we are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists

122,000

135M

Our authors are among the

TOP 1%

WEB OF SCIENCE

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com

A Review of Aflatoxin M₁, Milk, and Milk Products

Hamid Mohammadi Kurdistan General Department of Standards and Industrial Research Iran

1. Introduction

Aflatoxins are a group of closely related heterocyclic compounds produced predominantly by two filamentous fungi, Aspergillus flavus and Aspergillus parasiticus. Recent studies have shown that some A. nominus and A. tamarii strains are also aflatoxin producing, of which A. nominus is phenotypically similar to A. flavus (Kurtzman et al, 1987; Goto et al., 1997). Ito et al. (2001) isolated one more strain, A. pseudotamarii, which can produce aflatoxin. These fungi belong to the class Hyphomycetes, subdivision Deuteromycotina and family Aspergillaceae. They contaminate a vast array of food and agricultural commodities. Aspergillus species are capable of growing on a variety of substrates and under a variety of environmental conditions. Therefore, most foods are susceptible to aflatoxigenic fungi at some stage of production, processing, transportation, and storage. The outbreak of aflatoxicosis (famous as Turkey "X" disease) in England in 1960 caused the death of a large population of livestock (Blount, 1961) and led to the discovery of aflatoxin in groundnut meal contaminated by A. flavus (Hesseltine, 1979). Subsequently, aflatoxins were found in other feeds, especially maize (Chakrabarty, 1981) and cottonseed meal (Sharma et al., 1994). Aflatoxin M₁ (AFM₁) in milk and milk products is considered to pose certain hygienic risks for human health. Mammals that ingest aflatoxin B₁ contaminated diets eliminate into milk amounts of the principal 4-hydroxylated metabolite known as "milk toxin" or aflatoxin M₁ (Figure. 1). The economic impacts attributed to aflatoxin are incurred directly by loss in crops, livestock, and dairy and indirectly by a recurring expenditure in quality-control programs, research and education, lower foreign exchange earnings, and increased storage and packaging costs of vulnerable commodities. The potential hazard of aflatoxins to human health has led to worldwide monitoring programs for the toxin in various commodities as well as regulatory actions by nearly all countries.

2. Formation, toxicity, and regulation of aflatoxin M₁

Aflatoxin B_1 (AFB₁) is metabolized by the hepatic microsomal mixed-function oxidase system, but it also can undergo several metabolic conversations depending upon species (Marsi et al., 1974). The amounts of aflatoxin M_1 (AFM₁) excreted in milk as a percentage of AFB₁ averages 1-2%, varying from animal to animal, from day to day and from one milking to the other. The AFM₁ could be detected in milk 12-24 h after the first AFB₁ ingestion, reaching a high level after a few days. When the intake of AFB₁ is finished, the AFM₁

concentration in the milk decreases to an undetectable level after 72 h (van Egmond 1989). Battocone et al. (2003) observed that there was a linear relationship between AFB_1 dose and excretion of AFM_1 into ewes' milk.

International Agency for Research on Cancer (IARC, 1993) classified AFB₁ and AFM₁ as class 1 and 2B (or probable) human carcinogens, respectively. Lafont et al. (1989) observed a high genotoxic activity of AFM₁, although it was lower than that of AFB₁. The aflatoxins show both acute and chronic toxicity, and one of the outstanding features in the toxicology of the aflatoxins is the wide variation in response amongst different species of animals and even between the male and female of the same species. It can be seen that for some animals, such as the rat, aflatoxins are very carcinogenic, and yet in other species, it is difficult to demonstrate carcinogenicity. This considerable variation in biological response arises from the requirement that the mold metabolite itself has to be metabolized in order that a toxic response occurs, and the metabolites responsible for acute toxicity differ from those reponsible for carcinogenicity. There are several metabolic reactions (Fig. 1), such as the demethylation to aflatoxin P₁ and hydration to aflatoxin B_{2a}, which may lead to a decrease in toxicity.

Fig. 1. Some metabolic products from AFB₁

It seems that milk has the greatest demonstrated potential for introducing aflatoxin residues from edible animal tissues into human diet. Aflatoxins are one of the major etiological factors in the development of hepatocellular carcinoma (IARC, 2002), and more recently associations between childhood aflatoxin exposure and both growth faltering (Gong et al., 2004) have been reported. Moreover, as milk is the main nutrient for growing young, whose vulnerability is notable and potentially more sensitive than that of adults, the occurrence of AFM₁ in human breast milk, commercially available milk, and milk products is one of the most serious problems of food hygiene.

In order to decrease aflatoxins risk nearly all developed countries are of the maximum permissible levels of AFB₁ in foods and feeds as well as the levels of AFM₁ in milk and milk products. Currently the limits of AFM₁ are highly variable (Table 1), depending upon the degree of development and economic standing of the countries. Some European Community and Codex Alimentarius prescribe that the maximum level of AFM₁ in liquid milk and dried or processed milk products should not exceed 50 ng/kg (Codex Alimentarius Commissions, 2001). However, according to US regulations the level of AFM₁ in milk should not be higher than 500 ng/kg (Stoloff et al., 1991). There are thus differences in maximum permissible limit of AFM₁ in various countries.

Region	Maximum Acceptabe Level (ng/l)	Туре		
European Union	50	Milk		
Austria	50	Milk		
Argentina	50	Milk		
Bulgaria	500	Milk		
Germany	50	Milk		
Australia	20	Children's milk		
Sweden	50	Liquid milk products		
Netherlands	20	Butter		
Switzerland	50	Milk and milk products		
	250	Cheese		
Belgium	50	Milk		
USA	50	Milk		
Czech Republic	100	Children's milk		
	500	Adult's milk		
Serbia	500	Milk		
Iran	50	Raw, Pasteurized, and UHT milk		
	200	Cheese		
	20	Butter		
France	30	Children's milk< 3 years		
	50	Adult's milk		
Turkey	50	Milk and milk products		
	250	Cheese		
Brazil	500	Milk		

Table 1. Maximum acceptable level of AFM₁ in some regions

Regulatory limits seem to be a practical compromise between the need to have carcinogenfree commodities and the economic consequences of setting regulatory limits (Pohland and Yess, 1992). However, Stoloff et al. (1991) observed that as to aflatoxins there was little scientific basis, or the existing scientific information was not used in setting legal limits in most countries. Thus, even the low regulatory limits set by countries could not prevent chronic effects of aflatoxins, due to continued exposure to subacute levels of aflatoxins. Because of the following reasons, it seems that monitoring and preventive program are the most effective strategies to decrease the risk of exposure to both human and animals:

- 1. Evaluation of human exposure levels and health risk based on animal toxicological research
- 2. Difficulties in assessing dietary intake
- 3. Decontamination and remove mycotoxins from human and animal diets

2.1 AFM₁ in milk

Milk, as a liquid, is a highly variable product that rapidly loses its quality and spoils if not to be treated. Since milk may be processed in numerous ways, the effects of storage and processing on stability and distribution of AFM₁ are of great concern.

