
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



7 

Acoustic Properties of the 
Globular Photonic Crystals 

N. F. Bunkin1 and V. S. Gorelik2 
1A.M.Prokhorov General Physics Institute, Russian Academy of Sciences, 

2Lebedev Physical Institute, Russian Academy of Sciences, 
Moscow, 

Russia 

1. Introduction 

Modern technologies allow us to construct new nanomaterials with a periodic 
superstructure. In particular, the increasing interest has been recently shown in the so-called 
photonic (PTC) [1 - 4] and phononic (PNC) [5] crystals. In a case of PTC its structure is 
characterized by the refractive index, which periodically varies in space; the spatial period 
essentially exceeds the atomic sizes. PNCs are characterized by spatial periodic modulations 
of the sound velocity caused by the presence of the periodically settled elements of various 
materials (metals, polymers etc.) inside the sample. It is worth noting that PTC can at the 
same time be treated as a version of PNC.  
PTCs and PNCs can be realized as one, two and three-dimensional structures. Among a 
wide variety of PTCs the special attention of researchers is paid to the crystal structures, 
whose lattice period is comparable with a wavelength of electromagnetic wave in the visible 
range. The periodicity of such PTC-structure results in presence of the so-called band-gaps 
located in the visible spectral range, i.e. in the spectral areas, where the electromagnetic 
waves can penetrate inside the sample only to a near-surface region with thickness of about 
a wavelength of light (0.4-0.8 microns). If the frequency of an electromagnetic wave is close 
to the band-gap edge, the group velocity of an electromagnetic wave drastically decreases, 
which results in a sharp increase of spectral density of electromagnetic radiation [2]. The 
numerous works are devoted to study of such effect for the visible range [2 - 4]. Other 
interesting feature of PTC consists in the existence of spectral bands characterized by a 
negative value of the effective refractive index, when the directions of phase and group 
velocities of an electromagnetic wave appear to be opposite to one another. At last we shall 
note that effective rest mass of photons in PTC is non-zero and can accept both positive and 
negative values. The absolute value of the effective rest mass of the photons in PTC is equal 

to 36

2
10m

c

  


 kg. 

The properties of acoustic waves in PNC are in many respects similar to the properties of 
electromagnetic waves in PTC. In the given work the review of characteristic properties of 
acoustic waves in PNC in comparison with the corresponding properties of electromagnetic 
waves in PTC is given. In particular, the problems of finding the form of dispersion 
dependences ω(k) for acoustic waves together with the dispersion dependences of their 
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group velocities and effective mass of the corresponding acoustic phonons are solved. The 
results of the theoretical analysis and the data of experimental studies of the optical and 
acoustic phenomena in PTC and PNC, including the studies of spectra of non-elastic 
scattering of light together with the experiments to observe the stimulated light scattering 
accompanying by the coherent oscillations of globules are reported. 

1.1 Theory of dispersion of electromagnetic and acoustic waves in one-dimensional 
PTC/PNC  
The one-dimensional dielectric medium with two alternating layers (see. Fig. 1) can be 
considered as a one-dimensional PTC. At the same time, such medium can either be 
regarded as a one-dimensional PNC characterized by specified propagation velocities of 
acoustic waves in each of layers. At the first stage, let us consider the dispersion law for 
electromagnetic waves on the basis of the theory developed earlier [5 - 7]. According to the 
technique described in detail in Ref. [5], in order to obtain the dispersion relation, we used 
the plane monochromatic wave approximation with allowance for the boundary conditions 
at the edges of the layers (see Fig. 1).  
 

 

Fig. 1. Schematic of periodic layered medium and plane wave amplitudes corresponding to 
the n-th unit cell and its neighboring layers [5] 

The periodic layered medium under study consists of two various substances with the 
following structure of the refractive index: 
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(1) 

 
With making allowance for the periodicity of the refractive index, we arrive at: 

    . znzn  
(2) 

Here the z-axis is perpendicular to the boundaries of layers, while Λ is the spatial period of 
the superstructure. The general solution to the wave equation for the electric field vector can 
be sought for in the form 
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      0, exp .yt z i t k y   E r E  (3) 

 Here it is assumed that the wave propagates in (yz) plane, whereas ky is the vector 

component that remains constant during the propagation through the medium. The electric 

field strength within each homogeneous layer can be represented as a sum of the incident 

and reflected plane waves. Complex amplitudes of these two waves are components of the 

column vector. Thus, the electric field in -th layer ( = 1, 2) of the n-th unit cell (see. Fig. 1) 

can be written in the form of the column vector 

 
 

 
, 1,2.n

n

a

b






 
   
 
 

 (4) 

 

The distribution of the electric field strength in the layer under consideration can be 

represented as 

             , exp exp exp ,n z n z yE y z a ik z n b ik z n ik y
 

                (5) 

where 

 
2

2 , 1,2.z y

n
k k

c



      

 
 (6) 

 

The column vectors are related to each other by the conditions of continuity at the interfaces. 

As a consequence, only one vector (or two components of different vectors) can be chosen 

arbitrarily. For TE-waves (vector Е is perpendicular to the yz plane), the condition for the 

continuity of the components Ex and Hy (Hy ~ Ex/z) [6, 7] at the interfaces z = (n –1) and z 

= (n – 1) + b (see Fig. 1) leads to the following equations: 
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 (7) 

 

These four equations can be written as a system of two matrix equations: 
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where 
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        1 1 2 2
, , , .n n n n n n n na a b b c a d b        (10) 

Eliminating the column vector (cn , dn)T from this system, we obtain the matrix equation 

 1

1

.n n

n n

a A B a

b C D b




    
    

    
 (11) 

The matrix elements in this equation are: 

   

   

2 1 2 1
1 2 2 1 2

1 2 1 2

2 1 2 1
1 2 1 2

1 2 1 2

1 1
exp cos sin , exp sin ,

2 2

1 1
exp sin , exp cos

2 2

z z z z
z z z z z

z z z z

z z z z
z z z z

z z z z

k k k k
A ik a k b i k b B ik a i k b

k k k k

k k k k
C ik a i k b D ik a k b i

k k k k

      
              

         
   

            
    

2sin .zk b
 
 
  

  (12) 

 

Since the matrix (11) relates amplitudes of the field of two equivalent layers with identical 
refractive indices, it is unimodular, i.e., 

 AD – BC = 1 (13) 

As was pointed out above, only one column vector is independent. For this vector one can 
choose, for instance, the column vector for layer 1 in the zero unit cell. The remaining 
column vectors of the equivalent layers are connected with the vector for the zero unit cell 
by the relation 

 0

0

.

n

n

n

a A B a

b C D b

     
     

     
 (14) 

It follows from here that 
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0

,

n

n

n

a A B a

b C D b


     

     
     

 (15) 

or, in view of (14) 

 0

0

.

n

n

n

a D B a

b C A b

     
          

 (16) 

A periodic layered medium is equivalent to a one-dimensional PTC that is invariant under 
translations to the lattice constant. The lattice translation operator T is defined by the 
expression 

 ,Tz z l    l  Z. 

