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1. Introduction

Although land mine problems existed in many regions, Bosnia (1995) and Afghanistan

(2001) gave the land mine issue a particular sense of urgency. Intended for warfare, these

mines remain buried after the end of the conflict. These mines are triggered by civilians

causing around 15,000-20,000 victims per year in 90 countries, ICBL (2006). The U.S. State

Department estimates that there are around 40-50 million of buried mines that need to be

cleared. According to Horowitz (1996) 100,000 mines are found and destroyed per year; thus

450 years will be necessary to clean all mines. However, each year, 1.9 million of new mines

are buried. In addition, the presence of mines also causes economic decline being one of the

major limitations to agricultural work on these regions, Cameron & Lawson (1998). Thus, it

is necessary to develop new techniques which allow to detect mines quickly and with high

precision. The Ottawa treaty, Ottawa (1997), banning the production and use of AP mines

was signed by 158 countries in 2007 however the most important AP manufacturers, China,

Russia, India and EE.UU, have not yet signed it.

Nowadays more than 350 types of mines exist, Vines & Thompson (1999); but they can be

broadly divided into two main categories:

• Antipersonnel (AP) mines.

• Antitank (AT) mines.

AT mines are relative big and heavy (2-5 Kg) and are usually laid on the ground forming

regular patterns and shallowly buried. AT mines have enough explosive to destroy a tank or

a truck, as well as to kill people in or around the vehicle; they also require more pressure to

be detonated than AP mines. On the contrary AP mines contain less explosive and are lighter

than AT mines. AP mines can be buried anywhere, they may lie on the surface or be shallowly

buried. Sometimes they are placed in a regular pattern to protect AT mines, however in most

cases they are placed randomly. Moreover, as AP mines are light and small, wind or rain can

easily move them making their location, even with the original pattern, more difficult. AP

mines are designed to damage foot soldiers avoiding their penetration into an specific area.

These mines can kill or disable their victims and are activated by pressure, tripwire or remote

detonation. These characteristics make AT mine detection and clearance easier than AP mine

detection.

Detection and clearance of buried mines is a big problem with lots of humanitarian,

environmental and economic implications. Current techniques for non-destructive evaluation
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of soils fail to address the detection of small plastic landmines, which are the most difficult to

detect. There is no universal technique capable of detecting buried landmines in all situations.

The most widespread techniques in mine detection are metal detector and magnetometers.

Magnetometers are used to detect ferromagnetic objects and they measure the disturbance of

the earth’s natural electromagnetic field. Many modern mines have almost no metal parts

except for the small striker pin. Although metal detectors can be tuned to be sensitive enough

to detect these small items (current detectors can track a tenth of a gram of metal at a depth of

10 cm), such sensitivity detects more metal debris and increases considerably the rate of false

alarms. Increasing the sensitivity of metal detectors, therefore, does not solve the problem of

non-metal mines satisfactorily. Taking in mind this limitation new techniques are appearing

to detect the plastic landmines. Several techniques have been proposed for mine detection,

such as acoustic techniques, Sabatier & Xiang (2001); X-rays techniques, Lockwood et al.

(1997); biosensors, Larsson & Abrahamsson (1993); ion mobility spectrometers, Jankowski

et al. (1992); nuclear quadrupole resonance, Englelbeen (1998); neutron analysis, Bach et al.

(1996); ground penetrating radar (GPR) and infrared thermography (IRT), López et al. (2009);

Thanh et al. (2009; 2007; 2008). Each technique has its advantages and disadvantages, for a

more detailed description of theses techniques see Furuta & Ishikawa (2009); Gros & Bruschini

(1998); López (2003); Robledoa et al. (2009); Siegel (2002).

Infrared thermography is an attractive technique for some mine detection tasks because

it can be used from a considerable standoff distance, it provides information on several

mine properties, and it can rapidly survey large areas. Its ability to detect mines has been

recognized since the 1950s, Maksymonko & Le (1999). IRT sensors respond to electromagnetic

radiation in a sensor-specific wavelength range. The source of the received signal may be

either natural (i.e., thermal emission from the target or scattering of sunlight) or artificial

(e.g., an infrared illuminator), which leads to both passive and active sensor concepts. Each

material shows a characteristic thermal response to a given stimulus, also known as the thermal

signature. Thus, the cooling or heating process affects buried objects and the surrounding soil

in a different way. This difference is due to the fact that the mines are a better insulators

than the soil. Thus, in the case of passive thermography, the soil layer over the mine tends to

accumulate thermal energy during the day because the mine blocks the transport of thermal

energy. As a result of this process the soil over the mine tends to be warmer than the

surrounding soil. In the evening, the soil over the mine gives up thermal energy faster than the

surrounding soil and results cooler. Around midday the soil and the mine reach the thermal

equilibrium, which makes it impossible to perform the detection in this temporal gap. The

main limitation of this technique is the fact that temperature differences strongly depend on

the atmospheric conditions. On the other hand, active thermography uses artificial energy to

heat the soil under study, avoiding the dependence on the atmospheric conditions. In spite of

their long history, there is little compelling performance data available for infrared detection

of antipersonnel mines.

