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1. Introduction 

The numerical solutions of the acoustic-wave equation via finite-differences, finite-elements, 

and other related numerical techniques are valuable tools for the simulation of wave 

propagation. Many numerical methods of modeling waves propagating in various different 

media have been proposed in past three decades (Kosloff & Baysal, 1982; Booth & Crampin, 

1983; Virieux, 1986; Dablain, 1986; Chen, 1993; Carcione, 1996; Blanch & Robertsson, 1997; 

Komatitsch & Vilotte, 1998; Carcione & Helle, 1999; Carcione et al., 1999; Moczo et al., 2000, 

Yang et al., 2002, 2006, 2007; many others). These modeling techniques for the 1D and 2D 

cases are typically used as support for a sound interpretation when dealing with complex 

geology, or as a benchmark for testing processing algorithms, or used in more or less 

automatic inversion procedure by perturbation of the parameters characterizing the elastic 

medium until the synthetic records fit the observed real data. In these methods, the finite-

difference (FD) methods were leader and popularly used in Acoustics, Geophysics, and so 

on due to their simplicity for computer codes.  

However, it is well-known that the conventional finite-difference (FD) methods for solving 

the acoustic wave equation often suffer from serious numerical dispersion when too few 

grid points per wavelength are used or when the models have large velocity contrasts, or 

artefacts caused by the source at grid points (Fei & Larner 1995, Yang et al., 2002). Roughly 

speaking, numerical dispersion is an unphysical phenomenon caused by discretizing the 

wave equation (Sei & Symes, 1995; Yang et al., 2002). Such a phenomenon makes the wave’s 

velocity frequency dependent. More high-order or accurate FD operators have been 

developed to minimize the dispersion errors, and those modified FD schemes greatly 

improved the computational accuracy compared to the conventional operators. For example, 

the staggered-grid FD method with local operators (Virieux, 1986; Fornberg, 1990; Igel et al., 

1995) is an efficient and convenient scheme which improves the local accuracy and has 

better stability without increasing computation cost and memory usage compared to the 

conventional second-order FD method. However, the staggered-grid (SG) method still 

suffers from the numerical dispersion when too few sampling points per minimum 

wavelength are used and may result in the numerical anisotropy and induce additional 

numerical errors (Virieux, 1986; Igel et al., 1995). Dablain (1986) developed a series of high- 
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order FD schemes for solving the acoustic wave equation, which greatly improved the 

computational accuracy. But these high-order schemes also can not cure the numerical 

dispersion effectively when coarse grids are used, and they usually involve in more grids in 

a spatial direction than low-order schemes (Yang et al., 2006). For example, the tenth-order 

compact FD scheme (e.g., Wang et al., 2002), which usually uses more grids than low order 

schemes, also suffers from numerical dispersion. The demand for more grids in high-order 

FD methods prevents the algorithms from efficient parallel implementation and artificial 

boundary treatment. The flux-corrected transport (FCT) technique was suggested for 

eliminating the numerical dispersion (Fei & Larner 1995, Zhang et al., 1999, Yang et al, 2002; 

Zheng et al., 2006), but the FCT method can hardly recover the resolution lost by numerical 

dispersion when the spatial sampling becomes too coarse (Yang et al., 2002). On the other 

hand, waves have inherent dispersions as they propagate in porous media with fluids. This 

implies that two kinds of dispersions (numerical dispersion and physical dispersion) might 

occur simultaneously in wave fields if the conventional FD methods are used to compute 

the wave fields in a porous medium. In such a case, it is not a good idea to use the FCT 

technique to eliminate the numerical dispersions because we do not know how to choose the 

proper control parameters used in the FCT method for suppressing the numerical 

dispersions (Yang et al., 2006). The pseudo-spectral method (PSM) is attractive as the space 

operators are exact up to the Nyquist frequency, but it requires the Fourier transform (FFT) 

of wave-field to be made, which is computationally expensive for 3D anisotropic models 

and has the difficulties of handling non-periodic boundary conditions and the non-locality 

on memory access of the FFT, which makes the parallel implementation of the algorithms 

and boundary treatments less efficient (Mizutani et al., 2000). Meanwhile, it also suffers 

from numerical dispersion in the time direction, and its numerical dispersion is serious as 

the Courant number, defined by 0 /c t x     (Dablain 1986; Sei & Symes, 1995), is large, 

i.e. as the time increment is large (Yang et al., 2006).  
Another easy way to deal with the numerical dispersion is to use fine grids to increase 
spatial samples per wavelength. For example, a spatial sampling rate of more than 20 points 
per shortest wavelength is needed when a second-order FD scheme is used to obtain reliable 
results (Holberg, 1987), whereas a fourth-order scheme seems to produce accurate results at 
ten grid points per shortest wavelength. Dablain (1986) states that eight and four grid points 
at the Nyquist frequency are required to eliminate numerical dispersion using second-order 
and fourth-order FD methods, respectively. More grid points per wavelength mean more 
computational cost and storage. It is not advisable to apply these techniques in large-scale 
computation, especially for a large scale 3D simulation of seismic wave propagation because 
of an intensive use of Central Processing Unit (CPU) time and the requirement of a large 
amount of direct-access memory. Fortunately, with the rapid development of computer 
performance and the birth of parallel technology in past several decades, 3D wave 
simulation through using different numerical methods on a large scale or high frequencies 
becomes affordable, and the study of 3D numerical techniques has been a hot spot and 
rapidly developed because of its applying to practical issues in the fields of Acoustics and 
Geophysics.  
Recently, the so-called nearly analytic discrete (NAD) method and optimal NAD (ONAD) 
(Yang et al., 2006) suggested by Yang et al. (2003) for acoustic and elastic equations, which 
was initially developed by Konddoh et al. (1994) for solving parabolic and hyperbolic 
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equations, is another effective method for decreasing the numerical dispersion. The method, 
based on the truncated Taylor expansion and the local interpolation compensation for the 
truncated Taylor series, uses the wave displacement-, velocity- and their gradient fields to 
restructure the wave displacement-fields. On the basis of such a structure, the NAD and 
ONAD methods can greatly increase the computational efficiency and save the memory 
storage. However, the NAD method has only second-order time accuracy. The ONAD 
method is effective in solving the acoustic and elastic wave equations for a single-phase 
medium, and it can not be applied to a two-phase porous wave equations such as Biot’s 
porous wave equations (Biot, 1956a, b), because these equations include the particle velocity 
∂U/∂t (U is the wave displacement) and the ONAD method does not compute this field. 
More recently, the NAD and ONAD methods were also extended to solve the Biot 
poroelastic equations (Yang et al., 2007a) and the three-dimensional anisotropic wave 
equations (Yang et al., 2007b).  
The main purpose of this chapter is to develop a new 3D numerical method to effectively 
suppress the numerical dispersion caused by the discretization of the acoustic- and elastic-
wave equations through using both the local spatial difference-operator and the fourth-order 
Runge-Kutta (RK) method so that the numerical technique developed in this chapter has rapid 
computational speed and can save the memory storage. For to do this, we first transform the 
original wave equations into a system of first-order partial differential equations with respect 
to time t, then we use the local high-order interpolation of the wave displacement, the particle 
velocity, and their gradients to approximate the high-order spatial derivatives, which 
effectively converts the wave equation to a system of semi-discrete ordinary differential 
equations (ODEs). Finally, we use the fourth-order RK method to solve the semi-discrete 
ODEs, and change the 4-stage RK formula to 2-stage scheme resulting that the modified 3D RK 
algorithm can save the memory storage. Based on such a structure, this method has fourth-
order accuracy both in time and space, and it can be directly extended to solve the two-phase 
porous wave equations including the particle velocity ∂U/∂t (Biot, 1956a,b) because of 
simultaneously obtaining the velocity fields when computing the displacement fields.  
To demonstrate the numerical behavior of this new method, in this chapter we provide the 
theoretical study on the properties of the 3D RK method: such as stability criteria, theoretical 
error, numerical dispersion, and computational efficiency, and compare the numerical error 
of the 3D RK with those of the second-order conventional FD scheme and the fourth-order 
LWC method for the 3D initial value problem of acoustic wave equation. Meanwhile, we 
also compare the numerical solutions computed by the 3D RK with the analytical solutions, 
and present some wave-field modeling results of this method against those of some high-
order FD schemes including the SG and LWC methods for the acoustic case. Besides, we 
also present the synthetic seismograms in the 3D three-layer isotropic medium and the wave 
field snapshots in the 3D two-layer medium and the 3D transversely isotropic medium with 
a vertical symmetry axis (VTI). All these promising numerical results illustrate that the 3D 
RK can suppress effectively the numerical dispersion caused by discretizing the wave 
equations when too few sampling points per minimum wavelength are used or models have 
large velocity contrasts between adjacent layers, further resulting in both increasing the 
computational efficiency and saving the memory storage when big grids are used. These 
numerical results also imply that simultaneously using both the wave displacement and its 
gradients to approximate the high-order spatial derivatives is important for both reducing 
the numerical dispersion and compensating the important wave field information included 
in the displacement and particle velocity gradients.  
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2. Fourth-order RK method for solving ODEs 

