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1. Introduction  

A small chemical compound, which specifically activates or inhibits a given biological 

system can become a lead candidate in a drug discovery perspective or a molecular tool for 

biological research (Stockwell, 2000; Mayer, 2003; Inglese et al., 2007; Maréchal, 2008). The 

identification and production of such compounds is thus a major issue for biological or 

therapeutic research. Strategies for small molecule discovery rely largely on high 

throughput screening (HTS) of chemical libraries, which has traditionally been the purview 

of industry for the past twenty years, and has become recently available in academic 

institutions (Stein, 2003; Fox et al., 2006). Such high throughput approaches use robotic 

handling of miniaturized biological assays and allow the screening of a large number of 

compounds to select those (called “hits”) that produce the wanted and reproducible effect 

on a given biological target (e.g. an enzyme or a whole cell). The size of available 

compounds collections to screen is rather large: for instance, the ChemNavigator's database, 

which proposes commercially available screening compounds from international chemical 

suppliers currently tracks over 46.7 million chemical samples. Among them over 24.9 

millions are claimed to be unique. However, such an amount is still small, relatively to the 

size of the chemical space: the number of synthesizable compounds is estimated to range 

from 1018 to 10200 compounds (Parker and Schreyer, 2004). Yet, the screening of a very large 

chemical library can be financially expensive, time consuming and the amount of biological 

material needed might be simply non realistic. Biologists must often lower their ambition 

and select a limited number of molecules to assay. The design of relevant chemical libraries, 

often called “core libraries” since they are supposed to accurately reflect the diversity of a 

very large collection (Dubois et al., 2008), is thus a central issue for screening. The automatic 
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clustering of chemical compounds can generate homogenous subsets based on a similarity 

measure, and allow a rationale definition for a core library (Willet, 1998). 

It has been demonstrated that structurally similar compounds are very likely to have a 
similar biological activity (Martin et al., 2002). Thus, not only the clustering should allow the 
identification of compound subsets, from which one representative molecule can be selected 
to be screened, but this method can also help to increase the diversity of in-house data sets 
by selecting additional compounds in other identified clusters of molecules. Moreover, it has 
been shown that it could be useful to select molecules which come from each cluster 
containing a “hit” compound; those “related” compounds should be tested through further 
validation screening stages (Engels et al., 2000).  
Clustering can also be used in a virtual screening approach, to select relevant virtual 
libraries (prior to a docking process for instance) or to select the more promising and diverse 
molecules (after a docking process) to be tested in vitro. 
Chemical compounds clustering, like any object clustering, implies four steps (Downs and 
Barnard, 2002): 
1. Identification of relevant descriptors for these objects; 
2. Selection and computation of a similarity (or a distance) measure; 
3. Use of a clustering algorithm to gather objects according to this distance or similarity; 
4. Analysis and qualification of the results. 
Molecules are structurally complex objects; it is therefore obvious that the clustering quality 
relies strongly on the capacity of the distance measure to embrace both the structural 
likeness and dissimilarities. In this chapter, we focus on the efficiency of an adaptation, for 
small molecular objects, of a similarity index initially proposed in Inductive Logic 
Programming (Wieczorek et al., 2006). We compare this novel method with some other 
structural distances that are customary in chemistry or which have been recently proposed 
for molecular graph comparisons.  

2. Methods for the computation of structural distances between molecules 

The computation of structural distances between molecules (represented by graphs) directly 
or indirectly implies the search for isomorphic partial graphs. Generally, methods use a 
linearization (SMILE language from Weininger, 1988) or a structure propositionalization of 
the compound. Thus, a molecule is represented by a vector of descriptors, each one 
corresponding to a molecular fragment (Leach and Gillet, 2003). Recently, kernel functions, 
comparable to distances between graphs (Gartner et al., 2003), have been proposed in the 
Support Vector Machines (SVM) context. They present good performances in supervised 
machine learning to predict molecular bio-activity (Mahé et al., 2005) or to solve 
bioinformatics problems (Menchetti et al., 2005). In these approaches, molecular 
representation is global: a set of paths (i.e. molecular fragments specifically chosen or drawn 
by chance) is built explicitly or implicitly. It is also possible to value structural distances by 
dynamically building molecular fragments according to the matching between two 
molecules. This approach is proposed by Fröhlich et al. (2005), in a so-called “global 
matching” kernel to predict bio-activity. We focus here on a similar strategy with a 
similarity index Ipi, based on the comparison of labeled trees or substructures that allows the 
classification of molecules in an unsupervised learning machine approach. A short 
description of the kernel functions used in this comparative study and a deeper explanation 
of the principle of the Ipi similarity index are exposed in the following part. 
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2.1 Kernel functions 
Kernels functions are at the basis of machine learning methods using Support Vector 
Machines (SVM) approaches. These functions allow working on initial data as if they were 
in a high-dimensional space without having to transform them explicitly; moreover, kernel 
methods handle non-linear complex tasks using linear methods in this new space. The main 
advantage is that the data may be more easily separable in that high-dimensional space (the 
so-called “feature space”) than in the original space. This trick is at the basis of kernel 
machines. SVM and kernel functions were detailed by Shawe-Taylor and Cristianini (2004) 
and Schölkopf and Smola (2002).  