The use of IRT as non-destructive evaluation (NDE) for landmine detection consists of

subjecting the area under inspection to a source of natural or artificial heating/cooling process

and studying the soil’s response by means of the analysis of its thermal evolution given by a

temporal sequence of infrared images. In this sense the study of the basic phenomenology

lead to the development of mathematical models of the soil, England et al. (1992); England

(1990); Kahle (1977); Liou & England (1998); Pregowski et al. (2000). The idea underneath is to
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characterize, and therefore predict, the thermal behavior of the unperturbed soil under given

conditions, i.e., its thermal signature. The presence of buried mines or other objects will alter

this signature, which if manifested as a thermal contrast on the surface. From the analysis

of this thermal contrast and, in particular of its dynamic evolution, it is possible to extract

relevant information about the nature of the objects. A deep analysis of the evolution of the

thermal contrast over a diurnal cycle can be found in Khanafer & Vafai (2002), where the

conditions for detection are studied, and sunrise and sunset are established as the periods

of the day in which the presence of buried mines induces a greater thermal contrast on the

surface (around 4-6°C).

An efficient way of extracting information from this data regarding the presence of landmines

using a 3D thermal model of the soil based on the solution of the heat equation was presented

in López et al. (2009; 2004). The process is divided in two steps. On the first one, the

forward problem, the soil is subjected to a heating process and a comparison between

temperatures measured at the soil surface (through IR imaging) and those obtained by

simulation using the model under the assumption of homogeneous soil and mine absence

is made. The differences between measured and simulated data put into evidence the

presence of unexpected objects on the soil. The second step is an inverse engineering

problem where the thermal model must be run for multiple soil configurations representing

different types of possible targets (mine, stone, ...) and depths of burial. The nearest

configuration to the measured data give us the estimated nature and location of the targets.

This approach and, particularly, the inverse engineering process, makes an intensive use of

the 3D thermal model that needs to be solved iteratively involving complex, coupled sets of

partial differential equations. The extensive computing power required makes impractical

its software implementation in personal computers . An alternative solution is the hardware

implementation of the Finite Difference (FD) representation of the thermal model. In fact,

different hardware implementations of FD solutions in the electromagnetics domain can be

found in the literature, Durbano et al. (2004); Placidi et al. (2002); Schneider et al. (2002). In

previous works, Pardo et al. (2009; 2010), we have presented an FPGA implementation of

a FD Heat Equation solver which speeds the computation up by a factor of 10 compared

to the purely software solution. The bottleneck of such an implementation is the access to

memory and the amount of available memory, which dramatically reduces the performance

of the system. However, this solution is hardware dependent an its cost is quite high. In

recent years, Graphic Processing Units (GPUs) have been proved to be a valuable hardware

platform to solve problems with a high degree of parallelism, Hwu et al. (2008). The total

speedup of the system in a typical simulation setup by a factor 40 compared to a Core2Duo

2.8 GHz implementation in C++, using a NVIDIA GTS250 GPU, but even higher speedups

could be achieved with more advanced GPUs.

The chapter is outlined as follows. In Section 2 the thermal model and the detection algorithm

are introduced. Section 3 addresses the architecture of the hardware implementation and its

GPU projection details. In Section 4 the main results are shown and, finally, the conclusions

are summarized.

2. Infrared thermography for NDE

Infrared thermography sensors, which respond to electromagnetic radiation in a

sensor-specific wavelength range, constitute an attractive NDE technique because they can

23Heat Transfer for NDE: Landmine Detection

www.intechopen.com



4 Will-be-set-by-IN-TECH

����

���	
�������

�

�����
��
�	���������

�����	��

����������

�������
�������

��
�����

���

Fig. 1. Different heat transfer processes taking place in the soil volume and at the air-soil
interface.

be used from a considerable standoff distance to rapidly survey large areas while providing

information on several properties. Different materials show a characteristic response to

a given thermal stimulus over time, a property that can be successfully used for the

identification of buried targets. We will present a general procedure for the inspection of

soils based on the solution of the heat equation applied, but not limited, to the detection of

plastic antipersonnel mines.