 
Thus, we arrive at 

      1 .T z T z z l   E E E  (17) 
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According to the Bloch theorem [6, 7], the vector of the electric field of the normal mode in 
the layered periodic medium has the form: 

      exp exp ,K yz iKz i t k y    E E  (18) 

 

where EK (z) is the periodic function with the period Λ, i.e.,  

    .K Kz z  E E  (19) 

Using the column vector representation and expression (5), the periodicity condition (19) for 
the Bloch wave can be written as: 

   1

1

exp .n n

n n

a a
iK

b b




   
     

   
 (20) 

As follows from Eqns. (11) and (20), the column vector of the Bloch wave obeys the 
eigenvalue equation: 

  exp .n n

n n

A B a a
iK

C D b b

    
     

    
 (21) 

 

Thus, the phase factor is the eigenvalue of the translation matrix (A B C D) and satisfies the 

characteristic equation 

 
 

exp
det 0.

exp

A iK B

C D iK

  
    

 

The solution to this equation has the form 

      21 1
exp 1.

2 2
iK A D A D       (22) 

 

Eigenvectors corresponding to these eigenvalues are solutions to Eqn. (21), and accurate to 

an arbitrary constant they can be represented in the form 

  
0

0 exp

Ba

iK Ab

  
        

 (23) 

According to (20), the corresponding column eigenvector for the n-th unit cell is 

     exp .
exp

n

n

Ba
inK

iK Ab

  
          

 (24) 

The Bloch waves obtained from (23) and (24) can be considered as eigenvectors of the 

translation matrix with the eigenvalues exp(iKΛ), given by Eqn. (22); this equation results in 

the dispersion relation of the kind: 
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   1
, arccos .

2
y

A D
K k       

 (25) 

The modes, in which |A + D|/2 < 1, correspond to the real K. If |A + D|/2 < 1, the relation 

K = m/λ + iKm takes place, i.e., the imaginary part in the wave vector K is non-zero, and the 

wave is damped. Thus the so-called band-gap opens. The frequencies corresponding to the 

band-gap boundaries are found from the condition / 2 1.A D   
At normal incidence (ky =0), the dispersion dependence ω(K) has, according to (25), the 
following form:  

          2 1
1 2 1 2

1 2

1
cos cos cos sin sin .

2

n n
K k a k b k a k b

n n

 
    

 
 (26) 

The quantities in Eqn. (26) have the following physical meaning: i = 1 is the subscript related 
to the first medium, while i = 2 is the subscript related to the second medium; n1 = n1(ω) is 
the refractive index of the first medium, and n2 = n2(ω) is the refractive index of the second 

medium; (1 )a    , b   , η is the content of the second medium in the layered PTC; 

 
0

i
i

n
k

C

 
  is the wave vector in the i-th medium, and С0 = 3·108 m/s is the velocity of 

light in vacuum.  
As the first approximation we can assume that the refractive index values of both layers n1 
and n2 are the constant values and do not depend on the electromagnetic radiation 
frequency. At the next stage we shall take into account their dependence on the frequency 
(or on the wavelength of a radiation illuminating the PTC). For example, let us consider a 
one-dimensional PTC, one layer of which is amorphous quartz (SiO2), and second layer is 
atmospheric air, for which the refractive index is ~ 1. Additionally, we will consider that the 
refractive index of SiO2 is not dependent upon the wavelength, i.e. n1 = 1.47. Finally, we will 
use the following values of the parameters a1 and a2: specifically, а1 = 136 nm, and а2 = 48 
nm. In this case the dispersion law for the electromagnetic waves in PTC can be obtained by 

using Eqn. (26). The results of numerical simulation of the dispersion curves ( )k (these 

curves were taken from our study [8]) are plotted in Fig. 2 by the bold lines. As is seen from 

this Figure, we can discern in the spectrum three dispersion branches ( ), ( 1,2,3),j k j    

where the first one is related to the low-frequency range, including the infra-red spectral 
area, the second one is related to the visible spectral range, and the third one is related to the 
near ultra-violet spectrum. The additional branches are plotted in view of anomalous 
dispersion of the refractive index at approaching the electronic absorption band in SiO2. In 
Fig. 2 two photonic band-gaps, where the first one corresponds to the Brillouin zone 

boundary ( k





), and the second one is related to the Brillouin zone center (k = 0), are 

seen. The second dispersion branch is related to the case, where the directions of the phase 
and group velocities are opposite with respect to one another, i.e. to the case of negative 

effective refractive index ( 0)n  . 

As was found in study [8], the good enough description of the dispersion curves (see the 
gray curves (2) in Fig. 2, which were plotted on the basis of the exact theory given by Eqn. 
(26)), can be carried out by using the approximated formulas of the kind:  
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 0

1

2 sin ,
2

C k

m
      

  -  the first dirpersion branch, (27) 

 

2

2 2 20
2

2

2 sin
2

C k

m
 

           
 -  the second dirpersion branch,              (28) 

 

2

2 2 20
3

3

2 sin
2

C k

m
 

           
   -  the third dirpersion branch.  (29) 

Here 1 and 2 are the frequencies corresponding to the edges of the second order band-
gap, m1, m2, and m3 are the effective refractive indices for the first, the second and the third 
dispersion branches accordingly. The following values for the frequencies and refractive 

indices were taken: ω2 = 3.621015 radian/s, 2 = 3.621015 radian/s, 3=4.141015 radian/s, 
and m1 = 0,94; m2 = 0.555; m3 = 0.435. Besides, the opportunity of approximating the 
dispersion curves close to the center of the Brillouin zone by the so-called quasi-relativistic 
formulas (30) – (33) was considered: 

 0

1

C
k

m
  -  the first dirpersion branch,         (30) 

 

2

2 2 20
2

2

C
k

m
 

 
   

 
 -  the second dirpersion branch,      (31) 

 

2

2 2 20
3

3

C
k

m
 

 
   

 
 -  the third dirpersion branch,        (32) 
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Fig. 2. The dispersion law (k) for a one-dimensional PTC; (1) - the results of calculation of 
the dispersion dependence ω(k) according to (26), (2) – the results of calculation of the 
dispersion dependence ω(k) with the help of sinusoidal approximation. 
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Fig. 3. The dispersion law (k) for a one-dimensional PTC; (1) - the results of calculation of 
the dispersion dependence ω(k) according to (26), (3) – the results of calculation of the 
dispersion dependence ω(k) with the help of quasi-relativistic approximation. 