2.1.1 Tanimoto kernel 
This kernel (Ralaivola et al., 2005) is the transformation of the classical Tanimoto distance 
(Willet, 1998; Flower, 1998) into a kernel function. Molecules are seen as vectors where each 
dimension is associated with a given molecular fragment and the coordinates indicate if this 
fragment exists or not in the molecule. To build these vectors, it is necessary to give the 
maximum length of the considered molecular fragment. This can be defined by allowing the 
selection of paths from length 1 to a maximum u or allowing the selection of paths of an 
exact length l. 

2.1.2 Weighted decomposition kernel (2D-WD kernel) 
In this kernel (Menchetti et al., 2005), molecules are represented by the set of all possible 
subgraphs which can be built for a given maximum depth. The kernel function between two 
molecules x and y weights the exact kernel between each pair of atoms (xi, yj) according to 
the structural information. This one corresponds to the subgraphs that contain all the paths 
of depth d, built from each atom xi and yj. 

2.1.3 Optimal assignment kernel (OA Kernel) 
The Optimal Assignment Kernel (Fröhlich et al., 2005) is based on a dynamical and local 
graph exploration. Unlike the Tanimoto Kernel, the relational structure of molecules is 
clearly conserved in this representation. The kernel computation is divided into two steps 
that are conceptually close to the ones proposed by Bisson (1995). The first step evaluates a 
distance between each atom pair (ai, bj) from two molecules A and B, thanks to the kernel 
function named Knei that takes into account the width w of each atom neighboring. The 
second step matches atoms ai (from A) with atoms bj (from B), in order to maximize the 
Knei (ai, bj) sum, which amounts to doing a maximum weight matching in a bipartite graph. 

2.2 Structural similarity Ipi Index 
This similarity index is an adaptation of the index proposed by Bisson (1995) and Wieczorek 
et al. (2006) to chemical structures. 

2.2.1 General principles 
Each molecule M is described as a non-oriented graph defined by a pair (A, L) where: 

 A corresponds to the atoms {a1, …, an} of molecule M; 

 L corresponds to the covalent bonds between these atoms {l1, …, lp}. 
 Many similarity coefficients usually used in computational chemistry are based on the size 
(in number of atoms) of the Maximum Common Substructure (MCS) between two 
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molecules M and M’ (Bunke and Shearer, 1998). As for example, the similarity S1 which is 
defined as the relative size of the MCS compared to the size of the biggest molecule : 

  1

( , ')
( , ')

max , '

MCS M M
S M M

M M
  (1) 

The similarity coefficient S proposed here is also based on the MCS but is defined as the 
mean of two dual asymmetric values INC (M, M’) and INC (M’, M) : 

  1
( , ') ( , ') ( ', )

2
S M M Ipi M M Ipi M M   (2) 

where the value INC (M, M’) is the relative similarity of M towards M’, i.e. the degree of 
inclusion of M into M’. It is defined as the relative size of the MCS between M and M’ 
compared to the size of molecule M’: 

 
( , ')

( , ')
'

MCS M M
Ipi M M

M
  (3) 

This trick allows comparing molecules having big differences in size. For instance, if M is 
smaller than M’ and M is nearly included in M’, from the point of view of M, the molecule 
M’ is very similar since it contains the same information and we have INC (M, M’)  1, 
whereas a classical symmetric similarity would reflect this difference in size. The use of the 
mean of both inclusion values (INC (M, M’) and INC (M’, M)) leads to a more realistic 
similarity measure that allows breaking the size bias and focusing deeper on the existence of 
common substructures as shown on Figure 1. 
 