2.1 Thermal model of the soil

The main processes considered are summarized in Fig. 1. We consider a soil volume, Ω,

subjected to a known thermal stimulus through the soil-air interface, Γ, where both the

soil and the targets are modeled as isotropic objects. We also assume that the thermal

diffusivity is constant and that the temporal variation of the moisture content and the mass

transference during the time of analysis are negligible, which are fair assumptions as long as

the duration of the experiment does not exceed a couple of hours and the depth of inspection

is limited to 10-15cm. A typical example is antipersonnel mine detection, given that mines

are usually either laid on the surface or only shallowly buried. Moreover, empirical evidence

demonstrates that it is possible to reduce the interval of interest to roughly one hour around

sunrise or sunset as it is at these times when their different thermal evolution is more clearly

manifested. Under these assumptions the overall process is described by the time-dependent

single-phase 3D heat equation:

∂T(−→r , t)

∂t
− div

(

α(−→r ) grad T(−→r , t)
)

= 0 , α =
k

ρcp
(1)

where −→r = (x, y, z) with r ∈ Ω, ρ [kg/m3] is the density, cp[J/kg K] is the specific heat,

k[W/m K] is the thermal conductivity, α [m2/s] is the thermal diffusivity and T [K] is the

distribution of temperatures inside the soil. To solve this equation the initial and boundary
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conditions are required:

k
∂T(−→r , t)

∂n
= qnet(t) f or τ × Γ (2)

∂T(−→r , t)

∂n
= 0 f or τ × ∂Ω\Γ (3)

T(x, y, z → ∞, t) = T∞ (4)

T(−→r , t = t0) = T0(
−→r ) in Ω (5)

where τ is the time interval of analysis, qnet is the net heat that flows through the soil-air

interface Γ, n is the normal to the surface under consideration ∂Ω. Eq. (2) gives the boundary

condition at the air-soil interface; Eq. (3) shows the boundary conditions applied to the sides

of the volume not accessible for measurements, imposing a vanishing heat flux across them.

Eq. (4) is the deep-ground condition and it establishes that the temperature at a large enough

depth remains constant. Finally, Eq. (5) gives the initial conditions for the system. The net

heat flux at the soil-air interface, qnet, in Eq. (2) can be written as:

qnet(t) = qsun(t) + qrad(t) + qconv(t) (6)

where qsun is the short-wave radiation emitted by the sun and absorbed by the soil; qconv

represents the convection term at the soil-air interface; and qrad is the heat flux exchange due

to radiation. The first term of this expression, qsun, can be easily measured with the help of

low-cost equipment. The second term is given by qrad(t) = qsky(t)− qsoil(t). The term qsky(t)
is the longwave radiation from the atmosphere given by Stefan’s law. Finally, the third term

in Eq. (6) can be approximated by, qconv(t) = h(Tair(t) − Tsoil(t)), where h [W/m2K] is the

convective heat transfer coefficient that is known to depend strongly on the wind speed.

2.2 Algebraic equations

Eq. (1) can be solved applying a FD approach, using either implicit or explicit methods. Using

the explicit method a set of equations that can be solved sequentially is obtained, its main

advantages being the simplicity of the formulation and its direct hardware translation. This

method, however, is only conditionally stable, Bejan (1993). On the other hand, the implicit

schemes are unconditionally stable but require the solution of the whole set of equations

simultaneously. The ADI method, Wang & Chen (2002), can overcome the drawbacks of

these two methods using a mixed approach, where only a subset of equations must be solved

simultaneously while retaining the unconditional stability property. Thus, high temporal

discretization steps can be used, effectively reducing the computing time when, for instance,

a system evolving toward a steady state is studied. However, in our case, the boundary

conditions change during the simulation time making necessary the use of small temporal

discretization steps and, therefore, the benefit of using an ADI method is lost. Due to this fact

and to the simplicity of the equations obtained, which allows to easily perform a hardware

implementation, we have chosen an explicit scheme to solve the heat equation. Under this

approach the derivatives can be approximated as:

25Heat Transfer for NDE: Landmine Detection
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Fig. 2. (a) Spatial discretization scheme of the continuous soil into a set of discrete nodes. (b)
Considered neighbors to perform the updating process.

∂2T(r, t)

∂x2
≈

Ti+1,j,l − 2Ti,j,l + Ti−1,j,l

(∆x)2
(7)

∂T(r, t)

∂t
≈

Tm+1 − Tm

∆t
(8)

where ∆x and ∆t are, respectively, the spatial and temporal discretization steps; i, j, l are the

discretization indexes in the x, y and z directions respectively and m is the time discretization

index. The spatial discretization scheme of the continuous soil into a mesh of discrete nodes

can be seen in Fig. 2(a), where nx, ny and nz represent the number of nodes in the x, y and z

directions respectively (i = 0, 1, ...nx − 1, j = 0, 1, ...ny − 1 and l = 0, 1, ...nz − 1). Applying

this discretization scheme to Eq. (1), we obtain the following equations for a surface (Ti,j,0)

and an internal node (Ti,j,l , with l > 0), assuming, without loss of generality, that the spatial

discretization steps are the same in all directions, that is, ∆x = ∆y = ∆z,

Tm+1
i,j,0 = Tm

i,j,0 + F0[ ∑
neighbors sur f ace

(Tm
neighbor − Tm

i,j,0) + 2(Tm
i,j,1 − Tm

i,j,0)]

