∆   (80) 

where HHE , LHE  and soE are the energies for the heavy-hole the light-hole and split-off 

bands, respectively. 

11. Conclusions 

The exact analytical solution for the inhomogeneous strain field within a finite and 
transversely isotropic cylinder under compression test with end friction is derived. The 
method employed Lekhnitskii's stress function in order to uncouple the equations of 

www.intechopen.com



An Analytical Solution for Inhomogeneous Strain Fields  
Within Wurtzite GaN Cylinders Under Compression Test 

 

353 

equilibrium. It was found that the end friction leads to a very inhomogeneous strain 
distribution within cylinder, especially in the area near the end surface. Numerical results 
show that all of the strain components, including the axial, radial, circumferential and shear 
strains, are inhomogeneous, both in distribution pattern and magnitude, the maximum 
value of the strain concentration near the end surfaces can be 100% higher than the constant 
strain in the case without end friction. However, the strain distributions are relatively 

uniform at the central parts of long cylinders, say in the area of 0.5 0.5h z h− < < , the 

magnitude of the strains can be more than 2% of that without end friction. The method for 
analyzing the effect of the strain and end friction on the band structure of wurtzite GaN is 
discussed, end friction  has effect on the shape of constant energy surfaces of valence bands 
and the band gaps between the heavy-hole, light-hole and split-off bands of wurtzite GaN. 
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