2.1 Basic RK algorithm 
Consider the following ordinary differential equation 

 ( ).
du

L u
dt

                                     (1) 

Where, u is an unknown function of time t, and L is a known operator with respect to u at 
each spatial point (i, j, k) for the 3D case. Equation (1) can be solved as an ordinary equation 
using the following fourth-order Runge-Kutta method 

 

 
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(2) (1)
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u u tL u

u u tL u

u u u u u tL u
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
   

   
       

                (2) 

Where, t  is the temporal increment, ( )nu u n t  , and u(1), u(2) and u(3) are the intermediate 

variables. Equation (2) shows that the RK algorithm needs to store these three intermediate 

variables at each time advancing step, so the storage required for computer code is very 

large for 3D problems. To save storage, we can equivalently change it into the following 

two-stage scheme 

 

 

2 2

1 2 2

1 1
* ( ) ( ),

2 4
1 1 1 1

2 * ( ) ( *) ( *).
3 3 3 6

n n n

n n n

u u tL u t L u

u u u tL u tL u t L u
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
        


          (3) 

Where 2L L L  . Algorithm (3) uses only one intermediate variable u*, resulting in that the 

modified two-stage RK used in this chapter can effectively save the computer memory in the 

3D wave propagation modeling. 

2.2 Transformations of 3D wave equations  
In a 3D anisotropic medium, the wave equations, describing the elastic wave propagation, 
are written as 

 
2

2
,

ij i
i

j

u
f

x t

 
  

 
                         (4a) 

 
1

( ),
2

k l
ij ijkl

l k

u u
c

x x

 
  

 
                            (4b) 

where subscripts i, j, k and l take the values of 1, 2, 3, ρ=ρ(x,y,z) is the density, ui and fi  

denote the displacement component and the force-source component in the i-th direction, 
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and x1, x2 and x3 are x, y, and z directions, respectively. ij are the second-order stress 

tensors, cijkl are the fourth-order tensors of elastic constants which satisfy the symmetrical 

conditions cijkl = cjikl = cijlk = cklij, and may be up to 21 independent elastic constants for a 3D 

anisotropic case. Specially, for the isotropic and transversely isotropic case, the 21 

independent elastic constants are reduced to two Lamé constants (ǌ and Ǎ) and five 

constants ( 11c , 13c , 33c , 44c , and 66c ) , respectively. 
To demonstrate our present RK method, we transform equation (4) to the following vector 

equation using the stress-strain relation (4b) 

 
2

2
.

U
D U f

t


   


                            (5) 

 

Where 1 2 3( , , )Tu u uU , 1 2 3( , , )Tf f f f , D is a second-order partial differential operator 

with respect to space coordinates. For instance, for a transversely isotropic homogenous 

case, the partial differential operator can be written as follows 

2 2 2 2 2

11 66 55 12 66 13 552 2 2

22 2 2 2

12 66 66 22 44 23 442 2 2

2 2 2 2 2

13 55 23 44 55 44 332 2 2

( ) ( )

( ) ( ) .

( ) ( )

z

c c c c c c c
x y x zx y z

u
D c c c c c c c

x y y zx y z

c c c c c c c
x z y z x y z

     
    

      
 

              
 
     

    
        

 

 

Let / , 1,2,3i iw u t i    , and 1 2 3( , , )TW w w w , then equation (5) can be rewritten as  
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.
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D U f
t



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                           (6) 

Define ( , )TV U W , then equation (6) can be further written as 

 ,
V

L V F
t


  


                              (7) 

 

where 
3 30 0

,1 1
0

I

L F
D f

   
       
       

, 3 3I   is the third-order unit operator.  

Define the following vectors and operator matrix: 

[ , , , ]T
V V V

V V
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, 
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[ , , , ]T
F F F

F F
x y z

  

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,  

and 

0 0 0

0 0 0

0 0 0

0 0 0

L

L
L

L

L

 
 
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  
 

. 

With the previous three definitions, in a homogeneous medium, we have the following 

equation: 

 .
V

L V F
t


  


                           (8) 

2.3 3D fourth-order RK algorithm 

We suppose that equation (8) is a semi-discrete equation, on the right–hand side of which 

the high-order spatial derivatives are explicitly approximated by the local interpolation 

method (Yang et al., 2010). Under such an assumption, Equation (8) is converted to a system 

of semi-discrete ODEs with respect to variable V , and can be solved by the fourth-order RK 

method (formula (3)). In other words, we can apply formula (3) to solve the semi-discrete 

ODEs (8) as follows 

 
* 22
, , , , , , , ,

1 1
,

2 4

n n n
i j k i j k i j k i j kt t    V V LV L V                                   (9a) 

  1 * * 2 *2
, , , , , , , , , , , ,

1 1 1 1
2 .