As is seen from Fig. 3, the satisfactory agreement between the curves 1 and 3 takes place 
only at small values of a wave vector (i.e., close to the center of the Brillouin zone). 
Nonetheless, this approach allows us to estimate the effective photonic mass basing on the 
equality (here m0 and Е0 are the effective rest mass and the rest energy of the photon.) 

 
02 2 2 2

2 2

1 (0) (0)
; .

E
m m

d E d C C

dp dk




    
   (33) 

 For the second dispersion branch the effective rest mass of the photon appears to be 

negative and equal to 351
2 2

0
2
2

0,13 10m
C

m

     
 
 
 

  kg. Accordingly for the third branch we 

obtain: 352
3 2

0
2
3

0,09 10m
C

m

   
 
 
 

  kg. Thus, the effective rest mass of a photon inside the PTC 

appears to be non-zero and can acquire both positive and negative magnitudes.  

If one takes into account the dispersion of refractive index for the layers, forming PTC, the 

dispersion law ( )k can also be received from numeric solution to Eqn. (26). For example, 

let us consider PTC, where the first medium is SiO2, whereas the second medium is 

atmospheric air or water. The refractive index of air is assumed to be equal to unity. Thus 

for the dependence of the SiO2 refractive index versus a wavelength we can use the formula: 

2 2 2
2
1 2 2 2 2 2 2

0,6962 0,4079 0,8975
1 ,

0,0684 0,1162 9,896
n

  
  

   
  

 

while the same dependence for water is given by the formula: 

1 2 1 2 2 2 1 2
2
2 2 3 2 2 2 2 2 1

5,667 10 1,732 10 2,096 10 1,125 10
1

5,084 10 1,818 10 2,625 10 1,074 10
n

   
   

   

  

   
    

       
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(a) 

 

 

(b) 

Fig. 4. The calculated dispersion curves; (а) – the initial PTC; (b) – the PTC, filled with water. 
The band-gap boundaries (thin solid lines), the edge of the first Brillouin zone together with 
the straight line indicating the dispersion law for a light wave in vacuum (ω = С0·k) are 
indicated. 

The calculated dispersion curves for these cases are shown in Fig. 4 (a) and (b). As is seen in 
this Figure, implantation of water instead of air in PTC results in decreasing the optical 
contrast and, accordingly, in reducing the band-gap width for the visible and ultraviolet 
spectral ranges. Accounting for the dispersion of the refractive index for SiO2 results in 
occurrence of the additional dispersion branch in the infrared spectral range; this branch is 
related to the polariton curve, stimulated by the polar vibrations, e.g., the vibrations along the 
bond Si-O in the microstructure of quartz. In Fig. 4 the points of intersection of the straight 
line, corresponding to the light wave (this line is set by the formula ω = С0·k, for which the 
effective refractive index is equal to unity) are marked. Thus according to the known Fresnel 
formulas the reflectance of a light wave from the PTC interface approaches zero, and the 
material should become absolutely transparent (provided that the absorption is absent).  

1.2 Calculation of the dispersion characteristics for the one-dimensional PNC 
As was already noted, PNC can either be considered as PTC with making allowance for the 
fact that the sonic wave velocities depend upon the type of material of a layer. Using the 
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optical-acoustic analogy for describing the dispersion of acoustic waves in PNC and basing 
upon Eqn. (26), we obtain the following dispersion equation for the acoustic wave 
propagating in PNC along the crystallographic direction (111):  

          
2 2

1 2
1 1 2 2 1 1 2 2

1 2

1
cos cos cos sin sin .

2

V V
ka k a k a k a k a

V V


   


 (34) 

The quantities entering into (34) have the following physical meaning: i = 1 is the subscript 

for SiO2 (opal matrix); i = 2 is the subscript for the layer, filled with a metal or liquid; V1 is 

the velocity of acoustic waves in opal; V2 is the velocity of sound in the medium that fills the 

pores in the opal (see table 1); η = 0,26 is the effective sample porosity coefficient, D = 220 

nm is the diameter of the quartz globules; 2
3a D  is the period of the structure of the opal 

samples under investigation; a1 = (1 – η)a,  a2 = ηa; ωi is the cyclic frequency of the acoustic 

wave;   /i ik v   is the wave vector in the i-th medium.  
 

Material Transverse wave velocity, kms-1 Longitudinal wave velocity, kms-1 

Opal 3.3 5.3 

Air 0.1 0.3 

Water 0.6 1.5 

Gold 1.2 3.2 

Table 1. Velocities of longitudinal and transverse acoustic waves 

Based on the numerical analysis of (34), we constructed the dispersion dependences ( )k for 

different branches in the acoustic region of the spectrum. The numerically simulated 

acoustic properties of various PNCs are shown in Fig. 5.  

The abscissas are the wave vector values, scaled in m-1, and the ordinates are the cyclic 

frequencies (rads-1); the solid lines indicate longitudinal waves and the dashed lines 

indicate transverse waves. Fig. 5 (a) corresponds to the initial (unfilled) opal containing air 

in its pores, whereas Fig. 5 (b) shows the dispersion dependence ( )k for the sample with 

water in its pores, and Fig. 5 (c) displays acoustic branches of PTC with nanoparticles of 

gold. As is seen from these graphs, both in PTC and PNC the band-gaps are being formed, 

whose location and bandwidth depend on the spatial period of the superstructure and the 

type of material. The dispersion dependence of quasi-particles traveling along the crystalline 

lattice can be found from the known relation [6, 7]: 

 
  1

( ) .
( )gr

d k
V

dkd k
d


 



   (35) 

The corresponding dependences of group velocities are shown in Fig. 6. Figures 6 (a) – (c) 

correspond to the initial PNC, to the crystal filled with water, and to the opal filled with 

gold, respectively. Note that the group velocity of the acoustic waves becomes zero at the 

boundaries of the band-gaps. Besides, at the band-gap boundaries the group velocity of the 

acoustic phonons approaches zero, which corresponds to “stopping” of phonons at the 

corresponding frequencies. Such phenomenon is quite similar to “stopping” of photons, 

related to the band-gap boundaries of PNC.   
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(a) 