Kiermier and meshaley (1977) reported the effect of cold treatments. They observed that detectable AFM₁ decreased by 11 to 25% after 3 days at 5°C, 40% after 4 days at 0°C, and 80% after 6 days at 0°C. Whereas, McKinney et al. (1973) revealed that freezing at -18°C for 30 days resulted in an apparent loss of 14%, with 85% lost after 53 days. Stoloff et al. (1981) suggested less degradation of AFM₁ at -18°C with insignificant loss after 53 days. As to the effect of heating contradictory data have been reported. Kiermeier and Mashaley (1977), reported that various heat-time treatments caused reductions in the AFM1 concentrations of milks between 12% and 40%. Choudhary et al. (1998) studied the effect of various heattreatments on AFM₁ content of cow's milk and reported that sterilization of milk at 121 °C for 15 min caused 12.21% degradation of AFM₁, whereas boiling decreased AFM₁ by 14.50%. They concluded that destruction of AFM₁ depends on time and temperature combination of the heat treatment applied. In an investigation Conducted by Bakirci (2001), it was observed that pasteurization caused a decrease in the level of AFM₁ at the rate of 7.62%. Deveci (2007) showed that pasteurization can partially reduce the amount of AFM_1 in milk. However, some reports showing that aflatoxins are stable during heat-treatments such as pasteurization and sterilization (Van-Egmond et al. 1977; Wiseman and Marth, 1983; Yousef and Marth, 1989; Govaris et al. 2001) were also published. Fluctuation in data reported in literature could be attributed to the wide range of temperature, different analytical methods, and employment of both naturally and artificially contaminated milk.

AFM₁ distribution in milk is not homogeneous. Cream separation can affect AFM₁ distribution, since 80% is partitioned in the skim milk portion (Grant and Carlson, 1971) because of AFM₁ binding to case (Brackett, 19982a). An amount of 30% of AFM₁ is indeed estimated to be associated with the nonfat milk solids and in particular with case According to Van Egmond and Paulsch (1986) the behavior of AFM₁ in processes which involve fat separation may be explained by its semipolar character, leading to predominance in the nonfat fraction.

Contradictory data have been reported on the influence of milk concentration on AFM_1 . Kiermeier (1973) reported no losses of AFM_1 , whereas some authors observed losses ranging from 60 to 75% following milk concentration (Moreau, 1976; Purchase, I. F. H., 1973). Data from the studies on the occurrence of AFM_1 in milk since the 1990s are reported in (Table 2.)

400

Year	Region	Milk type	Samples	+ samples	Range(ng/liter)	Reference
1991	Kazakhstan	Ĉ	*	0	NA	Nikov et al.
1992	Cuba	С	85	22	>500	Margolles et al.
1993	Japan	С	37	0	NA	Tabata et al.
1994	USA	D	10	4	95	Kawamura et al.
	China	D	28	21	102.8	
	Italy	D	14	0	NA	
	New Zealand	D	3	0	NA	
	Poland	D	3	1	85	
1995	India	R	504	89	100-3.500	Rajan et al.
1996	Italy	UHT	161	125	<1-23.5	Galvano et al.
		D	92	49	<1-79.6	
1998	Kuwait	С	9	5	*	Srivastava et al
		R	7	5	*	
1999	Portugal	R	31	25	*	Martins
1999	Portugal	UHT	70	60	*	Martins
1999	Argentina	R	56	6	12-30	Lopez et al.
		PW	5	4	10-14	•
		Р	16	8	10-17	
1999- 2000	Iran	R	186	119	≤10-410	Ghiasian et al.
2001	Turkev	R	90	79	12.5-123.6	Bakirci
2001	Iran	R	111	85	15-280	Kamkar
2002-2003	Brazil	R	22	13	*	Shundo and Sabino
2002-2003	Brazil	Р	43	32	*	Shundo and Sabino
2002-2003	Brazil	UHT	34	34	*	Shundo and Sabino
2002	Greece	R	54	*	* Kaniou-	
2003	Iron	P	624	624		
2003	Turkov	I D	024	024	*	Alborzi et al.
2004	Turkey		24	14	*	Guibay et al.
2004	Iron	P	24	14	15.4a	Tailcarinai at al
2004	IIall	K	519	172	15.4"	Tajkarinin et al
2003-2004	Iran	R	98	*	53a	Tajkarimi et al.
2003- 2004	Italy	R	208	36	5-36.1	Virdis et al.
*	Turkey	Р	85	75	*	Celik et al.
2004- 2005	Italy	R	344	5	*	Decastelli et al
2004- 2005	Brazil	Р	12	7	11-161 Oliveira and Fer	
		UHT	12	10	11-161	
		PW	12	8	11-161	

Year	Region	Milk type	Samples	+ samples	Range(ng/liter)	Reference	
2005	Pakistan	R	168	168	10-700	Hussain and Anwar	
2005	Iran	Р	128	128	31-113	Oveisi et al.	
2005- 2007	Kuwait	R	177	176	4.9-67.8	Dashti et al.	
2006	Iran	R	*	*	43-59	Mohammadi et al.	
2006	Iran	Р	110	110	8-89	Karimi et al.	
2006	Iran	PW	42	42	51-914	Kamkar	
2006	Iran	Р	*	*	178.8-253.5	Sefidgar et al.	
2006- 2007	Iran	R	240	226	12.56ª	Mohammadian et al.	
		Р	32	31	12.43 ^a		
2007	Iran	Р	*	*	23.22 ^a	Mohammadi et al.	
2007	Iran	UHT	*	*	19.53 ^a	Mohammadi et al.	
2007	Pakistan	В	55	19	13ª	Hussain et al.	
		С	40	15	14ª		
		G	30	6	2ª		
		S	24	4	2 ^a		
		Ca	20	0	0		
2008	Iran	Р	50	50	*	Movassagh Ghazani	
		UHT	49	49	*		
2007- 2008	Serbia	С	3	*	10-50	Polovinski- Horvatović et al.	
2007- 2008	Iran	UHT	210	116	8-249	Heshmati and Milani	
2007- 2008	Iran	С	75	59	60.1 ^a	Rahimi et al.	
		В	75	29	31.9a		
		Ca	40	5	19.0a		
		S	51	19	28.1ª		
		G	60	19	30.1ª		
2008	Spain	$-\mathbf{R}$	72	68	9.69 ^a	Cano-Sancho et al.	
2008	Iran	C7	88	74	13-394	Fallah et al.	
		G	65	28	13-55		
		S	72	43	15-102		
2009	Iran	Р	91	66	13-250 Fallah		
2009	Croatia	R	61	*	0.6-58.7 Bilandzic et		
2009	Sudan	R	44	42	220-6900 Elzupir and Elhussein		

P: pasteurized; D: Dry milk; PW: Powdered Milk; R: Raw Milk; C: Cow milk; B: Buffalo milk; S: Sheep milk; G: Goat milk; Ca: Camel milk; NA: Not applicable

* Not reported

^a Average of contamination

Table 2. Occurrence and content of AFM₁ in milk samples

Many authors showed that Seasonal effect influences concentration of aflatoxin M_1 . They reported higher concentration of AFM₁ in cold seasons as compared to hot seasons (Applebaum et al., 1982; Blanco et al., 1988b; Hussain and Anwar, 2008; Tajkarimi et al. 2008; Fallah, 2010, Bilandzic et al., 2010), the reason being in winters mostly milking animals are fed with compound feeds and thus concentration of aflatoxin B1 increases which in turn enhances AFM₁ concentration in milk. Moreover, temperature and moisture contents also affect the presence of aflatoxin B₁ in feeds. *A. flavus* and *A. parasiticus* can easily grow in feeds having moisture between 13% and 18% and environmental moisture between 50% and 60%, furthermore, they can produce toxin (Jay, 1992). Another reason of low AFM₁ level in summer may be attributed to out-pasturing of milking cattle.

It is too difficult to compare the data from the literature due to wide differences between and within the countries related to feeding, animal and environmental factors, extraction and analysis procedures, and regulatory limits for aflatoxins in feeds and milk. However, in recent years the incident of AFM₁ contamination seems to have been balanced on the one hand by increasing precision of extraction and analysis procedures and on the other hand the setting of stricter regulatory limits for alatoxins in feeds and milk (Galvano et al., 1996). Today the high efficiency of immuno-enzymatic extraction and the accuracy of analytical methodology and equipment, such as high pressure liquid chromatography and fluorescence detectors, allow detection limits to decrease, improving the percentage of positive samples. Furthermore, in recent years attention to the concern of aflatoxins in feeds as well as in milk has increased in most of the developed countries.