3 3 3 6

n n n
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       V V V LV LV L V              (9b) 

Where , , ( , , , )
n
i j kV V n t i x j y k z      and the differential operators can be written as 
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From equation (9) and definitions of L and
2

L , we know that the calculations of 
*
, ,i j kV  and 

1
, ,

n
i j kV


 only involve in the second- and third-order spatial derivatives of the displacement U 
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and the particle velocity W, so we can compute these derivatives using equations (A3)-(A7) 

(see Appendix A). 

3. Error analysis and stability conditions 

In this section, we investigate the stability criteria and theoretical error of the two-stage RK 
scheme, and compare the numerical error of the 3D RK with those of the second-order 
conventional FD scheme and the fourth-order LWC method (Dablain, 1986) for the 3D 
initially value problem of acoustic wave equation. 

3.1 Stability conditions 

In order to keep numerical calculation stable, we must consider how to choose the 

appropriate time and the space grid sizes, △t and h. As we know, mathematically, the 

Courant number defined by 0 /c t h   gives the relationship among the acoustic velocity 

0c and the two grid sizes, we need to determine the range of  . Following the Fourier 

analysis (Richtmyer & Morton, 1967; Yang et al., 2006, 2010), after some mathematical 

derivations (see Appendix B for detail), we obtain the stability conditions for solving 1D, 2D, 

and 3D acoustic equation as follows:  

 1D case: max
0 0

0.730
h h

t
c c

    , (11) 

 2D case: 
max

0 0

0.707
h h

t
c c

    ,     (12) 

 3D case: max
0 0

0.577
h h

t
c c

    .                (13) 

Where, max  is the maximum value of the Courant number, x h   for the 1D case, 

x z h    for the 2D case, and x y z h       for the 3D case. 
When the RK method is applied to solve the 3D elastic wave equations, we estimate that the 

temporal grid size should satisfy the following stability condition, 

  
max

max

0.577
h

t t
c

    ,                          (14) 

where maxt  is the maximum temporal increment that keeps the 3D RK method stable and 

maxc  is the maximum P-wave velocity. 

The stability condition for a heterogeneous medium can not be directly determined, but it 

could be approximated by using a local homogenization theory. Equations (11)-(14) are 

approximately correct for a heterogeneous medium if the maximal values of the wave 

velocities 0c  and maxc  are used. 

3.2 Error  
To better understand the 3D RK method, we investigate its accuracy both theoretically and 

numerically, and we also compare it with the fourth-order LWC method (Dablain, 1986) and 

the second-order conventional FD method (Kelly et al., 1976). 
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3.2.1 Theoretical error 

Using the Taylor series expansion, we find that the errors for the spatial derivatives 

, ,( / )q l m k l m n
i j kU x y z      (2 3)q l m     are fourth order (i.e. 4 4 4( )O x y z     ), which 

results from the local interpolation as formulated in equations (A3)-(A7) in Appendix A. 

This conclusion is consistent with that given by Yang et al. (2007). Because the fourth-order 

Runge-Kutta method is used to solve the ODEs in equation (8), the temporal error, caused 

by the discretization of the temporal derivative, is in the order of 4( )O t . Therefore, we 

conclude that the error introduced by the two-stage RK scheme (9) is in the order of 
4 4 4 4( )O t x y z       . In other words, the 3D RK method suggested in this chapter has 

fourth-order accuracy in both time and space. 

3.2.2  Numerical errors  
In order to investigate the numerical error of the two-stage RK method proposed in this 

chapter, we consider the following 3D initial value problem: 
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  

   
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 
           

                  (15) 

where c0 is the velocity of the plane wave, f0 is the frequency, and 0 0 0( , , )l m n is the incident 

direction at t=0.  
Obviously, the analytical solution for the initial problem (15) is given by 

 0 0 0 0
0 0 0

( , , , ) cos 2 .
yx z

u t x y z f t l m n
c c c

  
      

   
                 (16) 

For comparison, we also use the second-order FD method and the so-called LWC (fourth-
order compact scheme (Dablain, 1986)) to solve the initial problem (15). 
In the first numerical example, we choose the number of grid points N = 100, the frequency 

f0=15Hz, the wave velocity c0=2.5km/s, and 0 0 0
1 1 1

( , , ) ( , , )
3 3 3

l m n  . The relative error 

(Er) is the ratio of the RMS of the residual ( , , ( , , , ))n
j m l n j m lu u t x y z  and the RMS of the exact 

solution ( , , , )n j m lu t x y z . Its explicit definition is as follows: 
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j m l

n j m l
j m l

E u u t x y z

u t x y z   

  

 
 
    
 
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 
 

 (17) 
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Fig. 1. The relative errors of the second-order FD, the fourth-order LWC, and the RK 
methods measured by Er (formula (17)) are shown in a semilog scale for the 3D initial-value 
problem (15). The spatial and temporal step sizes are chosen by (a) h=Δx=Δy=Δz=20m and 
Δt=5×10-4s, (b) h=Δx=Δy=Δz=30m and Δt=8×10-4s, and (c) h=Δx=Δy=Δz=40m and Δt=1×10-

3s,  respectively.  

Figures 1(a)-(c) show the computational results of the relative error Er at different times for 

cases of different spatial and time increments, where three lines of Er for the second-order 

FD method (line —), the fourth-order LWC (line - - - -), and the RK (line -----) are shown in a 

semi-log scale. In these figures, the maximum relative errors for different cases are listed in 

Table 1. From these error curves and Table 1 ( x y z h      ), we find that Er increases 

corresponding to the increase in the time and/or spatial increments for all the three methods. 

As Figure 1 illustrated, the two-stage RK has the highest numerical accuracy among all three 

methods 

3.3 Convergence order 

In this subsection, we discuss the convergence order of the WRK method. In this case, we 

similarly consider the 3D initial problem (15), and choose the computational domain as 

0 1 km,x   0 1 km,y   0 1 kmz   and the propagation time T =1.0 sec. The same 

computational parameters are chosen as those used in subsection 3.2.2. In Table 2, we show 

(a) (b) 

(c) 
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Method 2nd-order FD 4th-order LWC RK 

Case 1： 
h=20 m 

1.550 2.088 0.306 
t=5  10-4 s 

Case 2： 
h=30 m 

7.260 3.963 2.231 
t=8  10-4 s 

Case 3： 
h=40 m 

22.298 15.715 9.949 
t=1  10-3 s 

Table 1. Comparisons of maximum relative errors of the three methods in three cases. 

the numerical errors of the variable u. For the fixed spatial grid size h=Δx=Δy=Δz, the error 
of the numerical solution uh with respect to the exact solution u is measured in the discrete 
L1, L2 norms 

 

1

3

1 1 1

| ( , , , ) ( , , , )| , 1,2mm

N N N m
m

h h i j k i j kLL
i j k

E u u h u x y z T u x y z T m
  

 
      
 
 
       (18) 

 

h 1L
E  2L

E  1L
O  2L

O  

5.000E-02 3.382E-02 5.948E-02 — — 

4.000E-02 2.073E-02 3.317E-02 2.195 2.617 

2.500E-02 3.903E-03 6.190E-03 3.552 3.572 

2.000E-02 1.422E-03 2.150E-03 4.524 4.738 

1.000E-02 4.298E-05 6.367E-05 5.049 5.078 

Table 2. Numerical errors and convergence orders of the 3D two-stage RK method. 