 

(b) 

 

(c) 

Fig. 5. Dispersion dependence ω(k) for three types of PNCs: (a) the initial PNC, (b) the PNC, 
filled with H2O, (c) the PNC with Au nanoparticles. Solid and dashed curves correspond to 
longitudinal and transverse waves, respectively. 
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(a) 

 

(b) 

 

(c) 

Fig. 6. Group velocity of phonons in the investigated samples: (a) the initial PNC, (b) the 
PNC filled with water, (c) the PNC filled with gold. Solid and dashed curves correspond to 
longitudinal and transverse waves, respectively. 
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(a) 

 

(b) 

 

(c) 

Fig. 7. Mass of acoustic quasi-particles for different types of opal: (a) initial opal, (b) opal 
with water, (c) opal with gold. Solid and dashed curves correspond to longitudinal and 
transverse waves, respectively. 
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According to the general definition of the effective mass of a quasi-particle [6, 7], the 
effective mass of acoustic phonons can be calculated by the formula 

    
   

12

2
.

/gr gr

d k
m

dk V dV d




  


 

  
    

  (36) 

 This effective mass is related to slow acoustic waves and is many orders of magnitude 
smaller than the mass of photons in PNC, and can be estimated from the relation 

0 2

(0)
,m

S





where S is corresponding sonic velocity. In particular, the effective mass of the 

transverse acoustic phonons related to the second dispersion branch of PNC containing the 

atmospheric air (see Fig. 6) is equal to m0 = -2410-30 kg; for PNC containing water we have 

m0 = -3,6410-30 kg; and for PNC containing gold we obtain m0 = -6,9410-30 kg. Accordingly 
for the third dispersion branch the effective mass appears to be positive and slightly exceeds 
(by the absolute value) the indicated above values of the effective rest mass of phonons.  
Summarizing, in PNC the acoustic phonons possess by the rest mass; the phonon rest mass 

by its absolute value is 5 – 6 orders of magnitude less than the effective rest mass of photons 

in PTC, and can be both positive and negative.  

1.2 Structure and the techniques of preparation of the globular photonic crystals 
The important example of the three-dimensional PTC (PNC) is the so-called globular 
photonic crystal composed of densely packed balls (globules) as the face-centered cubic 
crystal lattice. The diameter of the globules is slightly changed within the whole structure of 
a crystal. Depending on the technological process this diameter can vary within the range of 
200 - 1000 nm. To the present time the globular photonic crystals composed of the balls of 
synthetic opal (SiO2), titanium oxide (TiO2), and Polystyrene are known. There exist the 
voids (pores) between the globules of a photonic crystal, which can be filled with some 
foreign additives. For example, it is possible to implant into the pores of a globular 
phoptonic crystal some liquids, which moisturize the globule interface, and solid dielectrics, 
including piezoelectrics and ferroelectrics. Besides, it is possible to implant magnetic  
 

 

Fig. 8. Samples of 3D-PTC, obtained from the synthetic opals under different technological 
conditions. 
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materials, semiconductors, metals and superconductors. Thus, we have a wide opportunity 

to create new materials of a hybrid-like type: dielectric-ferroelectric, dielectric-magnetic, 

dielectric-metal etc. We also can control the dielectric, acoustic and galvanic properties of 

such hybrid materials by changing the diameter of globules.  

Some samples of three-dimensional PTCs under study are illustrated in the photo, see Fig. 8. 

The white large sample (at the foot of the photo) was annealed in the atmospheric air at the 

temperature of 600 C. Color (green and blue) samples were annealed in the atmosphere of 

argon. During the process of growth and annealing these samples were saturated by carbon 

as the result of destruction of organic molecules, which were initially (in the trace amounts) 

located in the samples.  

 

 

(a) 

 

(b) 

Fig. 9. PTC, transparent in the visible spectral range; (a) – PTC, containing the quantum 
dots. This sample was filled by ZrO2 nanoparticles and then was subjected to annealing at 
high temperature (up to 1200 C); as the result, the sample became transparent as the size of 
implanted inclusions of ZrO2 nanoparticles was essentially less than the photonic crystal 
lattice constant and a wavelength in the visible range. (b) – PTC, filled with glycerol-water 
mixture. 
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(a) 

 

(b) 

Fig. 10. The images of (111) surfaces for two ((a) and (b)) investigated synthetic opals, 
obtained with the help of electronic microscope. 

Electronic images of the globular PTC surface (111) for two investigated samples are shown 
in Fig. 10 (a) and (b). We can see that the nanostructure of sample in Fig.10 (a) is close to the 
ideal one. In the case of the second sample (Fig. 10 (b)) there exist numerous defects arisen 
due to certain disordering processes.  Initial synthetic opals have been filled with some 
organic (Stilbene, glycerol, acetone, nitrobenzene) or inorganic (sodium nitrite, sulfur, ZrO2) 
chemicals. At the certain concentration of glycerol-water mixture its refractive index 
appeared to be very close to that for a quarts globule. In this way almost transparent 3D-
PTC have been obtained (see Fig. 9 (b)).  
The processes of the opal sample processing are shown in Fig. 11 (a, b). We have implanted 
nanoparticles of some metals (Au, Ag, Ga) into the photonic crystal pores localized between 
the globules. The sample was filled with ZrO2 nanoparticles and then was subjected to 
annealing at high temperature (up to 1200 C); as the result, the sample became transparent 
as the size of implanted inclusions of ZrO2 nanoparticles was essentially less than the 
photonic crystal lattice constant and the visible range wavelength. Accordingly, such spatial 
arrangement of inclusions can be described as the array of spatially ordered quantum dots 
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in the transparent crystal of quartz. The schematic nanostructure of such quantum dots in 
PTC is illustrated in Fig. 11 c. 
 

 

Fig. 11. Structures of 3D-PTC filled by dielectrics or metals; (a) - initial synthetic opal,  
(b) - opal, filled with some substance, (c) – result of the high temperature annealing of the 
sample, containing the particles of ZrO2, whose melting temperature is higher than that for 
quartz.   

1.3 Optical properties of the globular PTC 
In what follows we will analyze the optical and acoustic properties of globular PTC; it is 
clear that we can describe the both properties in the framework of the same approach. This 
is why the following considerations basically repeat the models applied above, but now we 
should bear in mind that we deal with the three-dimensional periodic medium. Assuming 
that the light wave is directed along the (111) vector in a crystal, it is still possible to use the 
approximation of effective one-dimensional model of the layered PTC [6, 7]. In this case the 
dispersion law of the globular PTC on the basis of the synthetic opal, whose pores are filled 
with atmospheric air, is given by the following formula, which is quite similar to Eqn. (34) 
for the dispersion law of acoustic waves in the layered PTC: 

 1 2
1 1 2 2 1 1 2 2

1 2

1
cos cos sin sin cos .

