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1. Introduction 

In cardiovascular physiology mathematical and analog simulations are well known 
(Beneken, 1965; Defares et al.; 1963, Grodins; 1959; Kordaš et al., 1968; Milhorn, 1966; 
Osborn,1967;). However, in analog modelling physical electrical models have been replaced 
by computer analysis of electronic analog circuitry. Then they have been applied to various 
physiological systems (Bošnjak & Kordaš, 2002; Dolenšek et al., 2005), to study also 
cardiovascular physiology (Rupnik et al., 2002), including mechanisms of compensation 
(Podnar et al., 2002) and principles of homeostasis, i. e. negative feedback mechanisms 
(Podnar et al., 2004). Recently, the equivalent circuit simulating the cardiovascular system 
was further upgraded to simulate, as close as possible, conditions in man in vivo. First, the 
intrathoracic pressure was made slightly negative and undulating at the rate of respiration. 
Second, the homeostasis included not only a control of venous tone and contractility of left 
and right ventricle, but also the control of heart rate. Third, the mean arterial pressure was - 
in some conditions - reset from the normal to a higher operating level (simulating increased 
sympathetic tone). By using these approaches recently various clinical conditions were 
simulated: acute left ventricle failure (myocardial infarction), aortic stenosis and exercise in 
man with aortic stenosis (Sever et al., 2007), and consequences of aortic and of mitral 
regurgitation (Dolenšek et al., 2009). 
In present simulations it is attempted to extend both recent simulations quoted above. The 
consequences, induced by exercise in patients with aortic stenosis are to be studied in more 
detail. To meet this end, in aortic stenosis i) the aortic and mitral flows are studied and ii) 
mechanism of exhaustion, induced by exercise, are simulated. 

2. Methods 

Analysis of the equivalent circuit is performed by using Electronics Workbench Personal 
version 5.12 (Adams, 2001). 
As in previous simulations four targets are modulated by negative feedback: venous tone, 
contractility of right ventricle, contractility of left ventricle, and heart rate. Essentially, the 
present equivalent circuit is the same as reported (Sever et al., 2007). The resetting of mean 
arterial pressure includes procedures whereby its resting value, “clamped” at about 98 mm 
Hg is shifted and then “clamped” again at a higher level. Heart rate control is the same as 
described in Sever and coworkers (Sever et al., 2007); the duration of the systole is constant, 

www.intechopen.com



 
Aortic Stenosis – Etiology, Pathophysiology and Treatment 

 

76

200 ms in all simulation conditions. Mitral and aortic valve are simulated by diode D1. Input 
to the left ventricle is slightly modified as published (Dolenšek et al., 2009). Contractility 
modulation is the same as described in Sever and coworkers (Sever et al., 2007); via negative 
feedback it can be increased from 1 to about 8 “units of contractility“. The time constant for 
myocardial contractility modulation control is increased from 1 s to 5 s. 
Aortic stenosis is simulated as described (Sever et al., 2007). Exercise is simulated by 
decreasing arteriolar and capillary resistance by 50 % and by resetting mean arterial 
pressure. Then, via negative feedback, heart rate, myocardial contractility and venous 
capacitance are adjusted accordingly. Exhaustion of LV sympathetic drive is simulated by 
decreasing myocardial contractility modulation factor from about 8 to 1. Mild LV failure is 
simulated by decreasing the nominal contractility by about 50 %. 
Results are expressed graphically as described (Sever et al., 2007; Dolenšek et al., 2009), as 
the time course of equivalent variables. Thus electrical variables voltage, current, resistance, 
capacitance and charge correspond to physiological variables pressure, blood flow, 
resistance, capacitance and volume (for details refer to Sever et al., 2007; Dolenšek et al., 
2009). The acronyms used are listed below: 