 

Fig. 1. Difference between a classical similarity measure and an asymmetric-based one. 

In this graph, S1 (plain line) is a classical similarity measure and S (dashed line) a non-
symmetric-based one. This graph shows the behaviour of both S (equation 2) and S1  
(equation 1) between a molecule M of size 15 and another molecule m of increasing size: 
S= 0.5*(9/15+9/|m|) and S1(M, m) = 9/max(15, |m|). The size of the MCS is 9. One can 
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observe that S1 remains constant for all molecules which size is lower than |M|. In other 
words, the similarity S1 confounds those molecules that seem all similar, with respect to 
their size; which is not the case for S because there is no plateau. 
The degree of inclusion INC (M, M’) is computed in two steps, a local one and a global one. 
The first local step aims at computing a local similarity between each pair of atoms (ai, a’p) 
belonging respectively to molecules M and M’. The values are stored in a matrix called SUB; 

SUB[ai, a’p] is in [0,1]. The same processing is followed for M’ towards M and the results are 
stored in a matrix named SUB’. The key idea is to consider that two atoms ai and a’p are most 
similar if they share common physicochemical properties but also if the neighboring atoms 
to which they are connected by covalent bonds are themselves similar to each other. This 
recursive definition allows expressing the problem in the form of a non-linear equations 
system; the resolution of this system consists in the search of a fixed point. 
The goal of the second step is to compute a global inclusion between both molecules M and 
M’, i.e. the value of INC (M, M’). Having local similarities values for each atom pair (ai, a’p) 
and according to the structural connectivity of M, we search the matching that maximizes 
the global inclusion which can be approximate by the biggest common tree or substructure 
between the two molecules. Once both INC (M, M’) and INC (M’, M) are computed, the total 
similarity between both molecules is the mean of both values. This mean is then used by the 
clustering algorithm. 

2.2.2 Computation of local similarity (between atoms)  
The aim is to compute the value of each element of the matrix SUB which corresponds to the 
local similarity between one atom ai of M = (A, L) and one atom a’p of M’ = (A’, L’) (see 
example in figure 2). It quantifies the inclusion degree of the environment of the atom ai  in 
the environment of the atom a’j. The following functions are defined: 

Sa: A×A’[0,1], the similarity between two atoms according to their respective 

physicochemical properties; 

Sl : L×L’[0,1], the similarity between two covalent bonds according to their respective 

physicochemical properties; 

S: A×L×A’×L’[0,1], the similarity between two pairs (atom, bound);  

NbLink (ai ), the number of covalent bonds of a given atom ai; 

Link-of : A  L, a function returning, for a given atom ai, the list {l1, …,  lm} of the covalent 

bonds of ai; 

Ngbr : A×L  A, a function which gives for a given atom ai and a given bound lm, the 

neighbouring atom aj which is connected to ai by lm. 

The inclusion degree is stored in SUB[ai , a’p ]. Its computation comes down to build a system 

of non-linear equations, where SUB[ai , a’p ] is one of the variables to compute. The resolution 

of this system is obtained by using the Jacobi’s iterative method. After each iteration, we 

have the following equations: 
 

S (ai ,lm , a’p , l’t) = 1/2(SUB[Nghbr (ai , lm), Nghbr (a’p , l’t)] + Sl (lm  , l’t )) (4)

SUB[ai , a’p] = 1/2 (Sa (ai , a’p ) + MaxMatchScore / NbLink (ai )) (5)

 

MaxMatchScore is computed according to the following processing. Let us define the 
function Find_Max_Mapping (FMM). For two given atoms ai and a’p, FMM searches the 
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optimal mapping between the neighbours of ai and a’p and so between the corresponding 
covalent bonds. FMM returns the score of this optimal mapping that is MaxMatchScore.  
This function is a classic problem of matching. Indeed, let L (resp. L’) be the list of the 
covalent bonds in which appears the atom ai (resp.  a’p ). Bonds, which are elements of L and 
L’, can be considered as a bipartite graph elements; thanks to S, the similarity of each 
quadruplet (ai ,lm , a’p , l’t), is known. Thus, finding the best matching between these elements 
boils down to maximize the sum of the S values, i.e. to solve a maximum weight matching in 
a bipartite graph. MaxMatchScore, the corresponding matching score, is equal to the sum of 
the S values. 
To find this optimal matching, we use the Hungarian algorithm also called the Kuhn-
Munkres algorithm (Kuhn, 1955; Munkres, 1957) whose complexity is O(n3). This is not a 
problem since lists L and L’ are rather small: their size corresponds to the considered atom 
valence (for instance, 4 for the carbon atom).  Thus, the local similarity between two atoms is 
defined recursively and the originality of this approach lies in the fact that S is computed 
according to SUB[Nghbr (ai , lm), Nghbr (a’p , l’t)]. Lastly, the local similarity between two 
atoms corresponds to the average of their physicochemical similarity Sa and the normalized 
average of the similarity of their neighbouring (see Figure 2). 
 