2
k a k a k a k a ka

 
 


   


 (37) 

The parameters here are the following: 1 is the dielectric permittivity of quartz (naturally 

for the oprtical range of frequencies); 2 is the dielectric permittivity of air, 1 (1 )a a  , 

2 ,a a  where  is the effective sample porosity, 2
3a D  is the period of the structure of 

the sample, D is the effective diameter of quartz globule, i is the cyclic frequency of the 

electromagnetic wave,  
0

i ik
c

   is the wave vector in SiO2 (i = 1) and in the air (i = 2). 

In Fig. 12 the dispersion dependence (k) for the incident (along the direction (111)) 
electromagnetic wave in the globular PTC, whose pores filled with atmospheric air, and the 
effective globule diameter is D = 225 nm. The Fig. 13 illustrates the two-branch dependence 

(k) for the globular PTC filled with the liquid having the refractive index close to that for 
SiO2. As is seen from the graphs, in that case the band-gap width approaches zero. 

Figs. 14 and 15 illustrate the dispersion law (k) of electromagnetic waves for the globular 
PTC, filled with the dielectric or metal accordingly. Figs. 16 and 17 show the character of 
changing the dispersion law owing to the occurrence of the low and high frequency 
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Fig. 12. The dispersion curves (k) for the first two branches of the globular PTC filled with 
air. The straight line obeys the dispersion law in vacuum. 

 

 

Fig. 13. The dispersion curves (k) for the first two branches of the globular PTC, filled with 
water. The upper curve corresponds to the initial (free of water) crystal, the lower curve 
corresponds to the crystal, whose pores contain a liquid with the refractive index close to 
that for quartz. 

 

 

 

Fig. 14. The dispersion curves (k) for the first two branches of the globular PTC, filled with 
the dielectric.  
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Fig. 15. The dispersion curves (k) for the first two branches of the globular PTC, filled with 
the metal. 

 

 

Fig. 16. The dispersion curves (k) for the first two branches of the globular PTC for the 
case, where the low-frequency resonance exists. 

 

 

Fig. 17. The dispersion curves (k) for the first two branches of the globular PTC for the 
case, where the high-frequency resonance exists. 

resonances accordingly; the resonances arise due to adding the certain substance in the 
pores. As is seen from Figs. 13 – 15, the implantation of dielectrics, whose refractive index 
exceeds that of quartz, into the pores of the globular PTC results in changing the width of 
the band-gap and its shifting to lower frequencies. At the same time, at implanting metal 
into these pores the band-gap shifts to higher frequencies, see Fig. 15.  If one implants the 
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substance, characterizing by the presence of resonances close to the band-gap spectrum, the 

dispersion curves (k) drastically change; it becomes possible that new band-gaps are being 
formed, and this process is essentially dependent on the resonant frequencies of the 
implanted substance, see Figs. 16, 17.  
The implantation of various chemicals into the globular PTC was carried out by various 
techniques: among these was impregnation by a liquid wetting quartz, saturation of the 
crystal matrix by solutions of various salts with subsequent annealing, and also some laser 
methods including ablation. To analyze the spectra of reflectance of incident broadband 
electromagnetic radiation from the globular PTC interface, whose pores contain various 
substances, the experimental setup (see Fig. 18) was designed; its characteristics are 
described in Ref. [9]. In this setup the radiation of halogen or deuterium lamp (14) was 
directed with the help of an optical fiber probe perpendicular to the crystal interface (3). The 

optical fiber diameter was 100 m, and the spatial resolution of the setup was on the level of 
0.2 mm. With the help of another optical wave-guide the oppositely reflected radiation was 
 

 

Fig. 18. The schematic of the experimental setup for analyzing the spectra of radiation 
reflected from the PTC interface; (1) - screws; (2) - the top Teflon cover-sheet; (3) – the PTC; 
(4) – the cell; (5) – the liquid sample; (6) - the bottom Teflon cover-sheet; (7) – the optical 
fiber probe; (8) – the wave-guide; (9) – the mini-spectromemer; (10) – the computer; (11) – 
the YAG:Nd3+ - laser; (12) -  the power supply unit for the wave-guides; (13) – the  wave-
guide; (14) – the halogen lamp; (15) - the power supply unit for the lamp; (16) – the optical 
fiber probe for investigating the transmission spectra; (17) – the wave-guide. 
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input to a mini-spectrometer FSD-8, where the reflectance spectra in the range of 200 – 1000 

nm were processed in the real time. The spectral resolution of the reflectance spectra was  1 
nm. Using the laser radiation (pulse repeating YAG:Nd3+ laser with the possibility of doubling 
or quadrupling the frequency of the radiation) allowed us to carry out additional implantation 
of dielectrics or metals into the pores of the crystal with the simultaneous controlling the 
spectrum of the band-gap (this spectrum depends on the type and amount of the implanted 
substance). Using the additional optical fiber probe (16) allowed us to analyze the transmission 
spectrum with the help of second mini-spectrometer (9). The experimental data were input to 
the analog-to-digital converter of the computer (10) for the final processing. 
In Fig. 19 the reflectance spectra of the globular PTC with various globule diameter and 
containing the atmospheric air (curve 1 in Fig. 19 (a) – (c)), and water (curve 2 in Fig. 8 (a) – 
(c)) are given. It is seen that at increase of the globule diameter, and at implantation of water 
into the pores the reflectance peak corresponding to the band-gap is shifted to higher 
frequencies. This experimental result is in agreement with formulas (38) and (39), which are 
relevant for the PTC model in question:  

 2 2
max

2
2 sin ,

3
effD n    (38) 

 2 2
1 2 (1 ).effn n n     (39) 
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Fig. 19. The spectra of radiation reflected from (111) interface of the globular PTC with 
various globule diameters: D = 200 (а), 240 (b) and 290 nm (с). 

www.intechopen.com



 
Waves in Fluids and Solids 

 

198 

Here  is the angle of the radiation incidence onto the interface (111) of the PTC, D is the 
globule diameter, and n1, n2 are the refractive indices of SiO2 and an implanted substance 
respectively. 
As is seen in Fig. 19, the impregnation of the crystal matrix by water results in narrowing 
the band-gap. This is in conformity with the optical contrast decrease at approaching the 
refractive indices n2 and n1 to one another, see Eqn. (40) for the band-gap width. 