2.2 AFM₁ in cheese

Occurrence of aflatoxin in cheese can be owing to three possible causes:

- 1. AFM₁ present in raw milk as a consequence of carry over of AFB₁ from contaminated animal feed to milk
- 2. Synthesis of aflatoxin (B1, B2, G1, and G2) by fungi that grow on
- 3. cheese (although the low level of carbohydrate does not make it a very suitable substrate)
- 4. The use of powdered milk contaminated with AFM1 for cheese production

Contrasting data have been reported on the influence of cheese preparation on AFM₁ recovery. Studies performed in the early years showed variable losses of AFM_1 during cheese production: 65%, 47%, <20% and <15% according to Purchase et al. (1972), McKinney et al. (1973), Grant and Carlson (1971) and Stubblefield and Shannon (1974), respectively. In contrast, later investigations of several authors (Brackett and Marth, 1982b; Brackett and Marth, 1982c; Munksgaard et al., 1987; Van Egmond and Paulsch, 1986; Bakirci, 2001, Govaris et al. 2001; Deveci, 2007) reported increases in AFM1 concentration in cheese as a function of cheese type, technologies, and the amount of water eliminated during processing. For example, Mohammadi et al. (2008) investigated some factors, which are involved in the process of making Iranian white brine cheese. They reported that some factors such as renneting temperature, press time, and saturated brine pH affected the amount of water eliminated and in turn the content of AFM₁ in the cheese curds. However, many results have been drawn from experiments in which the processed milk contained the toxin at high levels, which seldom appear in the practice. Therefore, additional investigations should verify the influence of cheese making on AFM1 occurrence to avoid uncertainty in actual practice when the concentration of the toxin in the processed milk is at around the maximum permissible level of 0.05 mg/kg that is frequently recorded in monitoring programmes.

The increase in AFM₁ concentration in cheese has been ascribed to the affinity of AFM₁ for casein (Allcroft and Carnagham, 1363; Applebaum et al., 1982; Brackett and Marth, 1982a; Grant and Carlson, 1971). Brackett and Marth (1982a) suggested that since is possible to extract AFM₁, it must not be covalently bound but linked by hydrophilic interactions hydrophobic areas of the casein. According to Dosako et al. (1980), AFM₁ is a water-soluble component and due to the hydrophobic sides of the casein molecule, AFM₁ has affinity to casein of milk. Therefore, they defined a factor named "Enrichment Factor" (EF) for cheeses. Further surveys should be done to find as for cheese manufacture influences on AFM₁ distribution.

Some tests heve been carried out on several kinds of cheeses as to overall stability of AFM1 during ripening and storage. Fremy et al. (1990) and Dragacci et al. (1995) reported that the concentrations of AFM₁ in Camembert cheese were higher at the beginning than at the later time of ripening. These results were in agreement with studies by Govaris et al. (2001). Such results however, conflict with reports of earlier studies that indicate different behaviour of AFM₁ in various other types of cheeses. Thus, in Camembert and Tilsit (Kiermeier and Buchner 1977), Cheddar (Brackett and Marth 1982b) and Brick (Brackett et al., 1982) cheeses stored for 3, 14 and 6.5 months, respectively, the concentration of the toxin increased during the early stage of their ripening to decrease thereafter to reach about its initial concentration at the beginning of ripening. On the other hand, the concentration of AFM₁ in Parmesan cheese started high at the beginning of the ripening period, decreased until about the fifth month and then slowly increased up to the tenth month of storage (Brackett and Marth 1982d). In contrast, the AFM₁ content of Mozzarella remained almost constant during storage of 4.5 months (Brackett and Marth, 1982d). Additionally, studies by Deveci (2007), and Huseyin Oruc et al. (2007) showed that the amount of AFM₁ in white pickled and Kashar cheeses did not significantly affect over the storage. Kaniou-Grigoriadou et al. (2005) found that the final ripened cheese was free of aflatoxin M₁.

These different profiles of AFM_1 in various cheese products may be the result of several factors such as heat treatment (Brackett and Marth 1982b, Yousef and Marth 1989), proteolysis (Brackett and Marth 1982b, d, Brackett et al. 1982, Yousef and Marth 1989), exposure of contaminated milk to light (Yousef and Marth 1989), and especially to an inadequate method of analysis (Yousef and Marth 1989). Some results of studies on the behaviour of AFM_1 during cheese ripening seem to represent changes in the recovery of toxin by the method during the different phases of the study rather than real changes in the level of AFM_1 in cheese (Brackett and Marth 1982a).

Several investigations on the partitioning of AFM₁ during cheese production staring with different milk contamination levels reported a wide range of distribution of AFM₁ between whey and curd. Some authors observed that half or more of the AFM₁ was in the way: 50%, 50%, 66%, 100%, 60%, and 53-58% according to Grant and Carlson (1971), Stubblefield and Shannon (1974), Blanco et al. (1988a), Purchase et al. (1972), Lopez. et al. (2000), and Huseyin Oruc et al. (2007), respectively. In contrast, others reported that most of AFM₁ was with curd: ranging from 66% to 72%, from 73% to 77%, 80%, 100%, and 59.1% according to Marshaley et al. (1986), El Deeb et al. (1992), Mckinney et al. (1973), Allcroft and Carnaghan (1963), and Deveci (2007), respectively. Kaniou-Grigoriadou et al. (2005) observed that enrichment factor in the production of Feta cheese made from naturally contaminated milk ranged between 4.3 and 5.6. Kamakar et al. (2008) showed that the mean concentration of toxin in curd and cheese was 3.12 and 3.65-fold more than that in whey and 1.68 and 1.80 fold more than that in cheese milk, respectively.

404

It is thought that since AFM₁ is a semi-polar component, it has less affinity to serum protein (Applebaum et al., 1982). Regarding the affinity of AFM₁ with proteins, Recently, Barbiroli et al. (2007) indicated that there is no simple physical method to remove AFM₁ from ovine and caprine milk. Neither ultrafiltration, nor acidic or enzymatic treatments were able to influence the toxin's interaction with casein or whey proteins. Only the combined action of heat and low pH (as used in ricotta cheese production) was able to denature whey proteins to a point where they lost their AFM₁-binding capacity.

According to Blanco et al. (1988a) these contrasting results can be attributed to different factors such as extraction techniques, methodology, type and degree of milk contamination, differences in milk quality, expression of the results, the presence of a small portion of curd in whey which could influence AFM_1 concentration, and the cheese manufacture process.

Year	Region	Samples	+ samples	Range(ng/kg)	Refernce	
1990	Syria	*	0	NA	Haydar et al.	
1991	Kazakhestan	*	*	*	Nikov et al.	
1993	Japan	37	0	NA	Tabata et al.	
1995	Japan	41	0	NA	Taguchi et al.	
1995	Spain	35	16	20-200	Jose Barios et al.	
2001-2002	Turkey	600	30	100-800	Yaroglu et al.	
2003-2004	Iran	80	66	150-2410	Kamkar	
2004	Italy	41	4	79.5-389	Virdis et al.	
2005	Turkey	100	99	0-4100	Tekinsen and Ucar	
2005-2007	Kuwait	40	32	23.8-452	Dashti et al.	
2008	Spain	72	0	-	Cano-Sancho et al	
2008	Iran	75	49	30-313	Fallah et al.	
2009	Iran	72	59	30-1200	Fallah	

NA: Not Applicable

*: Not Reported

Table 3. Occurrence and content of AFM₁ in cheese samples

The incidence of positive cheese samples for AFM₁ (Table 3) seem to be widely variable. Taguchi et al. (1995) found no positive samples in imported cheese in Japan. Virdis et al. (2008) detected few positive samples, whereas Tekinsen and Ucar (2008) observed a high incidence of positive samples. As regards the contamination level, several authors (Kamkar, 2006; Fallah, 2010) found a maximum contamination level over 1000 ng of AFM₁ per kg. This latter contamination level could be hazardous.