AoP   aortic pressure 
CO   cardiac output 
CVV  “contractible” volume of veins 
EDVLV  end-diastolic volume of left ventricle  
EFLV  left ventricle ejection fraction 
ESVLV  end-systolic volume of left ventricle 
ESVRV  end-systolic volume of right ventricle 
ICT   isovolumetric contraction time 
IRT    isovolumetric relaxation time 
ITP   intrathoracic pressure 
LV, LVV  left ventricle, volume of left ventricle 
LAtP  left atrial pressure 
LVP   left ventricular pressure 
MAoP  mean arterial pressure 
SVLV  stroke volume of the left ventricle 
Sy LV contractility modulation; inothropic (homeostatic) 

sympathetic effect on LV 

Note that negative and undulating ITP affects slightly almost all variables. To allow 
comparison before and after a disturbance occurs, the time course of variables are recorded 
at the same instant of the heart cycle, defined here as the height of inspiration. 

3. Results 

All results are presented graphically showing the time course of variables which are of 
interest to be studied. 
The transition of normal conditions into conditions affected by exercise are shown in Fig. 
1A. The transition of normal conditions into conditions of aortic stenosis, exercise and 
exhaustion are shown in Fig. 2A. 
The time course of these variables is also shown for systole and part of diastole. Effects of 
exercise are shown in Figs. 1B, C. Effects of exercise in aortic stenosis and after exhaustion 
are shown in Figs. 2B, C, D, E. 
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Fig. 1A. The time course of AoP, MAoP, heart rate, CO, Sy, CVV, LAtP and ITP in normal 
(resting) conditions and after peripheral resistance decrease (exercise; by 50 %, at 100.5 s.  
MAoP is reset at 105.5 s). Transiently the heart rate is increased from 60/min to 75/min and 
90/min, until in steady state conditions it stabilises at 75/min. Note that despite 
venoconstriction (decreased CVV) LAtP is decreased. This is because Sy is increased, 
resulting in a strong LV contraction increase. Consequently, systolic AoP and pulse pressure 
is increased. There is little change in diastolic AoP. Because peripheral resistance is 
decreased MAoP is about 108 mm Hg and CO almost doubled. 

Changes in cardiovascular variables (AoP, MAoP, CO, CVV, LAtP and ITP) in normal 
(resting) conditions, after peripheral resistance decrease (exercise) and after resetting of 
MAoP are presented in Fig. 1A. Initially (50 s - 100 s), all variables are in steady state. After 
peripheral resistance decrease (100 s - 300 s) the initial brief AoP and MAoP decrease are 
offset by MAoP reset (increased sympathetic tone). Due to venoconstriction (CVV decrease) 
and huge increase in Sy the force and rate of LV contraction are increased. Heart rate is 
increased. Consequently, CO and the systolic LVP and AoP are strongly increased. 
Fig. 1B displays the time course of AoP, MAoP, LVP, LAtP, ICT, IRT, aortic and mitral flow, 
and various LV variables during systole and part of diastole in resting conditions (58.7 s - 
59.3 s). Note that the relatively large aortic flow in early systole. 
The time course of the same variables, as in Fig. 1B, during systole and part of diastole after 
peripheral resistance decrease (exercise; 193.3 s - 193.9 s) is shown in Fig. 1C. Comparing 
Figs. 1B and 1C the following changes show up: due to vigorous LV contraction ICT is 
drastically shortened. Aortic flow is huge and occurs early in systole. Therefore SVLV is 
increased, but EDVLV decreased. Consequently the early diastolic LVP is negative! 
The values of AoP, MAoP, CO, CVV, LAtP and ITP in normal (resting) conditions, after 
induction of aortic stenosis, after peripheral resistance decrease (exercise) and resetting 
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Fig. 1B, C. AoP, MAoP, LVP, LAtP, CO, (upper two blocks), aortic and mitral flow (middle 
block), and left ventricular volumes (bottom block) recorded during systole and part of 
diastole. B: Normal (resting) conditions (58.7 s - 59.3 s). Note the peak aortic flow in mid-
systole and peak mitral flow in early diastole. C: Exercise (peripheral resistance decrease 
and MAoP reset; 193.3 s - 193.9 s). Due to a vigorous LV contraction ICT is decreased, 
EDVLV and ESVLV decreased and SVLV increased. Peak aortic flow occurs early in systole. 
Consequently, early diastolic LVP is slightly negative. 
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MAoP and, finally, after exhaustion of LV sympathetic drive and mild LV failure are shown 

in Fig. 2A. Initially (50 s - 70.5 s), all variables are in steady state. After aortic stenosis (at 70.5 

s) the recorded variables are affected only transiently. After peripheral resistance decrease 