So if we choose two different spatial steps hs-1 and hs for the same computational domain, we 

can use (18) to get two Lk errors 1
k

s
L

E   and k
s
L

E . Then the orders of numerical convergence 

can be defined by Dumbser et al. (2007) 

 
1 1

log log , 1,2.
k

k

k

s s
L
s sL
L

E h
O k

E h 

   
         

                      (19) 

Table 2 shows the numerical errors and the convergence orders, measured by equations (18) 

and (19), respectively. In Table 2 the first column shows the spatial increment h, and the 

following four columns show L1 and L2 errors and their corresponding to convergence 

orders 1L
O and 2L

O . From Table 2 we can find that the errors 1L
E and 2

L
E  decrease as the 

spatial grid size h decreases, which implies that the 3D two-order RK method is convergent. 

4. Numerical dispersion and efficiency  

As we all know, the numerical dispersion or grid dispersion, which is caused by 
approximating the continuous wave equation by a discrete finite difference equation, is the 
major artifact when we use finite difference schemes to model acoustic and elastic wave-
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fields, further resulting in the low computational efficiency of numerical methods. This 
numerical artifact causes the phase speed to become a function of spatial and time 
increments. The relative computational merit of most discretization schemes hinges on their 
ability to minimize this effect. In this section, following the analysis methods presented in 
Vichnevetsky (1979), Dablain (1986), and Yang et al. (2006), we investigate the dispersion 
relation between grid dispersion and spatial steps with the RK and the computational 
efficiencies for different numerical methods through numerical experiments. For 
comparison, we also present the dispersion results of the fourth-order SG method (Moczo et 
al., 2000). 

4.1 Numerical dispersion 

Following the dispersion analysis developed by Moczo et al. (2000) and and Yang et al. 

(2006), we provide a detailed numerical dispersion analysis with the RK for the 3D case in 

Appendix C, and compare it with the fourth-order SG method (Moczo et al., 2000). To check 

the effect of wave-propagation direction on the numerical dispersion, we have chosen 

different azimuths for two Courant numbers of 0.1   and 0.3.  
Figure 2 shows the dispersion relations as a function of the sampling rate Sp defined by 

Sp=h/λ (Moczo et al., 2000) with h being the grid spacing and λ the wavelength. The curves 

correspond to different propagation directions. The results plotted in Figure 2(a) and 2(b) 

are computed by the dispersion relation (C4) given in Appendix C with Courant numbers of 

0.1 and 0.3, respectively. Figures 2 and 3 show that the maximum phase velocity error does 

not exceed 11%, even if there are only 2 grid points per minimum wavelength (Sp=0.5). For a 

sampling rate of Sp=0.2 the numerical velocity is very close to the actual phase velocity. 

These Figures also shows that the dispersion curves differ for different propagation 

directions.  

Figure 3 shows the numerical dispersion curves computed by 3D fourth-order SG using the 

numerical relation (C5) given in Appendix C under the same condition. In contrast with the 

curves in Figure 2 computed by the RK, the numerical dispersion as derived by the fourth-

order SG clearly changes for different propagation directions. It is very clear that the 

 

        

Fig. 2. The dispersion relation of RK method for the Courant number (a)   0.1 and (b) 

  0.3, in which φ is the wave propagating angle to the z-axis, and δ is the propagating 

angle of the wave projection in the xy plane to the x-axis. 

(a) (b)

www.intechopen.com



 
Waves in Fluids and Solids 

 

222 

         

Fig. 3. The dispersion relation of the fourth-order SG method (Moczo et al., 2000) for the 

Courant number (a)   0.1 and (b)   0.3, in which φ is the wave propagating angle to the 

z-axis, and δ is the propagating angle of the wave projection in the xy plane to the x-axis. 

numerical dispersion computed by the fourth-order SG is more serious compared with 

that of RK. For example, the maximum dispersion error calculated with the latter method 

is less than 11% (Figure 2a), while the same error calculated with the former one is greater 

than 26% (Figure 3a). To limit the dispersion error of the phase velocity under 8% (the 

maximum dispersion error by RK shown in Figure 2a), about 3 grid points per minimum 

wavelength are required when using fourth-order SG, opposite to only 2.1 grid points per 

wavelength with RK. Meanwhile, from Figure 2(a) we can observe that the numerical 

dispersion curves of the RK in different propagation directions are close to each other. It 

means that the RK has small numerical dispersion anisotropy. In contrast, from Figure 

3(a) and 3(b) we can see that the difference of numerical dispersion curves in different 

propagation directions is very large, implying that the SG has larger numerical dispersion 

anisotropy than that of the RK.  

After comparing Figure 2 computed by the RK with Figure 3 computed by the SG, we 

conclude that the RK offers smaller numerical dispersion than the SG for the same spatial 

sampling increment. We will verify this conclusion later via new experiments. 

4.2 Computational efficiency 
In this subsection, we further investigate the numerical dispersion and computational 

efficiency of the RK through wave-field modeling, and compare our method with the 

fourth-order LWC (Dablain, 1986) and the fourth-order SG method. Under this case of our 

consideration, we choose the following 3D acoustic wave equation 

 
2 2 2 2

2
02 2 2 2

( )
u u u u

c f
t x y z

   
   

   
,                            (20) 

where c0 is the acoustic velocity. In our present numerical experiment, we choose c0=4 km/s. 

The computational domain is 0≤x≤5 km, 0≤y≤5 km, and 0≤z≤5 km, and the number of grid 

points is 200×200×200. The source is a Ricker wavelet with a peak frequency of f0 = 37 Hz. 

The time variation of the source function is  

(a) (b)

www.intechopen.com



A Fourth-Order Runge-Kutta Method 
with Low Numerical Dispersion for Simulating 3D Wave Propagation 

 

223 

 2 2 2
0 0 0( ) 5.76 1 16(0.6 1) exp 8(0.6 1)f t f f f                        (21) 

The force-source included in equation (20) is located at the centre point of the computational 

domain, and ∂f/∂x and ∂f/∂z are set to be zero in this example and other experiments in the 

following section. The spatial and temporal increments are chosen by h=Δx=Δy=Δz=25 m 

and Δt=1.5×10-3s, respectively. The coarse spatial increment of h=25 m is chosen so that we 

test the effects of sampling rate on the numerical dispersion. A receiver R is placed at the 

grid point (xR, yR, zR)=(3.575 km, 2.5 km, 2.5 km) to record the waveforms generated by three 

methods. 