 

Fig. 2. Summary of the information used to compare two given atoms in a molecule. 

In equation (2), MaxMatchScore is normalized by NbLink(ai). This gives its asymmetric nature 
to SUB[ai , a’p], whereas a division by Max (NbLink (ai) , NbLink (a’p)) would have kept a 
symmetric nature for this similarity measure. From a practical point of view, we use the 
Jacobi’s iterative method in a synchronous way, i.e. we use two instances of the matrix SUB, 
one for the iteration i and one for the iteration i+1: all the values of the matrix SUBi+1 are 
computed using the terms of the matrix SUBi, so the values for all atoms are simultaneously 
changed, when SUBi+1 is copied in SUBi. The number of iterations characterizes the depth of 
the information propagation, i.e. the neighbouring size taken into account to compare two 
atoms. Figure 3 shows an example of this propagation. 
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Fig. 3. Computation and evolution of the matrix SUB. Example with the molecule M being 

formamide (CONH3) and the molecule M’ being glycol-aldehyde (C2H4O2). 

It can be proved that the system always has a solution and that this is found after few 

iterations (from 3 to 8 according to the complexity of the molecules). The information 

propagation decreases as  2
1 1n  where n is the distance between neighbours.  

When using the Hungarian algorithm, the overall complexity for the computation of the 
SUB is in O(K.V2.D3) where: 

 D is the mean number of neighbours for each atom in the molecules; 

 K is the number of iterations of the iterative procedure; 

 V is the mean number of atoms in the molecules. 
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This complexity may be reduced in O(K.V2.D2) if D is low, by pre-computing all the possible 

matching between them. 

In this work, to have homogeneity with the other compared methods (see Experimental 

materials and tests methodology), the molecular representation is kept minimal: 
 Sa depends only on the type of atoms (C, O, N etc.): 

Sa (ai, a’j ) = 1 if atom types are equal,  Sa (ai, a’j ) = 0 otherwise. 

Sl depends only on the type of bonds (simple, double, triple, aromatic):  

Sl (li, l’j ) = 1 if bound types are equal, Sl (li, l’j ) = 0 otherwise. 
Note that Sa and Sl are generic functions. It would then be very easy to integrate more 
complex properties for atoms and bonds, such as charge index, pharmacophore points, etc. 
Modifying Sa and Sl would be sufficient without any change in the global algorithm. 

2.2.3 Global similarity (between molecules) computation 
In order to compute the global similarity between two molecules M and M’, INC(M,M’) , we 
search for the best matching between atoms from M and M’. This matching relies on the 
local similarities stored in matrix SUB and it maximizes the global inclusion. This can be 
achieved by using the Hungarian algorithm, as in OA Kernel (Fröelich et al., 2005), 
considering that we have a bipartite graph, built with atoms of molecules M and M’. Since 
local similarities can correspond to different matching, they do not guarantee that the 
maximum common structure found by the algorithm would be a connected one. However, 
this is not a real problem in chemistry since applications such as lead discovery or synthesis 
design might put a premium on unconnected structural solutions.  
The matching is therefore searched according to the following heuristic. The best score of 
local similarities between atoms that we can find in the matrix SUB, is taken as a seed. The 
matching is then propagated according to the structure connectivity of M and according to 
the SUB values. In the example shown in Figure 4, M and M’ are two molecules, atoms « 1 » 
and « a » are taken as seeds. Atoms « 2 » and « 5 » (neighbours of « 1 ») are processed to be 
matched with « b » and « e » (neighbours of « a »). Their matching can be processed 
according to a greedy algorithm (pairing according to a decreasing ranking of similarity 
values) or according to a Kuhn algorithm. In the following experiments, we have chosen a 
greedy algorithm for this matching. When « 2 » and « 5 » are paired, « 3 » (neighbour of 
« 2 ») and « f » and « g » (neighbours of « e ») are processed and so on. This matching stops 
when there are no more atoms to match in M or as soon as an atom of M cannot be matched 
with an atom of M’. Let us note down that : 
1. atom « 3 » (neighbour of « 2 ») is processed before « 4 » (neighbour of « 5 ») because 