(100 s - 300 s) the initial brief AoP and MAoP decrease are offset by MAoP reset (increased 

sympathetic tone). Due to venoconstriction (CVV decrease) and huge increase in Sy the force 

and rate of LV contraction are increased. Heart rate is increased. Consequently, CO and the 

systolic LVP and AoP are strongly increased. At 200.5 s and 205.5 s, respectively, as Sy is 

decreased due to exhaustion and mild LV failure occurs, AoP, MAoP and CO decrease and 

LAtP is strongly increased. 

 

 

Fig. 2A. The time course of AoP, MAoP, heart rate, CO, Sy, CVV, LAtP and ITP in normal 

(resting) conditions, after aortic stenosis (0.08 U, at 70.5 s), after peripheral resistance 

decrease (exercise) and MAoP reset (by 50 % at 100.5 s and 105.5 s, respectively). Exhaustion 

of LV sympathetic drive and mild LV failure occur at 200.5 s and 205.5 s, respectively. Note 

that aortic stenosis has a small and transient effect, mainly in AoP only. The abrupt decrease 

in peripheral resistance results in a transient AoP and MAoP decrease and increase in heart 

rate from 60/min to 75/min. CO moderately increased, little change in CVV and LAtP. 

However, the resetting in MAoP results in a large Sy and CO increase. Heart rate is further 

increased (90/min). In steady state conditions of exercise the AoP and pulse amplitude are 

increased, MAoP about 108 mm Hg, CO almost doubled, LAtP slightly decreased, heart rate 

75/min. Exhaustion of LV sympathetic drive (Sy decrease) and mild LV failure result in a 

AoP and MAoP decrease and a large LAtP increase. Heart rate is increased, CO is below 

exercise level, but above resting state level. 
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Fig. 2C shows the time course of cardiovascular variables (i.e. AoP, MAoP, LVP, LAtP, 
EDVLV, ESVLV and SVLV) during systole and part of diastole after aortic stenosis (93.7 s - 
94.3 s). Note a relatively large aorto-ventricular pressure gradient. LAtP and EDVLV are 
slightly increased and ICT decreased. Aortic flow is evenly distributed through mid- and 
late systole. Fig. 2B is identical to Fig. 1B and is displayed together with Fig. 2C to illustrate 
the changes during aortic stenosis. 
The changes in AoP, MAoP, LVP, LAtP, EDVLV, ESVLV and SVLV values induced by 
exercise in aortic stenosis are shown in Fig. 2D. The aorto-ventricular gradient is further 
increased. Due to vigorous LV contraction ICT is strongly decreased, therefore the peak of 
aortic flow occurs early in systole. Consequently, LAtP is slightly decreased and in early 
diastole LVP becomes negative. The effect of exhaustion of sympathetic drive and mild LV 
failure is simulated in Fig. 2E. Note the persistence of the aorto-ventricular gradient. ICT is 
slightly lengthened and, consequently, aortic flow proceeds late in systole. LAtP and 
EDVLV are increased. 

4. Discussion 

4.1 General comments 

It should be pointed out that in present circuit i) a flow-dependent decrease in pulmonary 
vascular resistance is not simulated and ii) the control of peripheral (arteriolar) resistance is 
not included into the negative feedback. In principle it would be possible to include both 
features. However, this would considerably contribute to the complexity of the circuitry, 
without contributing very much to the understanding of underlying physiological 
mechanisms. 
But despite the simplifications described above the negative feedback (incorporating the 
control of venous volume, of contractility of RV and LV, and of heart rate) seems to be quite 
similar to that controlling the human cardiovascular system (Berne & Levy, 1997; 1998; 
Germann & Stanfield, 2004; Guyton, 1966; Guyton et al., 1973; Guyton & Hall, 1996; 
Kusumoto, 2000). 