Following Dablain’s definition (Dablain, 1986), we take the Nyquist frequency of the source 

to be twice the dominant frequency in this study. The rule of thumb in numerical methods 

for choosing an appropriate spatial step based on the Nyquist frequency can be written as  

 min

N

v
x

f G
 


,                                  (22) 

where minv  denotes the minimum wave-velocity, Nf  is the Nyquist frequency, and G 

denotes the number of gridpoints needed to cover the Nyquist frequency for non-dispersive 

propagation (Dablain, 1986). In this case chosen that implies a Nyquist frequency of 74 Hz 

and the number of gridpoints at Nyquist is about 2.2 in our present numerical experiment.  

Figures 4, 5, and 6 show the wave-field snapshots at t=0.5 sec on a coarse grid of Δx=Δy=Δz=25 

m (G≈2.2), generated by the RK (Fig. 6), the fourth-order LWC (Dablain, 1986) (Fig. 7), and the 

fourth-order SG (Moczo et al., 2000) (Fig. 8), where Figures (a), (b), and (c) shown in these 

Figures show the wave-field snapshots in the xy, xz, and yz planes, respectively. Figures 7 and 

8 show the wave-field snapshots at t=0.5 sec for the same Courant number (   0.24), 

generated by the fourth-order LWC (Fig. 7) and the fourth-order SG (Fig. 8) on a fine grid 

(Δx=Δy=Δz=8.3 m) so that the numerical dispersions caused by the fourth-order LWC and the 

fourth-order SG are eliminated. We can see that the wavefronts of seismic waves shown in 

Figures 4-6, simulated by the three methods, are nearly identical. However, the result 

generated by the RK (Fig. 4) shows much less numerical dispersion even though the space 

increment is very large, whereas the fourth-order LWC and the fourth-order SG suffer from 

serious numerical dispersions (see Figs. 7, 8). Comparison between Figure 6 and Figures 7 and 

8 demonstrates that the RK on a coarse grid can provide the similar accuracy as those of the 

 

 

Fig. 4. Snapshots of acoustic wave fields at time 0.5 sec on the coarse grid (Δx=Δy=Δz=25m) 
in the xy (a), xz (b), and yz (c) planes, respectively, computed by the 3D RK method. 
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Fig. 5. Snapshots of acoustic wave fields at time 0.5 sec on the coarse grid (Δx=Δy=Δz=25 m) in 
the xy (a), xz (b) and yz (c) planes, respectively, generated by the fourth-order LWC method. 

fourth-order LWC and the fourth-order SG on a fine grid for the same Courant number. But 

the computational cost of the RK is quite different from the other two methods. For 

example, it took the RK about 15.3 min to generate Figure 4, whereas the fourth-order LWC 

and the fourth-order SG took about 50.8 min and 50.6 min to generate Figure 5 and Figure 6, 

respectively. This suggests that the computational speed of the RK is roughly 3.3 times of 

the fourth-order LWC and the fourth-order SG to achieve the same accuracy. Thus we can 

conclude the 3D RK can save the computational cost by using coarse grids to simulate wave 

propagation in large scale models. The results in Figures 4-8 were computed on a parallel 

computation with 40 processors and using the message passing interface (MPI). 
 

 

Fig. 6. Snapshots of acoustic wave fields at time 0.5 sec on the coarse grid (Δx=Δy=Δz=25 m) 
in the xy (a), xz (b) and yz (c) planes, respectively, generated by the fourth-order SG method. 

 

 

Fig. 7. Snapshots of acoustic wave fields at time 0.5 sec on the fine grid (Δx=Δy=Δz=8.3 m) in 
the xy (a), xz (b) and yz (c) planes, respectively, generated by the fourth-order LWC method. 
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Fig. 8. Snapshots of acoustic wave fields at time 0.5 sec on the fine grid (Δx=Δy=Δz=8.3 m) in 
the xy (a), xz (b) and yz (c) planes, respectively, generated by the fourth-order SG method. 

 

     

Fig. 9. Comparions of the analytic solution computed by the Cagniard–de Hoop method (de 
Hoop, 1960) with waveforms generated by (a) the RK, (b) the fourth-order LWC, and (c) the 
fourth-order SG, respectively. 

Note that the memory required by RK is also different from those of the fourth-order 
LWC and the fourth-order SG methods. The RK needs 20 arrays to hold the wave fields at 
each time step, and the number of grid points for each array is 200×200×200 on a coarse 
grid for generating Figure 4. Even though the fourth-order LWC needs only eight arrays 
to store the wave displacement and the fourth-order SG needs nine arrays to store the 
wave displacement and the stress at each grid point to generate a comparable result, the 
two methods require much finer grid sampling. For example, the number of grid points of 
each array for generating Figures 7 and 8 goes up to 600×600×600 for both the fourth-
order LWC and the fourth-order SG. Therefore, the overall memory required by the RK 
takes only about 31.3% of that needed by the fourth-order LWC and about 27.8% of that of 
the fourth-order SG.  
Now we compare the accuracy of the waveforms at receiver R (3.575 km, 2.5 km, 2.5 km), 

generated by the RK, the fourth-order LWC, and the fourth-order SG, respectively. Figure 9 

shows the waveforms of the analytic solution (solid lines) computed by the Cagniard–de 

Hoop method (Aki and Richards, 1980) and the numerical solutions (dashed line) computed 

by three numerical methods on the coarse grid (Δx=Δy=Δz=25 m). Figure 9(a) shows that 

the waveforms calculated by the 3D RK and the Cagniard-de Hoop method (solid line) are 

in good overall agreement even on the coarse grid (Δx=Δy=Δz=25 m). In contrast, the results 

in Figures 9(b) and 9(c), calculated by the fourth-order LWC and the SG methods, 

(a) 
(b) (c)
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respectively, show serious numerical dispersion following the peak wave as contrasted to 

the analytic solution (solid line). It illustrates that the 3D two-stage RK is accurate in wave-

field modeling for the acoustic propagation modeling and it can provide very accurate 

results even when coarse grids are chosen.  

5. Wavefield modelling 

In this section, we present the performance of the two-stage RK in the 3D acoustic and 

elastic cases and compare against the so-called LWC method (Dablain 1986) through 

wavefield modelling and synthetic seismograms. In particular, we use the RK to simulate 

the acoustic and elastic waves propagating in the 3D multilayer acoustic medium, two-layer 

elastic medium, and the transversely isotropic medium with a vertical symmetry axis (VTI). 

5.1 Multilayer acoustic model  
In this experiment, we consider a special multilayer isotropic medium model, shown in 

Figure 10. Speaking in detail, when 0≤y≤1.5 km, the model is consisted of three layer media 

where the acoustic velocities are chosen by 2 km/s, 3 km/s, and 4 km/s, corresponding to 

the top, middle and bottom layers, respectively, whereas the model is a two layer media 

with acoustic velocities of 2 km/s and 3 km/s as 1.5 km<y≤3 km. The computational 

domain is 0≤x≤3 km, 0≤y≤3 km, 0≤z ≤1.8 km. We choose the spatial incrementsΔx=Δy=Δz=15 

m, the temporal increment Δt=0.8 ms. The source of the Ricker wavelet with a peak 

frequency of f0 =30 Hz is located at coordinate (xs, ys, zs)=(1.5 km, 1.5 km, 0.015 km), and the 

expression is the same as equation (21). The perfectly matched layer (PML) absorbing 

boundary condition suggested by Dimitri and Jeroen (2003) is used in the experiment.  