+2αsunF0Sqm
sun + (2F0 H + 8F0RT3

air)(Tair − Tm
i,j,0), ∀i, j

(9)

Tm+1
i,j,l = Tm

i,j,l + F0 ∑
neighbors

(Tm
neighbor − Tm

i,j,l), ∀i, j, l > 0 (10)

where F0 = F0(i, j, l), R, S and H are defined as,

F0 =
α∆t

(∆x)2
R =

σǫ

k
∆x S =

∆x

k
H = hS. (11)

As seen, every new temperature, Tm+1, is calculated as a function of the temperatures in the

previous time step, Tm, and only the nearest neighbors are considered in order to facilitate the

hardware implementation, see Fig. 2(b). In the case of the surface layer, only the neighbors in

26 Developments in Heat Transfer
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the same layer (z = 0) and in the layer beneath (z = 1) are considered. Using the explicit FD

method Eq. (10) can be written as,

Tm+1
i,j,l = Tm

i,j,l(1 − 6F0) + F0(T
m
i+1,j,l + Tm

i−1,j,l + Tm
i,j+1,l + Tm

i,j−1,l + Tm
i,j,l+1 + Tm

i,j,l−1) (12)

Thus, for an internal node the instability is avoided if the term (1 − 6F0) of Eq. (12) is non

negative, (Bejan, 1993; Incropera & DeWitt, 2004), which is translated into a small enough ∆t

such that,

F0 =
α∆t

(∆x)2
≤

1

6
(13)

As can be noted, the stability criteria is a trade-off between the spatial and temporal

discretization steps. The small size of the mines constraints the value of ∆x, which must be

small enough to have several nodes representing the mines. Thus, a small value of ∆x must be

chosen which also implies to choose a small value of ∆t. Meanwhile for a surface node Eq. (9)

the stability criteria can be written as:

Tm+1
i,j,0 = Tm

i,j,0(1 − 6F0 − 2F0H − 8F0RT3
air)+

F0(T
m
i+1,j,0 + Tm

i−1,j,0 + Tm
i,j+1,0 + Tm

i,j−1,0 + 2 Tm
i,j,1)+

(2F0H + 8F0RT3
air)Tair + 2αsunF0Sqm

sun

(14)

Resulting in the following stability condition for a surface node:

F0 ≤
1

6 + 2H + 8RT3
air

. (15)

As shown, the maximum ∆t for a given ∆x is limited by the condition on F0.

In summary, applying the FD method, the thermal model of the soil is discretized into a

set of nodes whose thermal behavior is given by algebraic equations involving additions,

subtractions and multiplications, making it suitable for a hardware implementation.

2.3 IRT-based soil inspection for the detection of buried objects

Many physical systems are characterized by the solution of a differential equation or system

of equations subject to known boundary conditions. This is the called forward problem. The

representation of a non-linear forward operator can take the form of a functional equation

involving a map F, which represents the connection between the model and the data:

y = F[p] (16)

where F is a non-linear operator between Hilberts space Y and P, y is the measured data and p

the original distribution of parameters that gives rise to y under the application of operator F.

An inverse problem of this will be the reconstruction of the original distribution of parameters

based on the measurements of the resulting data.

Solving an inverse problem implies approximating the best solution p† = F−1[y] of Eq. (16).

In general, y ∈ Y is never known exactly but up to an error of δ �= 0. Therefore, we assume

27Heat Transfer for NDE: Landmine Detection
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that we know δ > 0 and yδ ∈ Y with ‖y − yδ‖ ≤ δ. Thus, yδ is the noisy data and δ is the

noise level. Under these situations is, generally, impossible to compute numerically a solution

of the problem unless making use of the regularization techniques, which makes it possible

to restore stability and existence/uniqueness of the solution and develop efficient numerical

algorithms, Kirsch (1996).

An example of such a technique is the non-linear Landweber iteration method which is

defined by the following recursive procedure, Engl et al. (1996):

pδ
k = pδ

k−1 + F′[pδ
k−1]

T(yδ − F[pδ
k−1]) k ∈ (17)

As initial guess pk=0 = p0 is set, incorporating a priori knowledge of an exact solution p†.

For non-linear problems, additional conditions about the stopping rule have to be imposed

to guarantee convergence rates, Engl et al. (1996). The inequality known as the discrepancy

principle will be used to define the stopping index k(δ, yδ) with

‖yδ − F[pk(δ,yδ)]‖ ≤ μδ < ‖yδ − F[pδ
k ]‖ 0 ≤ k ≤ k(δ, yδ) (18)

if the parameter μ is chosen subject to the constraint

μ > 2
1 + η

1 − 2η
(19)

being η < 1/2. The proof that this stopping rule regularizes the Landweber iteration method

can be found in Engl et al. (1996).