2.3 AFM₁ in yogurt

Several studies have been conducted regarding the effect of yogurt manufacturing on AFM₁ content. Some authors reported no influence on aflatoxin M₁ content (Blanco et al. 1993; Stoloff, 1980; Stoloff et al. 1981; Van Egmond, 1983; Van Egmond and Paulsch, 1986). In contrast, Munksgaard et al. (1987) and Bakirci (2001) detected variable increases of AFM₁ content in yogurt related to the milk. The effect of fermentation was assessed by Govaris et al. (2002). They reported that AFM₁ levels in all yoghurt samples showed a significant decrease from those initially present in milk. This decrease in AFM₁ was attributed to factors such as low pH, formation of organic acids or other fermentation by-products, or even to the

presence of lactic acid bacteria. The low pH during fermentation alters the structure of milk proteins such as the caseins leading to formation of yoghurt coagulum. The change in casein structure during yoghurt production may affect the association of AFM₁ with this protein (Brackett and Marth 1982) causing adsorption or occlusion of the toxin in the precipitate.

As to AFM₁ stability over storage of yogurt, Van Egmond et al. (1977) observed no reduction of AFM₁ in yogurt stored for 7 days at 7 °C. Megalla and Hafez (1982) observed complete transformation AFB₁ in its hydroxy derivative AFB₂A caused by the acids present in yogurt. Whereas, Rasic et al. (1991) revealed a high reduction (up to 97%) of AFM₁ in yogurt and acidified milk. El Deeb et al. (1992) observed that enzymatic, microbial, and particularly acid coagulation caused degradation of AFM₁ in buffalo milk. Maryamma et al. (1990) reported a high reduction of AFM₁ in fermented goat milk. As a result of Study by Govaris et al. (2002), during refrigerated storage, AFM₁ was rather more stable in the yoghurts with pH 4.6 than with pH 4.0. The percentage loss of the initial amount of AFM₁ in milk was estimated at about 13 and 22% by the end of the fermentation, and 16 and 34% by the end of storage for yoghurts with pHs 4.6 and 4.0, respectively.

Since it is known that exposure of the aflatoxin molecule to strong acid, such as trifluoracetic acid, can cause its acid-catalyzed hydration, leading, for example, from AFB₁ to AFB₂A (Cohen and Lapointe, 1981), but not its degradation or neutralization, the effect of the weak acidity of yogurt on aflatoxin should be more investigated.

Some investigations have been conducted related to the effect of aflatoxin on nutritive properties of yogurt. El Deeb et al. (1989) observed some negative effects of AFM₁ on Lactobacillus bulgaricus (cell wall thickening and shortening of cell chain lenghth) and *Staphylococcus thermophilus* (cell wall thickening and cell shape changing from coccoid to oval). Rasic et al. (1991) found that *S. thermophilus* was affected by the presence of in milk during fermentation of yoghurt, exhibiting longer cell chains in the contaminated than in the uncontaminated yoghurt samples. Similarly, Govaris et al. (2002) observed that the growth rate of *S. Thermophilus* and curdling time were affected by the higher level and not by the lower level of AFM₁. Unlike cheese and milk samples, the presence of AFM₁ in yogurt has not frequently been studied. Thus, more investigations are needed because:

- 1. currently, human consumption of yogurt has greatly increased
- 2. there are contradictory data on AFM₁ stability over manufacture and storage in the literature
- 3. The presence of aflatoxin in yogurt could reduce the nutritional values of its consumption.

2.4 AFM₁ in other milk products

Many other milk products such as cream, butter, ice cream may contain AFM₁. The presence of AFM₁ in these products has rarely been investigated and could be of interesting aspects for study. Some surveys conducted on the occurrence of AFM₁ in milk products are reported in (Table. 4). In a study by Bakirci (2001), the levels of AFM₁ in the products made from contaminated milk namely butter, butter milk, cream, skim milk was investigated. The mean AFM₁ level found in cream samples was 64.4% of AFM₁ concentration of bulk-tank milk. Whereas, mean AFM₁ level of skim milks was 3% higher than those of bulk-tank milk. These values were close to the results given by Van Egmond et al. (1977), and lower than the values given by Wiseman et al. (1983). Levels of AFM₁ in butter samples in the study were less, and they were as 33.80% of AFM₁ amounts of bulk-tank milk. Mean AFM₁ levels obtained from buttermilk samples were similar to those of bulk-tank milk (mean 83% of it).

The same results were reported by Grant and Carlson (1971). During butter processing, protein membrane around fat globules is broken down and serum phase is separated. Due to the chemical structure of AFM₁ and its affinity to casein, it adsorbs on this fraction of protein (Yousef & Marth, 1989), therefore, cream contained less AFM₁ than milk, and butter contained less amount of AFM₁ than cream. As a result of the associate effects of these factors, AFM₁ concentration occurs in lipid phase (like butter and cream) less than serum phase and protein fraction (Grant & Carlson, 1971).

Year	Region	type	Samples	+ samples	Range(ng/kg)	Refernce
2005	Turkey	Butter	92	92	10-7000	Tekinsen and Ucar
2005	Turkey	Butter	27	25	0-100	Aycicek et al.
2005	Iran	Infant formula	120	116	1-14	Oveisi et al.
		Milk-based cereal weaning food	80	72	3-35	
2005	Egypt	Beast milk	443	248	4.2-889	Polychronaki et al.
2005- 2007	Kuwait	Breast milk	12	5	8.83-15.2	Dashti et al.
2008		Kashk	125	53	28-291	Fallah et al.
		Doogh	136	25	13-53	
2009	Iran	Butter	31	8	13-26	Fallah
		Ice Cream	36	25	15-132	

Table 4. Occurrence of AFM₁ reported in some regions

AFM₁ is frequently observed in the aflatoxin exposed individuals and in the breast milk. AFM₁ toxicity in this respect is important as it is known that within aflatoxin exposed nursing mothers it can provide a source of aflatoxin exposure to the infant (El-Nezami, 1995). The occurrence of AFM₁ in breast milk has been investigated in some regions. There is increased awareness of the link between growth and health of the fetus and infant, and disease risk in later life. Long term pre and postnatal exposure to aflatoxins could be one of the factors contributing to growth faltering and/or the early onset of hepatocellular carcinoma (HCC) in countries with a high incidence of the disease. Additionally, the presence of other aflatoxins, B₁, B₂, G1, G₂ and M₂, has also been reported in breast milk (IARC, 1993). The identification and understanding of factors determining the presence of toxicants in human milk is important and may provide a strong basis for controlling the transfer of chemicals to the infants through breast milk.

3. Conclusion

At present, since it considers that there is not enough information to establish a reasonable exposure level, The World Health Organisation (WHO) recommends the reduction of AFM_1 consumption to a minimum so as to minimize AFM_1 potential risks. The regulatory limits are widely variable and there has been little scientific basis in their setting. Efforts should be made in attempting to provide further and extensive scientific information on human health

hazards related to low-level long term aflatoxin exposure and to standardize the already existing regulatory limits for aflatoxins.