 2 1
max

2 1

|4
.

( )

n n

n n
 




 


 (40) 

Fig. 20 illustrates the reflectance spectrum for the first and the second band-gap. According to 
Eqn. (38) the frequency of the reflectance spectral maximum should belong to the visible range, 
and for the second band-gap that frequency should be duplicated. As is seen in this Figure, the 
additional reflectance peak is indeed observed in the near ultra-violet range. The curve (1) in 
this Figure characterizes the parameters of the second band-gap. It is noteworthy that spectral 
boundaries of this band-gap are shifted towards larger wavelengths. This result is due to the 
growth of refractive index of SiO2 in the ultra-violet spectral range.  
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Fig. 20. The reflectance spectra of the globular PTC, filled with air (curve (2)) and water 
(curves (1) and (3)). The curves (2) and (3) are related to using the halogen lamp with a 
broad bandwidth in the visible range. The curve (1) is related to using the deuterium lamp 
with a broad bandwidth in the ultra-violet range. 
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Fig. 21. The reflectance spectrum for the initial PTC (the curve 2), and the PTC doped with 
the nanoparticles of gold (the curve 1). 
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Fig. 21 shows the reflectance spectra for the same geometry of an incident light (the 
radiation is reflected from (111) surface of the crystal), but now the golden particles are 
implanted into the crystal pores by the technique of laser ablation. As is seen in this Figure, 
the implantation of metal into the pores results in shifting the band-gap to higher 
frequencies, which is due to the fact that the real part of the metal dielectric permittivity in 
the range of optical frequencies is negative.  

1.4 Acoustic properties of globular PNC 
Basing on the classical Lamb model, in Refs. [6, 7] the theory of natural oscillations (modes) 

of isolated isotropic spherical globules was developed. In this theory the existence of two 

kinds of globular oscillations (modes), characterized by the subscripts l and n, was 

predicted. For describing these modes the following dimensionless values were introduced:  

 , .nl nl
nl nl

L T

D D

V V

                          (41) 

Here VL and VT are the velocities of longitudinal and transverse acoustic waves accordingly, 

D is the diameter of globules, nl are the corresponding frequencies in Hz. The equation for 

the eigenvalues nl and nl  related to the oscillating modes, which are induced in a sphere, 

has the form: 
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where  and  are the corresponding eigenvalues, and jl() is spherical first order Bessel 

function. The solution to this equation gives the following relationship between the 

frequencies:  

 0( , )
,nl

n l

D

v

v              (43)  

where 0(n, l) is some function, dependent upon the numbers n and l. 
The modes characterized by even numbers n and l are the Raman-active ones, and thus can 
contribute to the spectra of two-photon light scattering (by contrast to the libration modes, 
which cannot be displayed in the two-photon processes due the rules of selection). The 
equation (43) was analyzed in Refs. [6, 7] for the spherical globules made of quartz; the 
velocities VL = 5279 m/s and VT =3344 m/s for the longitudinal and transverse sound 
velocities in the amorphous quartz were substituted in the corresponding equations. The 
calculated values of the frequencies in the GHz frequency range for some globular modes 
are the following: 

 10 = 2.617/D = 0.44 cm-1, 20 = 4.017/D  = 0.68 cm-1, (44) 

where D  = 200 nm, which is in a good conformity with the experimental data, see below. 

Thus, in the case of the opal matrixes the nano-sized spherical globules play a role of 
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vibrating molecules. The standing waves are induced in each globule of the crystal. The 

pulsating modes arising in the PNC globules are related to the movements, resulting in the 

change of the globule material density. This is why the vibrating excitation of one particular 

globule can transfer to another globule; accordingly the excitation wave of the globules can 

travel along the crystal. As is known, it is possible to observe various kinds of non-elastic 

scattering in medium, e.g., the Raman scattering, the Brillouin scattering, the Bragg scattering 

etc. In the case of Raman scattering the oscillatory quanta corresponding to the molecular 

vibrations are excited (or damped). Thus if we deal with PNC, the globules with the size of 

several hundred of nanometers play a role of vibrating molecules. Accordingly, the non-elastic 

scattering of light caused by the excitations of radial vibrations of the globules was termed as 

Globular Scattering (GS) of light. At low intensities of incident radiation this scattering is of 

spontaneous character. In Ref. [10] the spectra of spontaneous GS in the synthetic opals were 

for the first time observed at irradiation of a CW Ar++ - laser with the wavelength of 514.5 nm 

in the back-scattering geometry. For such measurements the synthetic opals having the 

effective sphere diameter D = 204, 237, 284 and 340 nm were used.  

The GS spectrum investigated in this work consisted of six well-pronounced Stokes and anti-

Stokes spectral peaks, whose frequencies could be associated with the resonant globular 

modes belonging to the range of 7 - 27 GHz. The presence of the anti-Stokes satellites is 

explained by a high “population density” of low vibration states at room temperature. As was 

found out, the frequencies and relative intensities of the satellites do not depend on the 

polarization and the angle of incidence of the radiation. Besides, these parameters did not 

change at rotating the sample around the normal axis in the point of incidence of laser 

radiation. In Ref. [10] the dependence of frequency of various acoustic modes upon the sphere 

diameter was studied. As against to the spontaneous Brillouin scattering, GS can be observed 

both in the “forward” and “backward” geometry. The frequency shift for GS appears to be 

essentially smaller than that for Raman scattering caused by the molecular vibrations.  
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Fig. 22. The schematic of experimental setup for observing the Stimulated Globular 
Scattering (SGS) in the “forward” geometry; 1 – Ruby laser, 2 – half-transparent mirror, 3 – 
power meter, 4 - focusing system, 5 – the sample under study, 6 - the Fabri-Perot 
interferometer, 7 – mini-spectrometer 

The experiments to observe the Stimulated Globular Scattering (SGS) in the PTC were first 
described in [6]. The schematic of experimental setup for observing this scattering in the 
“forward” and “backward” geometry is illustrated in Figs. 22 and 23 accordingly. Here the 
pulsed Ruby laser with the wavelength of 694.3 nm, the bandwidth 0.015 cm-1, the 
pulsewidth of 20 ns, and the pulse energy of 0.4 J was used. The laser radiation was directed 
with the help of focusing lens system 4 (Fig. 22) or 6 (Fig. 23) onto the PTC sample mounted 
on a copper cooler and placed into a basin made of a foam plastic. We used the lenses of 
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Fig. 23. The schematic of experimental setup for observing the Stimulated Globular 
Scattering (SGS) in the “backward” geometry; 1 – Ruby laser, 2, 5, 7 – half-transparent 
mirrors, 3, 8, 11 – power meters, 4 - the mirror, which can be removed (optional), 6 - 
focusing system, 9 – the sample under study, 10 - the Fabri-Perot interferometer, 12 – mini-
spectrometer. 