Once the convergence criteria and the stopping rule have been established, the iterative

procedure is applied to update the estimate of the solution in practical situations. It can be

seen that the update term in the Landweber iterative method, see Eq. (17), is the negative

gradient at p = pδ
k−1 of the functional

J = ‖F[p]− yδ‖ (20)

that is the misfit between the model and the measured data. Solving the inverse problem is

hence equivalent to minimize this functional.

The solution of the forward problem, F, is then the solution of the system of Eqs. (1)-(4) given

the boundary conditions in the surface of the soil, Γ, and a distribution of soil parameters

p within the volume Ω. According to Eq. (1), p corresponds to the value of the thermal

diffusivity at every point within the soil volume, α = α(x, y, z). Given the 3D nature of the

model, the application of the operator F to the set of parameters, p, produces a 3D solution

where the distribution of temperatures both on the surface and within the soil volume is

calculated. For the sake of clarity we denote as F[p] the distribution of the temperatures on

the surface of the soil, which is compared with the temperature distribution acquired by the

IR camera, our noisy data yd. The reconstruction of the internal composition of the soil can be

viewed as an inverse problem of this,that can be formulated as: given the boundary conditions of

the system and a distribution of measurements y on Γ, derive the soil parameter distribution, p, within

Ω, that is, p = F−1[y].
Now we will introduce the procedure for the non-destructive inspection of soils for the

identification and classification of mines and mine-like targets on infrared images based on the

28 Developments in Heat Transfer
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solution of the heat equation and the use of inverse problems techniques, López (2003); López

et al. (2009; 2004). The process starts with the acquisition of a sequence of infrared images

of the surface of the soil under known heating and atmospheric conditions. As explained

before, sunrise and sunset are the preferred times for detection. We will also assume that

a pre-processing stage is run on a conventional PC in order to align the images and map

grayscale colors to temperature values on the surface. Next, the soil inspection procedure

itself starts. First, we run a detection procedure, as will be explained in the following section,

to obtain the mask of potential targets. Then, a quasi-inverse process operator is used to

identify the presence of antipersonnel mines among the potential targets. For those targets

that failed to be classified as mines (and are therefore labeled as unknown), a full inverse

procedure to extract their thermal diffusivity will be run in order to gain information about

their nature. The overall detection process is summarized in Fig. 3, where the processes

that require the use of the 3D thermal model are indicated with an ellipse. The detection,

quasi-inverse and full-inverse procedures are based on the solution of the heat equation for

different soil configurations. As explained, this is a very time consuming task that makes the

whole algorithm inefficient for real on-field applications.

2.3.1 Target detection

The use of IR cameras taking images of the soil under inspection gives us the exact distribution

of temperatures on the surface. On the other hand, the thermal model described previously

and extensively validated with experimental data permits us to predict the thermal signature

of the soil under given conditions, López (2003); López et al. (2004). The detection of the

presence of potential targets on the soil is then made by comparing the measured IR images

with the expected thermal behavior of the soil given by the solution of the forward problem

under the assumption of absence of mines on the field, mathematically,

α(x, y, z) = αsoil , ∀x, y, z. (21)

For this set of soil parameters, p, the application of the functional in Eq. (20) determines

the surface positions (x, y) where the behavior is different from that expected under the

assumption of mine absence, therefore revealing the presence of unexpected objects on the

soil. These positions will be classified as potential targets, whereas the rest of the pixels

(those that follow the expected pure-soil behavior) will be automatically classified as soil. This

process is not trivial. The most straightforward approach, the thresholded detection, has the

drawback of setting the threshold, which will vary not only for different image sequences, but

it is also likely to depend on the particular frame of the sequence, and on the characteristics of

the measured data such as lighting conditions and the nature and duration of the heating. For

this reason, the use of a reconfigurable structure, capable of adapting to varying experimental

conditions was proposed on López (2003); López et al. (2004). In this work they demonstrated

that it is possible to reduce the time frame of analysis to roughly one hour around sunrise

as it is at this time when the maximum thermal contrast at the surface is expected. This

phenomena can be better appreciated in Fig. 4, where a sequence of IR images of a mine field

taken between 07:40 am and 08:40 am is shown. Taking into account the short time interval

we can consider that the properties of the soil remain unaltered and that there is no mass

transference process during the simulation. The output of the detection stage is a black and

white image with the mask of the potential targets.

29Heat Transfer for NDE: Landmine Detection
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Fig. 3. Structure of the approach used to detect buried landmines using infrared
thermography.