Future studies should verify the effect of milk storage and processing on AFM₁ occurrence to avoid actual uncertainty. However, since it is generally assumed that neither storage nor processing determine reduction of AFM₁ content, further information on possible AFM₁ concentration following milk processing should be furnished.

The occurrence of AFM₁ in cow milk and milk products is widespread. For this reason, milk and milk products have to be controlled continuously by accurate and reliable analytical techniques for presence of AFM₁ contamination. It is also extremely important to maintain low levels of AFM₁ in the feeds of dairy animals. In order to achieve this, dairy cow feds should be kept away from contamination as much as possible. Therefore, animal feeds should be checked regularly for aflatoxin and, particularly important, storage conditions of feeds must be strictly controlled.

The occurrence of aflatoxin and their metabolites in human breast milk is of great concern. Since serious health hazards to the mother, fetus, and infant could occur. Therefore extensive and periodic surveys should be performed. Additionally, the incidence and occurrence of AFM_1 in dried milk infant formula should be more investigated.

4. References

- Allcroft, R.; & Carnaghan, R. B. A. (1963). Groundnut toxicity: an examination for toxin in human food productsfrom animal fed toxin groundnut meal. *Veterinary Record*, No. 75, pp. (259-263)
- Applebaum, R. S.; Brackett, R. E.; Wiseman, D. W.; & Marth, E. H. (1982). Aflatoxins: toxicity to dairy cattle and occurrence in milk and milk products. *Journal of Food Protection*, No. 45, pp. (752-777)
- Aycicek, H.; Aksoy, A.; & Saygi, S. (2005). Determination of aflatoxin levels in some dairy and food products which consumed in Ankara, Turkey. *Food Control*, No. 39, pp. (263–266)
- Bakirci, I. (2001). A study on the occurrence of aflatoxin M₁ in milk and milk products produced in Van province of Turkey. *Food Control*, No. 12, pp. (45-51)
- Barbiroli, A.; Bonomi, F.; Benedetti, S.; Mannino, S.; Monti, L.; Cattaneo, T.; & Iametti, S. (2007). Binding of Aflatoxin M₁ to Different Protein Fractions in Ovine and Caprine Milk. *Journal of Dairy Science*, No. 90, pp. (532–540)
- Battacone, G.; Nudda, A.; Cannas, A.; Cappio Borlino, A.; Bomboi, G.; & Pulina, G. (2003). Excretion of aflatoxin M₁ in milk of dairy ewes treated with different doses of aflatoxin B₁. *Journal of Dairy Science*, No. 86, pp. (2667-2675)

Bilandzic, N.; Varenina, I.; & Solomun, B. (2010). Aflatoxin M1 in raw milk in Croatia. *Food Control,* No. 21, pp. (1279–1281)

- Blanco, J. L.; Domingues, L.; Gomes-Lucia, E.; Garayzabal, J. F. F.; Goyache, J.; and Suarez, J. (1988a). Behavior of aflatoxin during the manufacture, ripening and storage of Manchego-type cheese. *Journal of Food Science*, No. 53, pp. (1373-1376)
- Blanco, J. L.; Dominguezs, L.; Gomez-Lucia, E.; Garayzabal, J. F. F.; Gracia, J. A.; & Suarez, G. (1988b). Presence of aflatoxin M₁ in commercial ultra-high temperature treated milk. *Applied Environmental Microbiology*, No. 56, pp. (1622–1623)

Blanco, J. L.; Carrion, B. A.; Liria, N.; diaz, S.;Garcia, M. E.; Domingues, L.; & Suarez, G. (1993). Behavior of aflatoxin during manufacture and storage yogurt. *Milchwissenchaft*, No. 48, pp. (385-387)

Blount, W.P.(1961). Turkey "X" disease. Turkeys, Vol. 9, No. 2, pp. (52, 55-58, 61,77)

- Brackett, R. E.; & Marth, E. H. (1982a). Association of aflatoxin M1 with casein. Zeitschrift fur Lebensmittel untersuchung und forschung, No. 174, pp. (439-441)
- Brackett, R. E.; & Marth, E. H. (1982b). Fate of aflatoxin M₁ in Cheddar cheese and in process cheese spread. *Journal of Food Protection*, No. 174, pp. (549-552)
- Brackett, R. E.; & Marth, E. H. (1982c). Fate of aflatoxin M₁ in Cottage cheese. *Journal of Food Protection*, No. 45, pp. (903)
- Brackett, R. E.; and Marth, E. H. (1982d). Fate of aflatoxin M₁ in parmesan and mozzarella cheese. *Journal of Food Protection*, No. 45, pp. (597-600)
- Brackett, R. E.; Applebaum, R. S.; Wiseman, D. W.; & Marth, E. H. (1982). Fate of aflatoxin M1 in brick and limburger-like cheese. *Journal of Food Protection*, 45, pp. (553-556)
- Cano-Sancho, G.; Marin, S.; Ramos, A. J.; Peris-Vicente, J.; & Sanchis, V. (2010). Occurrence ofaflatoxin M1 and exposure assessment in Catalonia (Spain). *Revista Iberoamericana de Micologia*, No. 3, pp. (130-135)
- Celik, T. H.; Sarimehmetoglu, B.; Kuplulu, O. (2005). Aflatoxin M1 contamination in pasteurised milk. *Veterinarski Archiv*, Vol. 75, No. 1, pp. (57-65)
- Chakrabarty, A. B. (1981). Detoxification of aflatoxin in Corn. *Journal of Food Protection*, No. 44, pp (173-176)
- Choudhary, P. L.; Sharma, R. S.; & Borkartria, V. N. (1998). Effect of chilling and heating on aflatoxin M₁ content of contaminated Indian cow's milk. *Egyptian Journal of Dairy Science*, No. 26, pp. (223–229)
- Codex Alimentarius Commissions .(2001). Comments submitted on the draft maximum level for Aflatoxin M_1 in milk. Codex committee on food additives and contaminants 33rd sessions, Hauge, The Netherlands.
- Cohen, H.; Lapointe, M. (1981). High pressure liquid chromatography determination and fluorescence detection of aflatoxins in corn and dairy feeds. *Journal of the Association of Official Analytical Chemists*, No. 64, pp. (1372-1376)
- Creppy, E. E. (2002): Update of survey, regulation and toxic effects of mycotoxins in Europe. *Toxicology Letters*, No.127, pp. (19-28)
- Dashti, B.; Al-Hamli, S.; Alomirah, H.; Al-Zenki, S.; Bu Abbas, A.; Sawaya, W. (2009). Levels of aflatoxin M1 in milk, cheese consumed in Kuwait and occurrence of total aflatoxin in local and imported animal feed. *Food Control*, No. 20, pp. (686-690)
- Decastelli, L.; Lai, J.; Gramaglia, M.; Monaco, A.; Nachtmann, C.; Oldano, F.; Ruffer, M.; Sezian, A.; Bandirola, C. (2007). Aflatoxins occurrence in milk and feed in Northern Italy during 2004–2005. *Food Control*, No. 18, pp. (1263–1266)
- Deveci, O. (2007). Changes in the concentration of aflatoxin M1 during manufacture and storage of White Pickled cheese. *Food Control*, No. 9, pp. (1103-1107)
- El Deeb, S. A. (1989). Interaction of aflatoxin M₁ on the physiological and morphological properties of *Lactobacillus bulgaricus* and *Streptococcus thermophilus*. *Alexandria Journal of Agriculture Research*, No. 34, pp. (61-72)
- El Deeb, S. A.; Zaki, N.; Shoukry, Y. M. R.; & Kheadr, E. E. (1992). Effect of some technological processes on stability and distribution of aflatoxin M₁ in milk. *Egyptian Journal of Food Science*, No. 20, pp. (29-42)