 

(a) 

 

(b) 

Fig. 24. The interferograms, obtained with the help of the Fabri-Perot interferometer, 

relating to the incident radiation spectrum of the Ruby laser ( = 694.3 nm), case (а), and to 
the spectrum of SGS in the “backward” geometry, case (b). In the second photo (case (b)) the 
system of double rings corresponds to the incident wave (the rings of smaller radius; the 
same rings can be found in the first photo, case (a)), and its scattering Stokes satellite (the 
rings of greater radius). In this particular case the free spectral range of the interferometer 
was equal to 0.833 cm-1. 
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different focal lengths: 50, 90 and 150 mm. Thus it was possible to perform the 

measurements for various intensities of the radiation as well as for various electromagnetic 

field distributions inside the sample. The PTC samples under study were manufactured of 

thin (their thickness was of 2 – 4 mm) synthetic opal plates with the interface corresponding 

to the (111) crystal plane. The laser radiation was focused normally to the crystal interface. 

The scattered radiation in the “forward” geometry (Fig. 22) was analyzed in the incident 

wave direction with the help of the Fabri-Perot interferometer and a mini-spectrometer 7. In 

case of the “backward” geometry (Fig. 23) the scattered radiation was analyzed in the 

opposite (with respect to the incident wave) direction with the help of the Fabri-Perot 

interferometer 10 and a mini-spectrometer 12. The mirror 4 (Fig. 23) was used for comparing 

the spectra of incident Ruby laser radiation and the scattered radiation. 
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Fig. 25. The Stimulated Globular Scattering (SGS) spectrum in the PTC, obtained in the 
“backward” geometry. The free spectral range of the Fabri-Perot interferometer was of 0.833 
см-1. The broad lines are related to the incident laser radiation, while the narrow ones – to 
the Stokes satellites of the SGS. 

The taking of the scattered radiation spectra was carried out at the room temperature, and 

also at cooling the samples up to the temperature of nitrogen boiling (78 К). In the latter case 

copper cooler with samples was placed into a foam plastic basin filled with the liquid 

nitrogen, while the crystal interface (111) was always above the level of the boiling nitrogen. 

For researching the spectra the Fabri-Perot interferometers with various (from 0.42 to 1.67 

cm-1) free spectral ranges were used. The detectors 3 (Fig. 22), and 3, 8, 11 (Fig. 23) for 

measuring the energy of laser radiation and the signal of the SGS in the “forward” and 

“backward” geometry accordingly were applied.  

In Fig. 24 (a) and (b) the interferograms related to the setup illustrated in Fig. 23 are given. 
Fig. 24 (а) shows the spectrum of incident Ruby laser radiation obtained at blocking the 
scattering signal by turning the half-transparent mirror 5 to the corresponding angle. In this 
case the spectral pattern had the form of the pattern of single interference rings, whose 
bandwidth was controlled by incident radiation bandwidth, which was on the level of 0.015 
cm-1. Figs. 24 (b) and 25 are related to the experiment, where the scattered radiation was 
studied in the “backward” geometry. The patterns of double interference rings related to the 
incident radiation (the rings of smaller radius), and the Stokes satellites related to the SGS 
(the rings of greater radius) are clearly seen. The frequency shift in this case was about 0.44 
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cm-1. The Stokes signal intensity appeared to be comparable with the incident radiation 
intensity. In the case of missing the mirror 4 (see Fig. 23), the spectrum would contain only 
the pattern of single rings caused by the SGS only, as in this case the incident radiation 
strongly diverges after its reflecting from the sample interface, and this signal does not input 
to the detector 12. We plotted the dependence of the frequency shift f for the first Stokes 
component of the SGS as the function of the inverse diameter (1/D) of the globules. It 
occurred that such dependence is close to the linear one.  
 

 

Fig. 26. Dependence of the frequency shift of frequency for the first Stokes component of the 
SGS versus the inverse diameter of the globules. 

The explorations of spectra of the SGS were also performed for the opal matrices filled with 

liquids of various refractive index n: water (n = 1.333), acetone (n = 1.359), ethanol (n = 

1.362), glycerol (n = 1.470), toluene (n = 1.497), benzene (n = 1.501) and nitrobenzene (n = 

1.553). Thus, the phase contrast (the value of h = n/nSiO2, i.e. the ratio of refractive index of 

the liquid to that for quartz) changed in the range from 0.91 to 1.06. For example, 

impregnation of the opal matrix by acetone sharply decreases the phase contrast, and the 

sample becomes almost transparent. It provides an opportunity to observe the SGS in the 

scheme of the “forward” geometry of scattering. Similar to the case of the “backward” 

geometry, at the “forward” geometry of scattering the pattern of double rings related to the 

incident radiation (the rings of smaller diameter) and the Stokes component of the SGS (the 

rings of greater diameter) were seen as well. Due to the transparency of the sample treated 

by acetone it was possible to observe sufficiently intense Stokes signal of the scattering in 

the incident wave direction (the “forward” geometry). The Stokes shift in this case was on 

the level of 0.4 cm-1. Note that the SGS was observed with the liquids pointed above both 

for the “forward” and “backward” geometry. In the case of “backward” geometry the 

frequency shift of about 0.4 cm-1 was observed for the incident wave intensity at the level of 

0.12 GW/cm2 for the opal matrices, filled with ethanol and acetone. The increase in the 

incident wave intensity up to 0.21 GW/cm2 resulted in occurrence of the second Stokes 

components having the frequency shift of about 0.65 cm-1 for acetone, and 0.63 cm-1 for 

ethanol. At the same time, for the “forward” geometry (and at the room temperature) only 

one Stokes component with the frequency shift of 0.4 cm-1 was observed both for acetone, 

and for ethanol.  
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Fig. 27. Dependence of the energy (Esc) of the Stimulated Globular Scattering versus the 
energy of the incident wave El for the synthetic opals with the globule diameter of 245 nm. 