(a) 7:40 am (b) 08:00 am (c) 08:30 am (d) 09:00 am

Fig. 4. Measured IR images of a minefield at sunrise.

2.3.2 Quasi-inverse operator for the classification of the detected targets

In the previous section we dealt with the identification of the (x, y) position of the potential

targets on the soil. In this section we will propose an operator for their classification

into either mine or soil categories; any target that fails to fit into these categories will be

30 Developments in Heat Transfer
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classified as unknown (a procedure for the retrieval of further information about the nature

of the unknown targets will be explained in the next section). For the mine category, the

depth of burial will be also estimated. In general, this reconstruction is not possible unless

additional information on the solution is incorporated in the model by means of the so-called

regularization techniques Engl et al. (1996); Kirsch (1996). It is, however, possible to solve

the inverse problem without the explicit use of a regularization strategy under proper

initialization conditions and the use of iteration methods.

The iterative procedure is based on evaluating Eq. (20), which expresses the deviation between

the observed IR data, yδ, and the one given by the solution of the forward problem using

known parameter distributions, F[p]. Therefore the heat equation needs to be solved for each

of these distributions during the time of analysis (usually one hour around sunrise). In the

case of mine targets, we will assume that their thermal evolution is driven by the thermal

properties of the explosive used, which is commonly TNT composition B-3 or, less frequently,

Tetryl. Our initial guess will be to assume that, (i) all the targets detected in the detection step

are mines, that is,

αtarget = αmine, (22)

and (ii) the possible depths of burial constitute a discrete set z ∈ Z̃ being,

Z̃ = {k ∆z, ∀k = 0, 1, ..., d}, (23)

with ∆z the discretization step and d ∆z the a depth of burial at which is satisfied the

deep-ground condition, see Eq. (4). The situation k = 0 corresponds to surface-laid mines.

These two assumptions imply a reduction of the search space, therefore the quasi-inverse

nature of the classification effort that will either confirm or reject them. Let,

• {yδ
s}, s = 1, ..., S, be the acquired IR image sequence, being S the total number of frames.

• F[p]s,k, the modeled temperature distribution on the soil surface at time s. F[p]s,k is

estimated by considering that all the detected targets are landmines buried at the depth

given by index k in Eq. (23).

Note that, in the following, we will concentrate only on those areas of the image that were

marked as possible targets in the detection phase. The classification map for the detected

targets is obtained through the definition of a classification operator which includes the

following computations:

1. For each time instant s = 1, ..., S and burial depth k = 0, ..., d, an error map, Js,k = ‖F[p]s,k −
yδ

s‖, is estimated by evaluating Eq. (20) for each pixel position (x, y);

2. For each time instant s, a global error map (Js) and a global classification map (Υs) are

estimated iteratively by comparing the error maps Js,k, k = 0, ..., d, as follows:

• Initialization step: For each pixel (x, y), we set Js(x, y) = ε (where ε is a predefined

threshold error value); and Υs(x, y) = soil.

• Iterative update step: For each depth of burial, k, with k = 0, ..., d, Js(x, y) =
min(Js,k(x, y), Js(x, y)) and Υs(x, y) = argmink(Js,k(x, y), Js(x, y)) (the category for

which the error is smaller, i.e. the depth of burial). If Js(x, y) > ε then Υs(x, y) is

set to Unknown.

3. Once Js and Υs have been obtained, we combine all these partial maps (Js, resp. Υs) into

single ones (J, resp. Υ) in the following way:
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• Υ: Pixels classified as mines at any processing step are kept in the final classification

map. For the others, we keep the category that appears more times.

• J(x, y) = maxs(Js(x, y)). This is a very conservative approach aiming at reducing the

number of false negatives (failure to detect a buried mine) even at the cost of increasing

the false alarm rate of the system.

• To find a trade-off between the accuracy of the classification and the number of false

alarms, we define a cutoff error, emax. If the entry on the error map, J for a pixel exceeds

emax, the pixel will be automatically assigned to the category of Unknown. emax is

estimated empirically, however it could be estimated taking into account the pixels

classified as non-mine based their temperature variance using bootstrap techniques,

Zoubir & Iskander (2004).

2.3.3 Full-inverse procedure for the classification of non-mine targets

In this case, no assumption about the nature of the targets found in the detection phase is

made, although the set of possible depths at which the targets can be placed is still bounded

by Eq. (23). Under these assumptions, Eq. (22) does not hold and αtarget is unknown and could

take any value depending on the nature of the object. For this reason, it is necessary in this

case to use a systematic approach for the minimization of the functional J, which implies the

calculation of the gradient ∂J/∂p.