4.2 Specific comments 

It is well known that in man the resting MAoP can be reset from the normal to a higher level 
and then maintained by homeostatic mechanisms until required (e.g. in increased 
sympathetic tone, as a conditioned reflex before exercise, or during exercise; (Berne & Levy; 
1997; Topham & Warner, 1967)). The resetting mechanism should include procedures 
whereby the resting MAoP, “clamped” at about 98 mm Hg is shifted and then “clamped” 
again at a higher level. 
If MAoP is reset the main change is a temporary increase in heart rate and a moderate, 
steady state increase in CO and very slight decrease in CVV (Fig. 1A). Compared with 
resting conditions (MAoP about 98 mm Hg) it is clear that the increase of MAoP (to about 
120 mm Hg) is due to a combination of slight venoconstriction and increased force of 
contraction of left ventricle (decreased early diastolic pressures, decreased EDVLV, strongly 
increased SVLV and its ejection fraction; Fig. 1B). 
Animal experiments showed that in exercise the initiating factor is a decrease in peripheral 
resistance in working muscles, therefore MAoP is decreased. Consequently, through 
homeostatic mechanisms cardiac output is increased and MAoP reset to a higher level 
(Topham & Warner, 1967). 
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Fig. 2B, C: AoP, MAoP, LVP, LAtP, CO (upper two blocks), aortic and mitral flow (middle 
block), and left ventricular volumes (bottom block) recorded during systole and part of 
diastole. B: Normal (resting) conditions (58.7 s - 59.3 s). Note the peak aortic flow in mid-
systole and peak mitral flow in early diastole. C: Aortic stenosis (93.7 s - 94.3 s). Note a 
pressure gradient (about 50 mm Hg) between AoP and LVP. A slight LAtP and EDVLV 
increase and ICT decrease. Peak aortic flow is shifted to late systole. 
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Fig. 2D, E: AoP, MAoP, LVP, LAtP, CO (upper two blocks), aortic and mitral flow (middle 
block), and left ventricular volumes (bottom block) recorded during systole and part of 
diastole. D: Aortic stenosis and exercise (193.3 s - 193.9 s). Note a huge pressure gradient 
(about 100 mm Hg) between AoP and LVP. Due to a vigorous LV contraction ICT is further 
decreased; peak aortic flow in about mid-systole. Early diastolic LVP slightly negative. E: 
Aortic stenosis, exhaustion and mild LV failure (291.7 s - 292.3 s). The pressure gradient 
(about 50 mm Hg) persists. Note a strong LAtP and EDVLV increase. Peak aortic flow is in 
late systole. 
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In this investigation exercise is simulated by decreasing arteriolar and capillary resistance by 

50 % and by resetting MAoP (Fig. 1A, B, C). Transient phenomena in these variables are 

over in about 30 s. Steady state conditions are established where AoP, MAoP, CO and heart 

rate are about 160/92 mm Hg, 108 mm Hg, 9930 ml/min and 75/min, respectively. Strongly 

decreased CVV and slightly decreased LAtP. The time course of AoP, MAoP, LVP, LAtP, 

CO and SVLV during the early part of the heart cycle are shown in Fig. 1B, C. Compared to 

resting conditions the force and rate of contraction of left ventricle is highly increased, thus 

increasing SVLV and its ejection fraction. Qualitatively, simulation results described are 

quite similar to those obtained in experimental animal (Topham & Warner, 1967). 

Quantitatively, compared to simulation, the main dissimilarity is the fact that in experimental 

animal and man in exercise the range of heart rate is large, about 60/min to 180/min (Topham 

& Warner, 1967; Berne & Levy, 1997). In this simulation the range of heart rate is much less 

(60/min - 75/min - 90/min); in steady state conditions heart rate is 75/min. If the range of 

heart rate is increased (60/min - 90/min - 120/min) in steady state conditions heart rate is 

90/min. However, results are similar in both heart rate settings (cf. also Table 1). In steady 

state conditions AoP, MAoP, CO and heart rate are about 150/95 mm Hg, 109 mm Hg, 10100 

ml/min and 90/min, respectively. This is because in this model the heart rate/cardiac output 

curve is very flat, as shown earlier (Podnar et al., 2002); an increase in heart rate from 90/min 

to 120/min results in a comparatively small increase in CO. 