- El-Nezami, H.; Nicoletti, G.; Neal, G. E.; Donohue, D. C.; & Ahokas, J. T. (1995). Aflatoxin M1 in human breast milk samples from Victoria, Australia and Thailand. *Food andvChemical Toxicology*, No. 33, pp. (173–179)
- Elzupir, A. O.; & Elhussein, A. M. (2010). Determination of aflatoxin M1 in dairy cattle milk in Khartoum State, Sudan. *Food Control*, No. 21, pp. (945-946)
- Fallah, A. (2010). Aflatoxin M1 contamination in dairy products marketed in Iran during winter and summer. *Food Control,* No. 21, pp. (1478–1481)
- Fallah, A. A.; Rahnama, M.; Jafari, T.; & Saei-Dehkordi, S. S. (2011). Seasonal variation of aflatoxin M₁ contamination in industrial and traditional Iranian dairy products. *Food Control,* In Press
- Food and Agriculture Organization (1997). Worldwide regulations for mycotoxins, 1995. A compendium. FAO, Food and Nutrition Paper 64, Rome.
- Fremy, J. M.; Roiland, J. C.; & Gaymard, A. (1990). Behavior of aXatoxin M1 during camembert cheese making. *Journal of Environmental Pathology, Toxicology and Oncology,* No. 10, pp. (95–98)
- Galvano, F.; Galofaro, V.; & Galvano, G. (1996). Occurrence and stability of aflatoxin M1 in milk and milk products: a worldwide review. *Journal of Food Protection*, No. 10, pp. (1079-1090)
- Galvano, F.; Galofaro, V.; Ritieni, R.; Bognanno, M.; De Angelis, A.; & Galvano, G. (2001). Survey of the occurrence of aflatoxin M1 in dairy products marketed in Italy: second year of observation. *Food Additives and Contaminants*, No. 7, pp. (644-646)
- Ghiasian, S. A.; Maghsood, A. H.; Neyestani, T. R.; Mirhendi, S. H. (2007). Occurrence of aflatoxin M₁ during the summer and winter seasons in Hamedan, Iran. *Journal of Food Safety*, No. 27, pp. (188-198)
- Gong, Y.; Hounsa, A.; Egal, S.; Turner, P. C.; Sutcliffe, A. E.; Hall, A. J.; Cardwell, K.; & Wild, C. P. (2004). Postweaning exposure to aflatoxin results in impaired child growth: a longitudinal study in Benin, West Africa. *Environmental Health Perspectives*, No. 112, pp. (1334–1338)
- Goto, T.; Peterson, S. W.; Ito, Y.; & *Wicklaw*, D. T.(1997). Mycotoxin producing ability of A. tamarii. *Mycotoxins*, No. 44, pp. (17-20)
- Govaris, A.; Roussi, V.; Koidis, A.; & Botsoglou, N. A. (2001). Distribution and stability of aflatoxin M₁ during processing, ripening and storage of Telemes cheese. *Food Additives and Contaminants*, Vol. 18, No. 5, pp. (437-443)
- Govaris, A.; Roussi, V.; Koudis, P. A.; & Botsoglou, N. A. (2002). Distribution and stability of aflatoxin M₁ during production and storage of yoghurt. *Food Additives and Contaminants*, No. 11, pp. (1043–1050)
- Grant, D. W.; & Carlson, F. W. (1971). Partitioning behavior of aflatoxin M1 in dairy products. Bulletin of the Environmental Contamination and Toxicology, No. 6, pp. (521-524)
- Gurbay, A.; Aydın, S.; Girgin, G.; Engin, A. B., & Sahin, G. (2006). Assessment of aflatoxin M1 levels in milk in Ankara, Turkey. *Food Controlo*, No. 17, pp. (1-4)
- Haydar, M.; Benelli, L.; & Brera, C. (1990). Occurrence of aflatoxins in Syrian foods and foodstuffs: a preliminary study. Food Chemistry, No. 4, pp. (261-268)
- Heshmati, A.; & Milani, J. M. (2010). Contamination of UHT milk by aflatoxin M1 in Iran. Food Control, No. 21, pp. (19-22)

Huseyin Oruc, H.; Cibik, R.; & Guns, E. (2007). Fate of aflatoxin M₁ in Kashar cheese. *Journal of Food Safety*, No. 27, pp. (82-90)

- Hussain, I.; & Anwar, J. (2008). A study on contamination of aflatoxin M1 in raw milk in the Punjab province of Pakistan. *Food Control,* No. 19, pp. (293-295)
- Hussain, I.; Anwar, J.; Asi, M. R.; Munawar, M. A.; & Kashif, M. (2010). Aflatoxin M1 contamination in milk from five dairy species in Pakistan. *Food Control*, No. 21, pp. (122-124)
- IARC. (1993). Some naturally occurring substances food items and constituents, heterocyclic aromatic amines and mycotoxins. *IARC Monogr Eval Carcinog Risk Hum*, Lyon, France, 56, pp. (245–391)
- IARC. (2002). Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. *IARC Monogr Eval Carcinog Risk Hum*, Lyon, France, pp. 1–556.
- ISIRI, Institute of Standards and Industrial Research of Iran .(2002). Food and Feed-Mycotoxins Maximum Tolerated Level, Karaj, Iran. URL http://www.isiri.org/std/ 5925.pdf Accessed 23/12/2009.
- Ito, Y.; Peterson, S. W.; Wicklaw, D. T.; & Goto T. (2001). Aspergillus pseudotamarii, a new aflatoxin producing sp. *Mycology Research*, No.105, pp. (233-239)
- Jay, J. M. (1992). *Modern food microbiology*, pp. (1–701), Chapman and Hall, New York
- Jose Barrios, M.; Jesus Gualda, M.; Cabanas, J. M.; Medina, L. M.; & Jordano, R. (1996). Occurrence of aflatoxin M₁ in cheeses from the South of Spain, *Journal of Food Protection*, No. 8, pp. (898-900)
- Kamkar, A. (2005). A study on the occurrence of aflatoxin M1 in raw milk produced in Sarab city of Iran. *Food Control*, No. 16, pp. (593–599)
- Kamkar, A. (2006). A study on the occurrence of aflatoxin M1 in Iranian Feta cheese. *Food Control*, No. 17, pp. (768–775)
- Kamkar, A. (2007). Detection of aflatoxin M_1 in powdered milk samples by ELISA. Pajouhesh and Sazandegi, No .79, pp: (174-180)
- Kamkar, A.; Karim, G.; Shojaee Aliabadi, F.; & Khaksar, R. (2008). Fate of aflatoxin M1 in Iranian white cheese processing. *Food and Chemical Toxicology*, No. 46, pp. (2236-2238)
- Kaniou-Grigoriadou, I.; Eleftheriadou, A.; Mouratidou, T.; & Katikou, P. (2005). Determination of aflatoxin M1 in ewe's milk samples and the produced curd and Feta cheese. *Food Control*, No. 16, pp. (257–261)
- Karaioannoglu, P. G.; Mantia, A.; Koufidia, D.; Koidia, P.; & Triantafillou, J. (1989). Occurrence of aflatoxin M₁ in raw and pasteurized milk and in Feta and Teleme cheese samples. *Milchwissenschaft*, No. 44, pp. (746-748)
- Karimi, Gh.; Hassanzadeh, M.; Teimuri, M; Naziri, F.; & Nili, A. (2007). Aflatoxin M₁ Contamination in Pasteurized Milk in Mashhad, Iran. *Iranian Journal of Pharmaceutical Sciences*, Vol. 3, No. 3, pp. (153-156)
- Kawamura, O.; Wang, D. S.; Liang, Y. X.; Hasegawa, A.; Saga, C.; Visconti, A.; & Ueno, Y. (1994). Further survey of aflatoxin M₁ in milk powders by ELISA. *Food and Agricultural Immunology*, No. 6, pp. (465-467)
- Kiermeier, F. (1973). Aflatoxins residues in fluid milk. *Pure Applied Microbiology*, No. 35, pp. (271-273)
- Kiermier, F. ; & Buchner, M. (1977). Verhalten von aflatoxin M1 wahrend der reifung and lugerung von kase. Zeitschrift fur Lebensmittel untersuchung und forschung, No. 164, pp. (87-91)