Let us consider the existence of a buried target in a 3D soil volume, Ω, with an unknown

α = α(r), r = (x, y, z) ∈ Ω. The thermal experiment is the following: at time t = t0, the solid

is subject to a prescribed flux, qnet(r′, t), on its surface Γ, being Γ the portion of the surface

∂Ω accessible for measurements. We then measure the temperature response θ(r′, t) at the

boundary r′ ∈ Γ, during the time interval [t0, tf]. We rewrite our 3D forward problem in

Eq. (1) as,

−div{α(r) gradθ}+ ∂θ
∂t = 0, r ∈ Ω (24a)

θ(r, t = t0) = θ0, r ∈ Ω (24b)
∂

∂n θ(r′, t) = qnet(r′, t) r′ ∈ Γ, t ∈ [t0, tf]. (24c)

We look at the reconstruction of α(r) from the knowledge of the surface response of

temperature, yδ = θ(r′, t), to prescribed flux applied on the boundary qnet(r′, t). We call data

the pair (θ(r′, t), qnet(r′, t)). As mentioned before, this is an ill-posed problem. It is intuitive

that the data parameters (r′, t) belong to a 3D subset, because r′ ∈ Γ and t ∈ [t0, tf]. This is

sufficient enough for the reconstruction of the function α(r), defined in a 3D volume. Let us

now introduce the model problem as an initial guess p, such that p(r′) = α(r′) (known data on

the boundary), with the following governing equations and boundary conditions,

−div{p(r) gradu}+ ∂u
∂t = 0 r ∈ Ω (25a)

u(r, t = t0) = u0, r ∈ Ω (25b)
∂

∂n u(r, t) = qnet(r′, t) r′ ∈ Γ, t ∈ [t0, tf]. (25c)

The solution of Eq. (25) is a well-posed problem, as opposed to Eq. (24), and will be denoted

by u(r, t; p). Our aim will be to control p in such a way that the difference between the model

and the observed data tends to zero. This goal is quantified by an objective function J to be
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minimized. The functional to be minimized is the L2 norm of the misfit between the model

and the observation given by,

J(u(p)) ≡
1

2

∫ tf

t0

∫

Γ
‖u(r′, t; p)− θ(r′, t)‖2dS dt. (26)

This is a classic optimization problem which implies the calculation of the gradient of the

functional J. To this aim we will make use of the variational method. If we introduce the

notation,

< u, v >Ω=
∫

Ω
u(r) v(r) dΩ

< qnet, v >Γ=
∫

Γ
qnet(r′) v(r′) dS

ap < u, v >=
∫

Ω
p gradu gradv dΩ,

then the model problem, Eq. (25), is equivalent to the variational problem,

∫ tf

t0

<
∂u

∂t
, v >Ω dt +

∫ tf

t0

(ap < u, v >) dt −
∫ tf

t0

< qnet, v >Γ dt = 0, ∀v (27)

Eq. (27) can be considered as the constraints in the minimization problem, see Eq. (26).

Therefore, we can introduce the Lagrange multiplier λ(r, t) and define the Lagrangian L as,

L(u, p, λ) ≡ J(u) +
∫ tf

t0

{<
∂u

∂t
, λ >Ω +ap < u, λ > − < qnet, λ >Γ} dt. (28)

Note that L = J if u is the solution of the model problem, Eq. (25), since Eq.(27) holds for

any λ. Thus, the minimum of J under the constraints in Eq. (27) is the stationary point of

the Lagrangian L. Conversely, if δL = 0 for arbitrary δλ, u and p being held fixed, it follows

necessarily that Eq. (27) holds. We consider,

δL =
∂L

∂u
δu +

∂L

∂p
δp, (29)

where,

∂L
∂u δu ≡

∫ tf

t0
(u − θ, ∂u)Γ dt +

∫ tf

t0
{(δ ∂u

∂t , λ)Ω + ap(δu, λ)} dt (30a)

∂L
∂p δp ≡

∫ tf

t0

∫

Ω
δp gradu gradλ dΩ δμ. (30b)

We can restrict the choice of λ such that

∂L

∂u
δu = 0. (31)

This condition can be written as,

∫ tf

t0

< u − θ, δu >Γ dt +
∫ tf

t0

{− < δu,
∂λ

∂t
>Ω +ap < δu, λ >} dt+ < δu, λ >Ω |tf

t0
= 0, (32)
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where δu(x, 0) = 0. The last term of (32) vanishes if we impose,

λ(r, t ≥ tf) = 0. (33)

By doing so we obtain the equation for the adjoint field λ,

−div{p gradλ} − ∂λ
∂t = 0, r ∈ Ω (34a)

λ(r, t ≥ tf) = 0, r ∈ Ω (34b)
∂

∂n λ(r′, t) = θ − u, r ∈ Γ. (34c)

This is the so called back diffusion equation for the adjoint field, and it is also a well posed

problem. With this choice of the adjoint field λ(r, t), the variation ∂J becomes

∂J =
∫ tf

t0

∫

Ω
∂p gradu gradλ dΩ dt. (35)