 

At rest + aortic stenosis 

HR LVP MAoP AoP CO 

in steady state conditions 

min-1 (mm Hg) ml/min 

60 170/3 98 118/90 5145 
 

Exercise  + aortic stenosis 

HR LVP MAoP AoP CO 

Maximum during 
transient 

h

in steady state conditions 

min-1 min-1 (mm Hg) ml/min 

      

90 75 248/1.5 106 145/92 9900 

120 90 220/1.0 108 137/95 10125 

Table 1. The effect of aortic stenosis (at rest and in exercise) on heart rate (HR), pressure in 
the left ventricle (LVP: ventricular maximum/end-distolic), mean aortic pressure (MAoP), 
aortic pressure (systolic/diastolic; AoP) and cardiac output (CO). 

Aortic stenosis is a chronic disturbance compensated by long-term cardiovascular control 

mechanisms. Clinically, it can be subdivided into valvular, subvalvular, and supravalvular 

variant. However, for a successful simulation of these variants additional data - on magnitude 

and on the distribution – of resistance and elastance (capacitance) would be required. As they 

are not available, present simulations apply to the valvular variant of aortic stenosis only. 
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If the patient featuring aortic stenosis is exercised the short-term control mechanisms are 
invoked. Thus, it would be of interest to make use of the present equivalent electronic 
circuit, to modify it according to this pathology. Data obtained by simulation could be 
compared with data obtained in clinical examination in man. A similarity in results could 
show a wider applicability of analogue simulation and possibly contribute to the 
understanding of homeostasis in this particular situation. In man, the effect of aortic stenosis 
on cardiovascular variables was studied at rest, in exercise and in conditions of 
pharmacologically induced decreased peripheral resistance (Anderson et al., 1969; Arshad et 
al., 2004; Bache et al., 1971; Diver et al., 1988; Huber et al. 1981; Peterson et al., 1978; 
Vanoverschelde et al., 1992). 
Simulation of this clinical condition is shown in Fig. 2A. On increasing aortic resistance only 
a transient, small decrease in AoP shows up. Shortly afterwards exercise (decrease in 
peripheral resistance) results in a decrease in AoP and MAoP and increase in heart rate to 
75/min. However, as soon as MAoP is reset heart rate is further increased to 90/min. 
Consequently, AoP and pulse amplitude increase. In steady state conditions heart rate is 
75/min, AoP and MAoP are about 145/92 mm Hg and 106 mm Hg, respectively. CO is 
almost doubled, CVV strongly and LAtP slightly decreased. However, as soon as the 
sympathetic drive is decreased and mild LV failure induced, CO is decreased and LAtP 
strongly increased. 
The time course of AoP, MAoP, LVP, LAtP, CO and SVLV during the early part of a heart 

cycle is shown for normal conditions in Fig. 2B and for aortic stenosis in Fig. 2C. It results in 

an increased force and velocity of contraction of left ventricle. This is shown by a decrease in 

ICT. The ventriculo-aortic pressure gradient is about 50 mm Hg. Because LAtP is slightly 

increased, EDVLV is slightly increased and CO is almost normal. Note that aortic stenosis 

results in a slower time course of aortic flow. 

If in this condition peripheral resistance is decreased and MAoP reset (Fig. 2D) the 
ventriculo-aortic pressure gradient is increased to almost 100 mm Hg. LAtP is almost 
normal, EDLVL decreased and its ejection fraction strongly increased. Aortic flow is 
increased, but featuring a much slower time course. 
Data obtained in patients (Anderson et al., 1969; Bache et al., 1971; Diver et al., 1988; Huber 

et al. 1981; Peterson et al., 1978; Vanoverschelde et al., 1992) showed that in some patients 

exercise resulted in a large, while in other patients in a very small increase in heart rate. It 

would be thus of interest to asses - at the same aortic resistance - the effect of heart rate on 

the ventriculo-aortic pressure gradient, aortic pressure and pulse pressure. Therefore, beside 

the frequency range 60/min, 75/min and 90/min another simulation is performed in which 

range of frequencies 60/min, 90/min and 120/min is used. Data obtained in steady state 

conditions and during transient phenomenon are summarised in Table 1. 