« 2 » has been stored before « 5 » in our implementation structure : there is no special 
criteria for this choice;  

2. atom « 4 » (neighbour of « 5 ») has been, for instance, matched with « c ». It is not 
processed again as a neighbour of « 3 », but our algorithm implementation keeps in 
mind that there is also a connection between « 3 » and  « 4 ». So, if there was also a 
connection between « c » and « f », in molecule M’, it would be able to find that the best 
match is a cyclic substructure. 

 Since B is only a possible start point, the procedure is repeated (ten trials1), each time taking 

a different pair of atoms not already matched in a previous trial. 

                                                 
1 This number was established experimentally: indeed, for all data sets, the best matching appeared in 

the 10th first iterations in more than 99% of cases.  
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Fig. 4. Example for general principles of the incremental matching. 

The complexity for the search of the best match between the two compounds with the use of 

SUB is in O(V3) where V is the mean number of atoms in the molecules. As for the local 

similarity computation, this complexity may be reduced in O(1) when pre-computing all the 

possible matching for low values of V, which is frequent in chemistry. The best matching 

between atoms from two molecules M and M’ is then used to compute the global inclusion 

of M in M’, INC(M,M’). This is obtained by the sum of all SUB matrix elements relating to 

matched atoms of M and M’, divided by the number of atoms in M. This division by the size 

of M brings additional asymmetry to this measure. Thus, the overall complexity of this 

approach is in O(K.V2.D2). 

3. Experimental material and tests methodology 

In this paragraph we present the material and methodology for the comparison of the 

capacity of each similarity measure to return, by classification of simple molecular 2D 

structures, chemical families defined by experts. 

3.1 Chemical libraries 
3.1.1 Data sets 
Four public chemical datasets published by Sutherland et al. (2003) have been used. These 
authors gathered compounds which had been tested against four different biological targets; 
these datasets present the advantage of being already divided into well defined and 
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precisely described chemical families. The Cox2 library contains a set of 467 molecules tested 
as inhibitors of the cyclooxygenase-2 and divided into 13 families; the Bzr library is a set of 
405 ligands for the benzodiazepine receptor, divided into 14 families; the Dhfr library 

contains a set of 756 inhibitors of the dihydrofolate reductase, divided into 18 families, with 
32 compounds belonging to singleton families. In this study, these singletons were 
discarded and only 724 compounds divided into 17 families were considered. The Er library 
is a set of 1,009 estrogen receptor ligands: 393 (extracted from the literature) are gathered 
into 3 structural families and 616 form a miscellaneous group: for our study, we considered 
only the 3 families extracted from the literature. 
Molecular bi-dimensional (2D) structures were provided in SDF files. For standardization 
purposes, all the molecules were normalized according to a set of normalization rules that 
was built in accordance with usual chemical usage. This task was achieved using the 
ChemAxon software Application Programmatic Interface (www.chemaxon.com) and 
standardization rules were formally defined as chemical reactions in an XML configuration 
file read by the ChemAxon Standardizer object. The setup file is available upon request. 
In order to compare methods within the same description context, independently of the 
studied distance, we reduced the set of descriptors associated with each molecular graph to 
the minimum set, which existed in all the compared methods, or which was easily 
integrated in each distance implementation. In this minimal representation, a molecule is an 
attributed undirected graph x=(V, E). Each vertex v in V represents an atom and is labeled 
by the atom type (C, O, N, etc.). Each edge (v,w) in E represents a chemical bound; it is 
characterized by a type that can be single, double, triple or aromatic. 

3.3 Kernel functions implementation and clustering algorithm 
Mahé et al, (2005) provided the implementation of the Tanimoto Kernel. For each of the two 
other kernels (2D-WD Kernel and OA Kernel), their respective author’s implementation was 
used. Once distance matrices had been computed, molecules were categorized into families 
using the well-known ascendant hierarchical classification (Johnson, 1967); the chosen 
implementation was hcluster from R software (www.r-project.org/) and the Ward index was 
the interclass aggregation distance. 