Figure 11, generated by the RK, shows the synthetic seismograms recorded by 201 receivers 

on the surface spreading respectively along the two lines of y=1.5 km (Fig. 11a) and x=1.5 

km (Fig. 11b) shown in Figure 10. In Figure 11, the reflected waves from the inner interfaces 

are very clear. We can identify the medium structure from the reflected curve wave shown 

in Figure 11. In this experiment, we use the stiff boundary condition at the free surface 

because the source is located at the surface. This experiment also illustrates that it is 

efficient for the RK to combine with the PML absorbing boundary condition (Dimitri and 

Jeroen, 2003). 

 

 

Fig. 10. The geometry of the multilayer model, which is consisted of three layer media in the 
domain of 0≤y≤1.5 km, whereas the model is a two layer media as 1.5 km<y≤3 km.  
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Figure 12 shows the synthetic VSP seismograms recorded in the wells, generated by the RK. 
In Figure 14(a), the receivers are spread from receiver R1 (x, y, z)= (1.8 km, 1.8 km, 0) to 
receiver RN (x, y, z)= (1.8 km, 1.8 km, 1.8 km) spaced 0.015 km apart, and from receiver R1 (x, 
y, z)= (1.2 km, 1.2 km, 0) to receiver RN (x, y, z)= (1.2 km, 1.2 km, 1.8 km) in Figure 12(b). 
From Figure 12 we can see that the VSP seismograms are very clean and have no grid 
dispersions while the model velocity contrasts between adjacent layers (layers 1 and 2, 
layers 2 and 3) are about 50% and 33%, respectively. We can also observe the difference of 
two seismic records shown in Figure 12(a) and 12(b) from different wells. 
 

     
 

Fig. 11. Synthetic seismograms recorded by 201 receivers on the surface spreading (a) from 
x=0 to 3 km spaced 0.015 km apart along the line of y=1.5 km, and (b) from y=0 to 3 km 
spaced 0.015 km apart along the line of x=1.5 km, respectively generated by the RK for the 
multilayer geological model shown in Figure 14. 

 

 

Fig. 12. Synthetic VSP seismograms recorded by 121 receivers in wells spreading (a) from 
receiver R1 (x, y, z)= (1.8 km, 1.8 km, 0) to receiver RN (x, y, z)= (1.8 km, 1.8 km, 1.8 km) , and 
(b) from receiver R1 (x, y, z) =(1.2 km, 1.2 km, 0) to receiver RN (x, y, z) =(1.2 km, 1.2 km, 1.8 
km).  

5.2 Two-layered elastic wave modeling  

Subsurface structures have interfaces where velocities and density are discontinuous, and 

some of the interfaces may have strong velocity contrasts. Some FD methods, such as 

(a) (b)
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conventional FD (Kelly et al., 1976), LWC method (Dablain 1986), often suffer from serious 

numerical dispersion when the models have large velocity contrast between adjacent layers. 

So we consider a two-layer medium with inner interface to investigate the validity of the 3D 

RK in multilayer elastic model. In the two-layer model, the Lamé constants are given as 

ǌ1=1.5 GPa, Ǎ1=2.5 GPa and ρ1=1.5g/cm3, ǌ2=11.0 GPa, Ǎ2=15.0 GPa and ρ2=2.0g/cm3, 

corresponding to the P- and S-wave velocities of 2.082 km/s and 1.291 km/s in the top layer 

medium, and 4.528 km/s and 2.739 km/s in the bottom medium. The computational 

domain is 0 4x  km, 0 4y  km, and 0 4z  km. We choose the spatial increments 

h=Δx=Δy=Δz=20 m and the temporal increment Δt=1.5 ms. The source of the Ricker wavelet 

with a peak frequency of 0 20f  Hz is located at ( , , )s s sx y z  (2 km,2 km,1.92 km), and the 

source function is the same as equation (21). The three force-source components, 

corresponding to f1, f2, and f3 included in equation (4a), are chosen by f1=f2=f3=f(t). The 

horizontal inner interface is located at the depth z=2.4 km. In this experiment, we use 

similarly the PML absorbing boundary condition presented in Dimitri and Jeroen (2003). 
 

 
 

Fig. 13. Snapshots of the seismic wave fields at time 0.6 sec for the u1 component in the two-
layer isotropic medium, generated by the RK, for (a) the xy plane, (b) the xz plane, and (c) 
the yz plane. 

 

 
 

Fig. 14. Snapshots of the seismic wave fields at time 0.6 sec for the u2 component in the two-
layer isotropic medium, generated by the RK, for (a) the xy plane, (b) the xz plane, and (c) 
the yz plane. 

Figures 13-15 show the wavefield snapshots of the three displacement-components (u1, u2, and 

u3) at t =0.6 sec on the coarse increments (Δx=Δy=Δz=20 m) for the two-layer elastic model, 

generated by the RK. Figures 16-17 and Figures 18-19 show the wavefield snapshots of the 

horizontal and vertical displacement-components (u1 and u3) at t =0.6 sec for the same grid 
 

(a) (b) (c)

(a) (b) (c)
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Fig. 15. Snapshots of the seismic wave fields at time 0.6 sec for the u3 component in the two-
layer isotropic medium, generated by the RK, for (a) the xy plane, (b) the xz plane, and (c) 
the yz plane. 

 
 

 
 

Fig. 16. Snapshots of the seismic wave fields at time 0.6 sec for the u1 component in the two-
layer isotropic medium, generated by the fourth-order LWC, for (a) the xy plane, (b) the xz 
plane, and (c) the yz plane. 

 
 

 
 

Fig. 17. Snapshots of the seismic wave fields at time 0.6 sec for the u3 component in the two-
layer isotropic medium, generated by the fourth-order LWC, for (a) the xy plane, (b) the xz 
plane, and (c) the yz plane. 

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)
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increments and same model, generated by the fourth-order LWC and fourth-order SG 
methods, respectively. Four snapshots such as Figure 13(b) in the xz plane for the u1 
component Figure 14(c) in the yz plane for the u2 component, and Figures 15(b) and 15(c) in 
the xz and yz planes for the u3 component show numerous phases such as direct P wave, 
direct S wave, and their reflected, transmitted and converted phases from the inner 
interface. In Figures 13(c), 14(b), and 15(a), the snapshots in the yz, xz, and xy planes, 
corresponding to three displacement-components u1, u2, and u3, respectively, show a very 
weak P wave and a strong S wave. The wavefield snapshots (Figs. 13-15) also show that the 
RK has no visible numerical dispersions even if the space increment is chosen 20 m without 
any additional treatments for the two-layer elastic model with a large velocity contrasts of 
2.18 times between the top and bottom layer media, whereas the fourth-order LWC and the 
fourth-order SG suffer from substantial numerical dispersion for the same computational 
conditions (see Figs. 16-19). 
 