Ventriculo-aortic pressure gradient, aortic pressure, pulse pressure and cardiac output are 

affected by heart rate, but differences are relatively small. 

Investigations on aortic stenosis in patients showed that the average left ventricular end-

diastolic pressure (LVEDP) was 12 mm Hg at rest and 20 mm Hg in exercise (Bache et al., 

1971). But individual patient data showed that LVEDP at rest may have been quite low (3 

mm Hg; Anderson et al., 1969). This is very close to that LVEDP recorded in simulations 

above. However, almost as a rule, in exercising patients LVEDP regularly increased (7 mm 

Hg; Anderson et al., 1969) in some patients quite high, 36 mm Hg (Bache et al., 1971) or even 

41 mm Hg (Anderson et al., 1969). In simulations however, in aortic stenosis and exercise 
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LVEDP does not change or is slightly decreased. In explaining this simulation phenomenon 

it should be remembered that LVEDP is a variable depending on various (homeostatically 

controlled) parameters. If in exercise predominantly the contractility of LV is increased, 

LVEDP tends to decrease. On the contrary, if in exercise venoconstriction predominates, 

LVEDP will tend to increase. In patients with aortic stenosis in exercise the latter 

compensatory mechanism is more likely to occur. 

It is clear that simulation data agree well - qualitatively, sometimes even quantitatively - 

with data obtained in patients (Anderson et al., 1969; Bache et al., 1971; Diver et al., 1988; 

Huber et al. 1981; Peterson et al., 1978; Vanoverschelde et al., 1992) or in patients with 

hypertrophic cardiomyopathy and outflow tract gradient (Geske et al., 2007, 2009; Sorajja et 

al. 2008). 

Exhaustion of LV sympathethetic drive and mild LV failure is simulated in Fig. 2A and 2D. 

As expected, the aorto-ventricular gradient persists and pulmonary congestion is quite 

pronounced. EDVLV is increased and aortic flow with a very slow time course. It seems that 

these changes contribute to the understanding of homeostasis and its failure in exercise, the 

syncope, a frequent complication. 

5. Conclusions 

A computer analysis of an equivalent electronic circuit is developed to simulate the human 

cardiovascular system and its homeostatic control. Thus the response of the system can be 

studied if the latter is acted upon by various disturbances. In present simulation these are  

- exercise in normal conditions and  
- exercise in a subject featuring aortic stenosis, including exhaustion of compensatory 

mechanisms. 
Exercise is simulated by a decrease in peripheral resistance and by an increase in 

sympathetic tone (resetting the mean aortic pressure to a higher level). 

In exercise in normal conditions, through negative feedback, cardiac output, systolic aortic 

pressure, force and frequency of left ventricle contraction, are increased. The time course of 

aortic flow reflects changes of left ventricle contraction dynamics. Mean aortic pressure is 

mildly increased. There is almost no change in diastolic aortic pressure. 

In exercise in aortic stenosis, through negative feedback, similar changes occur as described 
above. However, in these conditions the dominant feature is a large aorto-ventricular 
pressure gradient, almost doubling the systolic left ventricular pressure. It can be assumed 
that the latter results in an exhaustion of sympathetic (inothropic) mechanism(s).  The final 
result is a decrease in aortic pressure, a sluggish aortic flow and pulmonary congestion. 
It seems that consequences of i) exercise and ii) exercise in aortic stenosis can be 
qualitatively successfully simulated (resembling actual clinical conditions), including an 
exhaustion of compensatory mechanisms. Quantitatively, however, there are minor 
differences, because many quantitative data on human cardiovascular system are still 
lacking.  
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