- Kiermier, F.; & Meshaley, R. (1977). Einfluss der molkereitechnischen behanlung der rohmilich auf des aflatoxin M₁. Gehalt der daraus hergestellten produkte. Zeitschrift fur Lebensmittel untersuchung und forschung, No. 164, pp. (183-187)
- Kurtzman, C. P.; Horn, B. W. & Hesseltine, C. (1987). A nominus, a new aflatoxin producing species related to A. flavus and A. Tamarii. Antonnie Van Leewenhoek, No. 53, pp. (147-158)
- Lafont, P.; Siriwardana, M.; & Lafont, J. (1989). Genotoxicity of hydroxy-aflatoxins M1 and M4. *Microbiology Alimentarius Nutrition*, NO. 7, pp (1-8)
- Lieu, F. Y.; Bullerman, L. B. (1977). Production and stability of aflatoxin, penicillic acid and patulin in several substrates. *Journal of Food Science*, No. 42, pp. (1222-1224)
- Lopez, C.; Ramos, L.; Ramadan, S.; Bulacio, L.; & Perez, J. (2001). Distribution of aflatoxin M1 in cheese obtained from milk artificially contaminated. *International Journal of Food Microbiology*, No. 64, pp. (211–215)
- Lopez, C. E. L.; Ramos, L. L.; Ramadan, S. S.; & Bulacio, L. C. (2003). Presence of aflatoxin M₁ in milk for human consumption in Argentina. *Food Control*, No. 14, pp. (31-34)
- Margolles, E.; Escobar, A.; & Acosta, A. (1992). Aflatoxi B₁ residuality determination directly in milk by ELISA. *Revista de Salud Animal*, No. 12, pp. (35-38)
- Marshaly, R. I.; Deeb, S. A.; & Safwat, N. M. (1986). Distribution and stability of aflatoxin M₁ during processing and storage of Karish cheese. *Alexandria Journal of Agriculture Research*, No. 31, pp. (219-228)
- Marsi, M. S.; Booth, A. N.; & Hsieh, D. P. H. (1974). Comparative metabolic conversation of aflatoxin B1 in aflatoxin M1 and Q1. Life Science, No. 15, pp (203-209)
- Martins, M. L.; & Martins, H. M. (2000). Aflatoxin M1 in raw and ultra high temperaturetreated milk commercialized in Portugal. *Food Additives and Contaminants*, Vol. 17, No. 10, pp. (871-874)
- Maryamma, K. L.; Rajan, A.; Gangadharan, B.; Ismail, P. K.; Valsalad, & Manomohan, C. B. (1990). Reduction of aflatoxin in milk by fermentation into curd. *Journal of Veterinary and Animal Sciences*, No. 21, pp. (102-107)
- McKinney, J. D.; Cavanaugh, G. C.; Bell, G. T.; Bell, A. S.; Hoversland, A. S.; Nelson, D. M.; Pearson, J.; & Silkirk R. J. (1973). Effects of ammoniation on aflatoxins in rations fed lactating cows. *Journal of American Oil Chemical Society*, No. 50, pp. (79-84)
- Megalla, S. E.; & Hafez, A. H. (1982). Detoxification of aflatoxin M₁ by acidogenous yogurt. *Mycopathologia*, No. 77, pp. (89-91)
- Mohammadi, H.; Alizadeh, M.; R Bari, M.; Tajik, H. (2008). Minimization of aflatoxin M₁ content in Iranian white brine cheese. *International Journal of Dairy Technology*, No. 2, pp. (141-145)
- Mohamadi, H.; Alizadeh, M.; Rahimi, J.;& Qasri, Sh. (2010). Assessment of aflatoxin M1 levels in selected dairy products in north-western Iran. *International Journal of Dairy Technology*, No. 2, pp.(262-265)
- Mohammadian, B.; Khezri, M.; Ghasemipour, N.; Mafakheri, Sh.; & Poorghafour Langroudi,
 P. (2010). Aflatoxin M₁ contamination of raw and pasteurized milk produced in
 Sanandaj, Iran. Archives of Razi Institute, Vol. 65, No. 2, pp. (99-104)
- Moreau, C. (1976). Les mycotoxines dans les produits laitiers. Lait, No. 55, pp. (286-303)
- Movassagh Ghazani, M. H. (2009). Aflatoxin M₁ contamination in pasteurized milk in Tabriz (northwest of Iran). *Food and Chemical Toxicology*, No. 7, pp. (1624-1625)

- Movassagh Ghazani, M. H. (2011). Presence of aflatoxin M1 in UHT milk in Tabriz (Northwest of Iran). *Journal of Food Safety*, No. 2, pp. (238-241)
- Munksgaard, L.; Larsen, L.; Werner, H.; Andersen, P. E.; & Viuf, B. T. (1987). Carryover of aflatoxin from cows' feed to milk and milk products. *Milchwissenschaft*, No. 42, pp. (165-167)
- Nikov, P. S.; Bukharbaeva, A. S.; Baimbetova, A. M.; & Amireeva, N. T. (1991). Contamination with aflatoxins of milk and milk products in the South-East of Kazakhstan. *Voprosy Pitaniya*, No. 5, pp. (72-74)
- Oliveira, C. A. F.; & Ferraz, J.C.O. (2007). Occurrence of aflatoxin M1 in pasteurised, UHT milk and milk powder from goat origin. *Food Control*, No. 4, pp. 375-378
- Oveisi, M.; Jannat, B.; Sadeghi, N.; Hajimahmoodi, M.; & Nikzad, A. (2007). Presence of aflatoxin M1 in milk and infant milk products in Tehran, Iran. *Food Control*, No. 18, pp. (1216 1218)
- Pohland, A. E.; & Yess, N. J. (1992). Food Contaminants: sientific and public health implications. *Proceedings of the Nutrition Society of Australia*, No. 17, pp. (1-12)
- Polychronaki, N.; West, R. W.; Turner, P. C.; Amra, A.; Abdel-Wahhab, M; Mykkannen, H.; & El-Nezami, H. (2007). A longitudinal assessment of aflatoxin M1 excretion in breast milk of selected Egyptian mothers. *Food and Chemical Toxicology*, No. 45, pp. (1210–1215)
- Polovinski-Horvatović, M.; Juric, V.; Glamocic, D. (2009). Tow year study of incidence of aflatoxin M1 in milk in the region of Serbia. *Biotechnology in Animal Husbandry*, No. 5-6, pp. (713-718)
- Purchase, I. F. H., & Steyn, M.; Rinsma, R.; & Tustin, R. C. (1972). Reduction of the aflatoxin M₁ in milk by processing. *Food Cosmetics Toxicolology*, No. 10, pp. (383-387)
- Purchase, I. F. H. (1973). The control of aflatoxin residues in food of animal origion. *Pure and Applied Chemistry,* No. 35, pp. (283-289)
- Rahimi, E.; Bonyadian, M.; Rafei, M.; & Kazemeini, H. R. (2010). Occurrence of aflatoxin M1 in raw milk of five dairy species in Ahvaz, Iran. *Food and Chemical Toxicology*, No. 48, pp. (129–131)
- Rajan, A.; Ismail, P. K.; & Radhakrishnan, V. (1995). Survey of milk samples for aflatoxin M₁ in Thrissur, Kerala. *Indian Journal of Dairy Science*, No. 48, pp. (302-305)
- Rasic, J. L; Skrinjar, M.; & Markov, S. (1991). Decrease of aflatoxin M₁ in yogurt and acidified milks. *Mycopathologia*, No. 113, pp. (117-119)
- Sefidgar, S. A. A. ; Gholampour Azizi, V.; Mirzai, M.; Azimi, H.; & Norozi AbolHashemi, M. (2006). Survey of the Occurrence of Aflatoxin M₁ in Pasteurized Milk Consumption, Babol University of Medical Sciences, Iran
- Sharma, R. S.; Trivedi, K. R.; Wadodkar, U. R.; Murthy, T. N.; & Punjarath J. S. (1994). Aflatoxin B1 content in deoiled cakes, cattle feeds and damaged grains during different seasons in India. *Journal of Food Science and Technology*, Vol. 31, No. 3, pp (244-246)
- Shundo, L.; & Sabino, S. (2006). Aflatoxin M₁ in Milk by Immunoaffinity Column Cleanup with TLC/HPLC determination. *Brazilian Journal of Microbiology*, No. 37, pp. (164-167)
- Srivastava, V. P.; Bu-Abbas, A., Basuny, A.; Al-Johar, W.; Al-Mufti, S.; & Sidiqui, M. K. J. (2001). Aflatoxin M₁ contamination in commercial samples of milk and dairy products in Kuwait. *Food Additives and Contaminants*, Vol. 18, No. 11, pp. (993-997)