 
 

Fig. 18. Snapshots of the seismic wave fields at time 0.6 sec for the u1 component in the two-
layer isotropic medium, generated by the fourth-order SG, for (a) the xy plane, (b) the xz 
plane, and (c) the yz plane. 

 

 
 

Fig. 19. Snapshots of the seismic wave fields at time 0.6 sec for the u3 component in the two-
layer isotropic medium, generated by the fourth-order SG, for (a) the xy plane, (b) the xz 
plane, and (c) the yz plane. 

5.3 VTI model  
In order to investigate the performance of the RK method for the anisotropic case, we 
simulate the elastic wave propagating in a 3D VTI medium. For this case we consider the 
following wave equation: 

(a) (b) (c)

(a) (b) (c)
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 (23) 

In this experiment, the computational domain is 0 5x  km, 0 5y  km, and 0 5z  km. 

The elastic constants and the medium density included in equation (23) are c11=26.4 GPa, 

c33=15.6 GPa, c13=6.11 GPa, c44=4.38 GPa, c66=6.84 GPa, 22 11c c , 23 13c c , 55 44c c , 

12 11 662c c c  , and ρ=2.17 g/cm3, respectively. The source with the peak frequency f0=17 

Hz is located at the center of the computational domain as defined in equation (21). The 

spatial and temporal increments are 25x y z      m and 31.0 10t    sec, respectively, 

resulting in 3.3 grid points per minimum wavelength because the minimal qS wave velocity 

is 1.4207 km/sec from the elastic constants and the medium density.  
 
 

 
 

Fig. 20. Snapshots of elastic wave fields at time 0.7 sec for the x direction displacement (u1) 
in the VTI medium, generated by the RK for (a) the xy plane, (b) the xz plane, and (c) the yz 
plane. 

 

 
 

Fig. 21. Snapshots of elastic wave fields at time 0.7 sec for the y direction displacement (u2) 
in the VTI medium, generated by the RK for (a) the xy plane, (b) the xz plane, and (c) the yz 
plane. 

(a) (b) (c)

(a) (b) (c)
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Fig. 22. Snapshots of elastic wave fields at time 0.7 sec for the z direction displacement (u3) 
in the VTI medium, generated by the RK for (a) the xy plane, (b) the xz plane, and (c) the yz 
plane. 

The wave field snapshots for u1, u2 and u3 components at time 0.7 sec are shown in Figures 

20, 21, and 22. Figure 20 shows the snapshots of the u1 component in xy-, xz-, and yz-planes, 

whereas Figures 21 and 22 show the snapshots of 2u  and 3u  components in the three planes. 

The snapshots of the three displacement components in the xy plane (transverse plane), 

shown in Figures 20(a), 21(a), and 22(a), show that the wavefronts of P and S waves are a 

circle in the VTI medium, whereas other snapshots in Figures 20, 21, and 22 show that the 

wavefronts of P and S waves are an ellipse and the quasi-P (qP) and quasi-SV (qSV) waves 

show the directional dependence on propagation velocity. The qSV wavefronts have cusps 

and triplications depending on the value of c13 (Faria & Stoffa, 1994). Triplications can be 

observed in the horizontal component qSV wavefronts in the xz plane for the u1 component 

(Fig. 20b), in the yz-plane for the u2 component (Fig. 21c), and in the vertical component qSV 

wavefronts shown in Figures 22(b) and 22(c), respectively. Furthermore, in the VTI medium 

we can observe that the shear-wave splitting shows in Figures 20(b) and 21(c), and the 

arrival times of quasi-SH and qSV waves are different by comparing Figures 20(c) and 21(b) 

with Figures 20(b), 21(c), 22(b), and 22(c).  

6. Summary 

The two-stage RK method for solving 3D acoustic and elastic wave equations in isotropic 
and anisotropic media is developed via the four-stage fourth-order RK algorithm for solving 
ordinary differential equations and the high-degree multivariable interpolation 
approximation. In other words, the time derivatives are approximated via the two-stage 
fourth-order RK and the high-order space derivatives are calculated using the multivariable 
interpolation approximation. On the basis of such a structure, we have to first convert these 
high-order time derivatives to the spatial derivatives, which is similar to the high-order FD 
or so-called LWC methods (Lax and Wendroff, 1964; Dablain, 1986). However, the fourth-
order RK method in approximating the high-order spatial derivatives is different from these 
high-order FD, LWC, and staggered-grid methods stated previously that only use the wave 
displacement at some grid points to approximate the high-order spatial derivatives or 
directly discretizing the original wave equation. This RK method uses simultaneously both 
the wave displacement and its gradients to approximate the high-order derivatives [see 
formulae (A3) to (A7)]. In other words, when determining these high-order spatial 
derivatives included in equation (8) or equation (9), the RK method uses not only the values 

(a) (b) (c)
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of the displacement U and the particle velocity W at the mesh point (i, j, k) and its 
neighboring gridpoints [see equations (A3)–(A7)], but also the values of the gradients of the 
displacement U and particle velocity W. Based on such a structure, the two-stage RK retains 
more wavefield information included in the displacement function, the particle velocity, and 
their gradients. As a result, the new RK can effectively suppress the numerical dispersion 
and source-generated noises caused by discretizing the wave equations when too-coarse 
grids are used or models have large velocity contrast between adjacent layers, and has 
higher spatial accuracy though the RK only uses a local difference operator that three 
gridpoints are used in a spatial direction.  
Numerical dispersion analysis in section 4.1 and wave-field modeling results confirm our 
conclusion that the RK method has smaller numerical dispersion than the fourth-order LWC 
and SG methods. At the same time, these numerical results also imply that simultaneously 
using both the wave displacement, particle velocity, and their gradients to approximate the 
high-order derivatives is important for decreasing the numerical dispersion caused by the 
discretization of wave equations because the particle velocity and the gradients of both the 
wave displacement and the particle velocity include important wave-field information. On 
the other hand, using these connection relations such as equation (A2) and those omitted in 
this chapter between the grid point (i, j, k) and its neighboring nodes (i+p, j+q, k+r) (p, q, r=-1, 
0, 1) keeps the continuity of gradients. The continuity and high accuracy (fourth-order 
accuracy in space) of gradients improve automatically the continuity of the stresses that are 
the linear combinations of gradients or the Hook sum, further resulting in the RK having 
less numerical dispersion when models have strong interfaces between adjacent layers. It 
suggests that we should consider the particle velocity and wave-gradient fields and the use 
of connection relations such as equation (A2), and so on, as we design a new numerical 
method to solve the 3D acoustic and elastic wave equations.  
It appears that the CPU time of the two-stage RK is more than that of the fourth-order LWC 
and the SG methods, but in fact, because this method yields less numerical dispersion than 
both the LWC and SG methods, we can afford to increase the temporal increment through 
using coarser spatial increments to achieve the same accuracy as those of the LWC and the 
SG methods on a finer spatial grid with smaller time steps. Numerical computational results 
show that the RK method can also effectively suppress the numerical dispersion and the 
source-noise as the number of gridpoints in a minimum wavelength is about 3.3. Hence the 
total CPU time of the RK will not be larger than those of the LWC and the SG methods. As 
observed in our experiment, the computational speed of the RK is roughly 3.3 times of the 
fourth-order LWC and the SG on a fine grid to achieve the same accuracy as that of the RK, 
and the storage space required for the RK is only about 31.3% of the fourth-order LWC and 
about 27.8% of the fourth-order SG, respectively. 
In conclusion, the 3D RK method has the following properties: (1) it can suppress effectively 
the numerical dispersion and source noise for practically coarse spatial and time steps; (2) it 
provides extra wave-field information including the particle velocity field and their time 
derivatives and spatial gradients, so the two-stage RK can be directly extended to solve the 
two-phase porous wave equations that include the first-order time derivatives such as Biot’s 
porous wave equations (Biot 1956a,b); (3) it can increase greatly the computational efficiency 
and save storage space if larger spatial and temporal increments are used; (4) it only uses the 
local difference operator to obtain the high-order spatial accuracy. We initiate possible, more 
applications of the RK method in large-scale acoustic or seismic modeling, reverse time 
migration, and inversion based on the acoustic-wave equation, despite the computation 
time and memory requirements are the bottle-neck for their vast applications.  
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7. Appendices 