3.4 Parameters setting 
In the following experimentations, for each of the selected methods, the parameters' values 
were optimized for best classification capacities.  
For the Tanimoto Kernel, all values (from 5 to 20) were tested for the parameters u (all paths 
of length from 1 until u) and l (all paths of exact length l). For each database, the parameter 
(either u or l) was unchanged and the associated values that gave the best results (details can 
be given upon request). For the 2D-WD, OA Kernels and Ipi, the main parameter is the width 
of the neighbourhood, which is taken into account to evaluate the similarity between two 
atoms. In Ipi, this parameter corresponds to the number of iterations used to compute the 
matrix of similarities between all pairs of atoms. A value of 5 was sufficient in Ipi to see the 
convergence of the SUB matrix. Thus, this value was selected for the corresponding 
parameters in OA Kernel and 2D-WD Kernel. 

3.5 Classification evaluation 
As emphasized by Candellier et al. (2006), classification evaluation is difficult without any 
validation criteria. It is not the case here since we know, for each dataset, the number and 
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precise content (in terms of molecules) of the families (or classes) that the system must 
retrieve. To evaluate the difference between the original classification and the learnt one, a 
confusion matrix was used (Kohavi and Provost, 1998), called M(O,B). Its lines (Oi with i 
varying from 1 to p) represent the original classes and its columns (Bj with j varying from 1 
to q) represent the classes built by the classification system. Each matrix element ni,j 
represents the number of molecules which are present in both classes Oi and Bj. The built 
classification is optimal when there is only one value ni,j different from 0 for each line and 
each column. So a simple way to qualify the classification is to measure the average 
entropies associated to lines and columns. Two indices based on conditional entropies were 
considered, the Confusion Index (CI) that quantifies the number of merged classes and the 
Segmentation Index (SI) that quantifies the number of split classes. 
Given  

 , , ,
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The most important index is CI since it indicates if the initial classification has been well 
retrieved by the algorithm. The lower its value is, the better is the matching between both 
classifications. 

4. Comparative analysis of similarity measures 

Figure 5 shows the CI index evolution for the four chemical libraries. Excepted for Cox2 
library, ranking of the four methods is always the same: Ipi, Tanimoto Kernel, OA Kernel and  
2D-WD Kernel. Considering the results for each base, it can be observed that molecules from 
the Cox2 library belong to close scaffolds (i.e. core graph structures). However, families are 
easily recognizable because of few discriminating atoms or chemical functions, whose 
positions vary in aromatic cycles. Ipi index recognizes nearly all the expected families 
because it is able to detect each atom local environment using its local similarity 
measurement. Ipi categories that do not comply with expertised chemical families 
correspond to very small families which have been merged by the classification system. 
Tanimoto Kernel, also, produces a good score whereas 2D-WD Kernel and OA Kernel results 
were less efficient in returning chemical families. 
Molecules from the Dhfr library have several similar substructures which are differently 
connected together from one family to another. Results are the same as for the Cox2 database 
but with a greater dispersion between the methods. Ipi index shows its capacity to globally 
recognize molecular structures.  
Structures of molecules from the Bzr library are very diverse and this variability is 
sometimes rather great within the original families. In this case, all the methods failed to 
accurately recover the original classification given by chemists. 
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Finally, the Er library contains only three families. Each one is characterized by a specific 
scaffold which should be easily recognized. Indeed, Ipi and Tanimoto Kernel found again the 
three expected families (their CI curves are superimposed). On the other hand, again, 2D-
WD Kernel and OA Kernel performance was lower. 
 

Cox2 library Dhfr library 

  

Bzr library Er library 

  

Fig. 5. Comparison of similiarity measures. CI index for the four distances used with HAC 
clustering method on the four datasets: Cox2, Dhfr, Bzr and Er. The vertical line marks the 
original number of chemical families and the point where a ranking between the four 
methods can be done.  