Stoloff, L. (1980). Aflatoxin M₁ in perspective. *Journal of Food Protection*, No. 43, pp. (226-230)

- Stoloff, L.; Park, D. L.; & Van Egmond, H. P. (1991). Rationales for the establishments of limits and regulations for mycotoxins. *Food Additives and Contaminants*, No. 8, pp. (213-221)
- Stoloff, L.; Wood, G.; & Carter, G. (1981). Aflatoxin M₁ in manufactured dairy products produced in the United States in 1979. *Journal of Dairy Science*, No. 64, pp. (2426-2430)
- Stubblefield, R. D.; & Shannon, G. M. (1974). Aflatoxin M1: analysis in dairy products and distribution in dairy foods made from artificially contaminated milk. Journal of the Association of Official Analytical Chemists, No. 57, pp. (847-851)
- Tabata, S.; Kamimura, H.; Ibe, A.; Hashimoto, H.; Idia, M.; Tamura, Y.; & Nishima, T. (1993). Aflatoxin contamination in foods and foodstuffs in Tokyo: 1986-1990. *Journal* of AOAC International, No. 76, pp. (32-35)
- Taguchi, S. ; Fukushia, S. ; Sumimoto, T.; Yoshida, S. ; & Nishimune, T. (1995). Aflatoxins in food collected in Osaka, Japan, from 1988 to 1992. *Journal of AOAC International*, No. 78, pp. (325-327)
- Tajkarimi, M.; Shojaee Aliabadi, F.; Salah Nejad, M.; Pursoltani, H.; Motallebi, A. A.; Mahdavi, H. (2007). Seasonal study of aflatoxin M₁ contamination in milk in five regions in Iran. *International Journal of Food Microbiology*, No. 116, pp. (346 – 349)
- Tajkarimi, M.; Aliabadi-Sh, F.; Salah Nejad, A.; H. Poursoltani, H.; Motallebi, A. A.; Mahdavi, H. (2008). Aflatoxin M₁ contamination in winter and summer milk in 14 states in Iran. *Food Control*, No. 19, pp. (1033-1036)
- Tekinsen, K. K.; & Ucar, G. (2008). Aflatoxin M₁ levels in butter and cream cheese consumed in Turkey. *Food Control*, No. 1, pp. (27-30)
- Van Egmond, H. P. (1983). Mycotoxins in dairy products. *Food Chemistry*, No. 11, pp. (289-307)
- Van Egmond, H. P. (1989). Aflatoxin M₁ : occurrence, toxicity, regulation, In: *Mycotoxins in Dairy Products,* Van Egmond, H. P., pp. (11- 55), Elsevier Applied Science, New York
- Van Egmond, H. P.; & Paulsch, W. E. (1986). Mycotoxins in milk and milk products. Nethelands Milk Dairy Journal, No. 40, pp. (175-188)
- Van Egmond, H. P.; & Paulsch, W. E.; Veringa, H. A.; & Schuller, P. E. (1977). The effect of processing on the aflatoxin M₁ content of milk and milk products. *Archive Institue*, *Pasteur Tunis*, No. 54, pp. (381-390)
- Virdis, S.; Corgiolu, G.; Scarano, C.; Pilo, A. L.; & De Santis, E.P.L. (2008). Occurrence of aflatoxin M₁ in tank bulk goat milk and ripened goat cheese, Food Control, No. 1, pp. (44-49)
- Wiseman, D. W.; & marth, E. H. (1983). Heat and acid stability of aflatoxin M₁ in naturally and artificially contaminated milk. *Milchwissenschaft*, No. 38, pp. (464-466)
- Wiseman, D. W. ; Applebaum, R. S. ; Brackett, R. E. ; & Marth, E. H. (1983). Distribution and resistance to pasteurisation of aflatoxin M1 in naturally contaminated whole milk, cream and skim milk. *Journal of Food Protection*, Vol. 46, No. 6, pp. (530-532)
- Yaroglu, T.; Oruc, H. H., Tayar, M. (2005). Aflatoxin M1 levels in cheese samples from some provinces of Turkey. *Food Control*, No. 16, pp. (883–885)
- Yousef, A. E., & Marth, E. H. (1989). Stability and degradation of aflatoxin M1. In H.P. Van Egmond, *Mycotoxins in dairy products*, pp. (127-161), London: Elsevier.

Aflatoxins - Biochemistry and Molecular Biology Edited by Dr. Ramon G. Guevara-Gonzalez

ISBN 978-953-307-395-8 Hard cover, 468 pages **Publisher** InTech **Published online** 03, October, 2011 **Published in print edition** October, 2011

Aflatoxins – Biochemistry and Molecular Biology is a book that has been thought to present the most significant advances in these disciplines focused on the knowledge of such toxins. All authors, who supported the excellent work showed in every chapter of this book, are placed at the frontier of knowledge on this subject, thus, this book will be obligated reference to issue upon its publication. Finally, this book has been published in an attempt to present a written forum for researchers and teachers interested in the subject, having a current picture in this field of research about these interesting and intriguing toxins.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hamid Mohammadi (2011). A Review of Aflatoxin M1, Milk, and Milk Products, Aflatoxins - Biochemistry and Molecular Biology, Dr. Ramon G. Guevara-Gonzalez (Ed.), ISBN: 978-953-307-395-8, InTech, Available from: http://www.intechopen.com/books/aflatoxins-biochemistry-and-molecular-biology/a-review-of-aflatoxin-m1-milk-and-milk-products

InTech Europe

University Campus STeP Ri Slavka Krautzeka 83/A 51000 Rijeka, Croatia Phone: +385 (51) 770 447 Fax: +385 (51) 686 166 www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai No.65, Yan An Road (West), Shanghai, 200040, China 中国上海市延安西路65号上海国际贵都大饭店办公楼405单元 Phone: +86-21-62489820 Fax: +86-21-62489821 © 2011 The Author(s). Licensee IntechOpen. This is an open access article distributed under the terms of the <u>Creative Commons Attribution 3.0</u> <u>License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

IntechOpen

IntechOpen