 

The geometry of 
experiment 

The 

frequency 

shift, cm
-1

The number of 
the Stokes 

components 

The “forward” 
geometry, the opal 
matrix is not 
saturated by any 
liquid 

0.44 1 

The “backward” 
geometry, the opal 
matrix is saturated by 
acetone 

0.40 
0.65 

2 

The “forward” 
geometry, the opal 
matrix is saturated by 
acetone 

0.40 1 

The “backward” 
geometry, the opal 
matrix is saturated by 
ethanol 

0.39 
0.63 

2 

The “forward” 
geometry, the opal 
matrix is saturated by 
ethanol 

0.37 1 

Table 2. The values of the frequency shifts and the number of the Stokes components for 
various geometries of experiment. 

www.intechopen.com



 
Acoustic Properties of theGlobular Photonic Crystals 

 

205 

At the decrease of temperature up to 78 K the threshold for the SGS was three times 

reduced, and the number of observable Stokes components was increased. In the Table 2 the 

characteristic parameters of the Stokes components, including the frequency shift and the 

number of the Stokes component observed in the particular geometry of experiment are 

summarized.  

As follows from this table, the values of the frequency shifts for the SGS appear close to 

those for the Stimulated Brillouin Scattering, observed earlier in the same liquid samples. 

The threshold for occurrence of SGS and the number of the Stokes components depend on 

the globule size, the substance in the crystal pores, the energy of incident laser radiation, 

and the temperature. In Fig. 27 the dependence of energy of the SGS versus the incident 

light energy is plotted for the liquid nitrogen temperature and for the globule diameter 

equal to 245 nm in case of the “backward” geometry. As is seen from the graph, at 

increasing the incident wave energy the SGS signal approaches the saturation level; note 

that the similar effect has been observed earlier for the Stimulated Raman Scattering. It is 

thus possible to explain the observed effect by increasing the efficiency of competing 

nonlinear processes at the growth of intensity of the incident radiation. The highest 

transformation factor of the incident radiation energy to the SGS energy obtained in our 

experiments was on the level of 60 %. As the quantum energy of the incident radiation is by 

four orders of magnitude higher than the energy of the corresponding radial vibrations of 

the globules, the intensity of acoustic phonons, generated by the globular vibrations should 

be approximately equal to 103 W/cm2. The lowest threshold for the SGS was realized for the 

so-called pulsating globular modes, the excitation of which should be accompanied by the 

oscillations of material density of the globules; this process is expected to have a high Q-

factor. The corresponding acoustic waves have a scalar nature, since they are induced by 

radial vibrations of globules, and their propagation is not associated with any specific 

direction. In other words, these acoustic waves essentially differ from the acoustic waves of 

the vector type, i.e. from the transverse or longitudinal phonons. The wave equation for 

such scalar acoustic waves is analogous to the Klein – Gordon equation, describing the 

behavior of particles with the non-zero rest mass in the field theory:  

    
2 2

0
2 2 2

1
, , ,u t u t

S t S

 
    

r r                            (45) 

 

where S has the sense of a group velocity of the wave at high values of the wave vector k, 

0 02 ~ 1 /c D   , 0 is the corresponding magnitude of frequency of the pulsating mode, 

 0( , ) expu t u i t r kr  is the scalar wave function describing the propagation of a 

pulsating perturbation in space. According to (45), the dispersion law  k  for the scalar 

acoustic wave has the form: 

 2 2 2 2
0 .S k                                  (46) 

As was revealed in the experiments (see Fig. 26), the frequency shift of the first Stokes 

component of the SGS is inversely proportional to the globule diameter D, which is in 

conformity with Eqn. (46). For the “forward” geometry of experiment the wave vector of the 

scalar acoustic wave is equal to  
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 0 ',k k k                                             (47) 

where k0 and k’ are wave vectors of the incident radiation and the SGS wave. If we deal with 

the “backward” geometry, we arrive at  

 0 '.k k k    (48) 

Thus, analyzing the spectra of the scattered radiation stimulated by the Ruby laser pulses in 

the PTC, we established that the spectral pattern is the set of double interference rings. 

These rings are related to the incident laser radiation and the Stokes components of the SGS. 

The intensity of the Stokes components is of the same order of magnitude as the incident 

wave intensity. This is an additional argument in favor of our statement, that the observed 

phenomenon is associated with the stimulated (not spontaneous) scattering. 

2. The conclusion 

Summarizing, we shown that implantation of various dielectrics, whose refractive index 

exceeds that for quartz, into the pores of synthetic opals results in shifting the band-gap of 

the PTC to lower frequencies. At the same time, at implantation of metals into these pores 

the band-gap is shifted to higher frequencies. Finally, implantation of various substances 

having the additional resonant absorption lines belonging to the band-gap of the crystal 

results in occurrence of additional sharp peaks of reflectance either in the long-wave or 

the short-wave areas of spectrum. The studies of characteristics of the PTC by the 

technique of reflectance spectroscopy of the band-gaps have revealed the areas of 

abnormal increase of density the photon states in the globular crystal; these areas are 

localized close to the band-gap boundaries. The analysis of such areas can allow us to 

obtain the lasing in the synthetic opals filled with active media. Besides, we expect that in 

the framework of this approach it will be possible to realize various nonlinear processes, 

including the Stimulated Raman Scattering of light, [9], Stimulated Globular Scattering of 

light [6, 9], generation of optical harmonics, parametrical generation [7] and the afterglow 

phenomena [11, 12]. 

On the basis of the results reported here we can make the following conclusions about the 

dynamics of acoustic phonons in the PTC. 

1. The spectrum of acoustic phonons in the PTC contains the allowed and forbidden zones 

in the GHz frequency range, similar to the allowed and forbidden zones for the 

photons. 

2. The group velocities of the acoustic phonons close to the forbidden zones (band-gaps) 

boundaries sharply decrease. 

3. The effective mass of acoustic phonons close to the band-gap boundaries has an 

abnormally low magnitude, comparable to the mass of electron.  

Let us also note that in the globular PTC a new type of standing acoustic elementary waves 

is possible [6, 7]. These standing acoustic waves are induced in the globules and can be 

considered as the coupled states of pairs of the acoustic phonons – the so-termed bi-

phonons. As was obtained in the experiments [6, 7], such bi-phonons can be induced by the 

incident optical radiation, and the interaction between the optical wave and the bi-phonons 

leads to a new type of the stimulated light scattering – the SGS. 
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Thus, the globular photonic crystal, being irradiated by powerful enough laser light can be 

generator of monochromatic acoustic waves in the GHz spectral range; the frequency of 

such waves should depend on the globule parameters and the type of a substance implanted 

into the crystal pores. 
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