The tested approaches correspond to two different strategies. TanimotoK and 2D-WD Kernel 

represent the molecules by means of paths in the graphs contrary to OA Kernel and Ipi that 

take into account the whole structure of the graphs. It is therefore interesting to understand 

why for each library, the Ipi and Tanimoto Kernel methods performed better. In the case of OA 

Kernel and Ipi, which use close algorithms, we searched the main modifications that would 

explain the differences. To this purpose, Ipi algorithm was changed to erase its two major 

differences with OA Kernel:  

 The asymmetrical calculation of the similarity: in equation (5), NbLink (ai) was replaced 

by Max (NbLink (ai), NbLink (a’p)), and in the global similarity calculation (see 2.2.4), the 

size of M was replaced by the maximum value between the sizes of M and M’. The 

measure became thus purely symmetrical; 

 The incremental matching taking account of the molecular connectivity: we replaced 

our matching algorithm (see 2.2.3) by a Kuhn algorithm looking for a maximum weight 

matching in a bipartite graph built with atoms of M and M’. 
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The influence of these modifications and their combination was studied on the classification 

of the four chemical databases. The results do not depend on the database; taking into 

account the molecules connectivity brings the main improvement while asymmetry slightly 

improves the overall classification. Figure 6 details these results on Dhfr database.  

 

 

Fig. 6. CI indexes for 5 distances used with HAC clustering method on the Dhfr dataset, OA 
Kernel, Ipi and 3 distances obtained by modification of Ipi: Symmetric calculation of similarity 
index (curve “Ipi + Sym”), or Kuhn algorithm replacing incremental matching algorithm (“Ipi 
+ Kuhn”), or both modifications (“Ipi + Kuhn + Sym”). Replacing Kuhn’s algorithm by an 
incremental one taking account the connectivity gives a strong improvement but whatever 
the matching algorithm is, the asymmetric nature of the index slightly improves the 
efficiency of the classification. 

In the case of Tanimoto Kernel and 2D-WD Kernel, it is the path selection which is important 
to get an accurate representation of molecules. 
This study has been focused on the comparison of several graph kernels applied to chemical 
compounds in a supervised classification task; that is to say the families of molecules are 
known. In this case, one remaining question is the choice of the optimal value for the 
Confusion Index in order to define the clustering level. In particular, il may be difficult to 
conclude in areas where CI is quite constant (e.g. for “Original Ipi” and “Ipi + Sym” 
methods between 15 and 30 clusters). However, in a real case, the classification is not known 
and the Confusion Index could not be computed. 

5. Conclusion 

The evaluation of molecular libraries and, more specifically, molecule categorization into 
families is important for biologists and chemists before and after in silico or in vitro 
molecular screening. In this chapter, we have described some of the important similarity 
measures currently used, and a new similarity index we recently developed for chemical 
molecule comparison. It is very difficult to choose a similarity measure for a 
chemoinformatic purpose, besides empirical considerations like the availability in the 
software suite used in the laboratory, the familiar utilization of a given similarity measure in 
ateam or the demonstrated efficiency in an experimental context leading to the selection of 
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the used index for subsequent analyses. Here, we compared methods on four well-known 
chemical datasets, in order to evaluate the capacity of the algorithms to retrieve the families 
defined by chemists. 
The relatively disappointing results obtained with 2D-WD Kernel and OAKernel seem to 
indicate that “distances” having good performances in a supervised learning context 
(activity prediction) are not always adapted to classical clustering algorithms. By comparing 
Ipi and OA Kernel, we observed that taking into account the molecular connectivity was 
important but also that the distance measures based on asymmetrical comparisons could 
lead to better results than the ones based on a plain symmetric definition.  
To complete this study, it should be interesting to integrate SVM clustering (among others, 
Ben-Hur et al., 2001; Finley and Joachims, 2005) and SVM classification (Rupp et al., 2007) 
instead of the Hierarchical Ascendant Classification or by testing the MG Kernel extension 
of Mahé et al. (2004). In the case of the asymmetrical measure we introduced here and 
compared to classical indexes, it is important to further investigate the three steps of Ipi to 
understand clearly which one(s) is (are) the most important for the Ipi efficiency in 
comparison with the Tanimoto Kernel or the 2D-WD Kernel. Indeed, in this overview, one 
should be surprised by the good results of the Tanimoto Kernel, which is clearly less complex 
to compute than the Ipi index. However, this latter presents two advantages (independently 
of being ranked first for all the tested libraries): on the one hand, it takes into account all the 
knowledge about the molecules without needing a linearization, so it is not necessary to 
manually choose the size of the structural keys to use and there is no loss of structural 
information; on the other hand, by modifying Sa and Sl functions, it is possible to integrate in 
the measure all the physical and chemical information that the expert would judge useful. 
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