7.1 Appendix A: evaluation of high-order derivatives 

In order to numerically solve equation (8), we need to compute the high-order spatial 

derivatives , ,( / )q l m q l m n
i j kV x y z     (2 3)q l m    so that the time advancing of the 3D 

RK equation (9) is implemented. To do this, following the local interpolation methods (Yang 

et al., 2007, 2010), we introduce the local interpolation function of spatial increments x , y , 

and z  in the x, y, and z directions as follows: 

 
5

0

1
( , , ) ( )

!
r

r

G x y z x y z V
r x y z

  
        

   ,                (A1) 

which defines the interpolation relations between the grid point (i, j, k) and its 26 

neighboring nodes such as (i, j, k+1), (i, j, k-1), (i, j+1, k+1), (i, j+1, k), (i, j+1, k-1), (i, j-1, k+1), 

(i, j-1, k), (i, j-1, k-1), (i+1, j, k+1), (i+1, j, k-1), (i+1, j+1, k+1), (i+1, j+1, k), (i+1, j+1, k-1), (i+1, j-

1, k+1), (i+1, j-1, k), (i+1, j-1, k-1), (i+1, j, k), (i-1, j, k+1), (i-1, j, k-1), (i-1, j+1, k+1), (i-1, j+1, k), 

(i-1, j+1, k-1), (i-1, j-1, k+1), (i-1, j-1, k), (i-1, j-1, k-1), and (i-1, j, k). For example, at the grid 

point (i-1, j-1, k), we have the following interpolation relations:  

 

  1, 1,, ,
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    
         

             

 (A2) 

Similarly, the rest 100 connection relations at other 25 neighboring nodes can be easily 

written.  

From the 104 relations, we have similar approximation formulae as in the cited reference 

(Yang et al., 2010) to approximate the high-order spatial derivatives included in equation (8) 

or equation (9). For convenience, we list these approximation formulae used in the 3D RK 

method as follows 
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where , ,g x y z in formulae (A3) and (A5), and , , ,g e x y z  and g e  in equations (A4) 

and (A6). , ,
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z  and 1
zE  in equations 

(A3) to (A7) are the second-order central difference operators and displacement operators in 

the z-direction, which are defined by 
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Other operators such as 2
x , 1

xE , 1
xE  in the x-direction and 2

y , 1
yE , 1

yE in the y-direction are 

defined similarly. 
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7.2 Appendix B: derivation of stability criteria 

For the 3D homogeneous case, to obtain the stability condition of the two-stage RK method 

under the condition of x y z h      , we consider the 3D acoustic wave equation. 

Substituting the following solution 

  , , 1 2 3exp ( )

n

n x
j l q

y

z

V

V
V i k jh k lh k qh

V

V

 
     
   

                   (B1) 

 
into the 3D RK method (9) together with relations (A3)-(A7), we can obtain the following 
equation 

 
1n nV GV  .                                (B2) 

In equation (B1), k1, k2 and k3 are the components of the wave-number k=(k1, k2, k3)T and G is 
the growth matrix, whose detail expression is omitted because of its complex elements. 

We assume that ǌ1, ǌ2, …, and ǌp are the eigenvalues of G. We know that the scheme with the 

growth matrix G is stable only if | | 1, 1,2, ,j j p     are satisfied. From which, we can 

obtain the stability criterion of the RK method for the 3D homogeneous case as follows 

 max 0.577,   
                              (B3) 

where max denotes the maximum value of the Courant number defined by 0 / ,c t x     

with the acoustic velocity being 0c .  
Similarly, we can easily obtain the stability criteria (11) and (12) for the 1D and 2D cases.  

7.3 Appendix C: derivation of the dispersion relation 
To investigate and optimize the dispersion error, we derive the dispersion relation of the 3D 
RK method. For this, following the analysis methods presented in Dablain (1986) and Yang 
et al. (2006), we substitute the harmonic solution 

 
 0

, , 1 2 3exp( ( ) exp ( )
n
j l qV V i n i k jh k lh k qh      

             (C1) 

into the 3D RK equation (9), we can obtain the following linear equations about 0V  

 
0 0exp( ( )i n V G V    

,                            (C2) 

where 0 0 0 0 0( , , , )T
x y zV V V V V    , ω is the angular frequency, and G is also the growth 

matrix. From (C2), we can obtain the following dispersion equation: 

 
[exp( ( ) ] 0.Det i n I G    

                           (C3) 

Using the dispersion relation (C3), we obtain the ratio of the numerical velocity numc to the 

phase velocity 0c as follows 

www.intechopen.com



A Fourth-Order Runge-Kutta Method 
with Low Numerical Dispersion for Simulating 3D Wave Propagation 

 

237 

 0

,
2 2

num

p p

c
R

c S S

 
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 
                          (C4) 

where  is the Courant number, / / 2p num numS h h c     is the spatial sampling ratio, 

and   satisfies the dispersion equation (C3). 

For comparison, here we also present the dispersion relation of the fourth-order staggered-

grid (SG) scheme (Moczo et al., 2000). Using the definition of the spatial sampling ratio Sp 

and the Courant number  , we can obtain the following dispersion relation of the SG 

method through a series of derivation: 

 
 2 2 2

1 2 3

0

arcsin
,

2
num

p p

x x x
c

R
c S S

  
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 
                (C5) 

where 

9 1
sin sin 3 , 1,2,3

8 24
i i ix i     , 

1 cos sinpS     , 

2 sin sinpS     , 

3 cospS    , 

in which 0     , and 0 2    . 
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