It results from Eq. (35) that the derivative of J in the p(r) direction is known explicitly by

solving two problems, the direct problem for the field u and the adjoint problem for the field

λ. That is, the Z-integral,
∂J

∂p
≡ Z =

∫ tf

t0

gradu gradλ dt. (36)

Solving Eq. (25) and Eq. (34), both of them well-posed forward problems, and using Eq. (36),

the expression of the update of Eq. (17)) can be calculated in a straightforward manner. With

respect to the number of iterations of the Landweber method, the selection of the stopping

criteria of the algorithm must be made according to the discrepancy principle in Eq. (18)). The

bigger the η, the lower the number of iterations is, and the higher the error is. The selection

of η for a particular application must then be a trade-off between computational time and

accuracy of the solution.

2.4 Estimation of the computational cost

The algorithm described above is based on iterative procedures involving multiple solutions

of the heat equation for different soil configurations. This constitutes a time consuming

process not feasible for its use on the field as the computational complexity of the FD method,

if N = nx · ny · nz is the total number of grid nodes, is O(N · IT), where IT is the number

of iterations. As an example, we consider the analysis of a piece of soil (αsoil = 6.4 · 10−7

m/s2) of moderate dimensions of 1m×1m with a shallowly buried mine (αmine = 2.64 · 10−7

m/s2). Even if the depth resolution of IRT is barely 10-15 cm, the depth of analysis must be

set to at least 40-50 cm in order to apply the boundary condition in Eq. (4). Using a uniform

spatial discretization of ∆x = ∆y = ∆z = 0.8 cm and assuming a temporal discretization step

of ∆t = 6.25 s (F0 = 0.06), for a typical example the simulation of the behavior of the soil

during one hour using C++ (optimized for speed using O2 flag from Microsoft Visual C++

compiler) on a Intel Core2Duo 2.8GHz takes 30 seconds if single precision arithmetic is used to

represent the temperatures. Taking into account that the proposed inverse procedure requires

the solution of the model for multiple soil configurations, the total computing time assuming

that only 100 iterations are needed (a soft approach) will add up to 50 minutes. As this

jeopardizes its use for field experiments we have developed a hardware implementation of a
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Fig. 5. GPU internal structure and memory hierarchy.

heat equation solver. In Pardo et al. (2009; 2010) we presented an FPGA-based implementation

of such a solver. However, the main drawback of an FPGA implementation is the requirement

of the system in terms of memory. The FPGA has a little amount of distributed memory

and the FPGA’s logic blocks can also be configured to behave like memory, however this is

an inefficient way of FPGA using. Some vendors offer cards where external memory and

FPGA are integrated on the same board, allowing to use the FPGA to deal with processing

issues. However, these are expensive solutions. GPUs offers a structure which perfectly

fits with the proposed problem and they have the advantage of being cheaper than FPGAs.

GPUs are present in all computers and therefore we avoid the necessity of having a dedicated

and expensive hardware to deal with our problem. Moreover, the GPU implementation is

hardware independent, in the sense that it can be used on GPUs from NVIDIA with none or

little changes, depending on GPU’s computing capabilities.

3. GPU thermal model implementation

The system that solves the thermal model using the explicit FD method was implemented

using CUDA language, NVIDIA (2010), and projected in a GPU from NVIDIA. The computing

structure of GPUs makes them a suitable candidate to implement algorithms requiring high

computing power. First we will introduce GPU characteristics and some basics abouts its

programming mode. Then, we will present the proposed GPU implementation that simulates

the thermal behavior of the soil and that speeds the computations up compared to a personnel

computer.

3.1 GPU structure

GPUs are made up of several multiprocessors that can perform parallel processing data, which

makes them suitable for processing in systems where it can be split up in independent portions

and processed independently. The structure of such a GPU can be seen in Fig. 5. The GPU is

made up of several multiprocessors, labeled as MP1 ... MPN in Fig. 5. Moreover, inside each

multiprocessor there are several cores, labeled as C1 ... CM in Fig. 5. One important issue of

GPU programming concerns to the use of the different memories available in the GPU, see

Fig. 5. The Global Memory is available to all multiprocessors and cores, whereas the Shared

Memory inside each multiprocessor is only available to the corresponding multiprocessor’s

cores. Additionally, each core has its own and private memory space. One key aspect of

a GPU-based system is the memory data organization and access, as they can impose a
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Fig. 6. Structure of threads hierarchy in a GPU (reprinted from NVIDIA (2010)).

bottleneck in the system performance. The global memory has an access latency two orders

of magnitude higher than the access to the shared memory. Thus, it is important to minimize

the use of global memory and maximize, as far as possible, the use of shared memory because

this will increase the performance of the system.

Once the structure of the GPU has been briefly described we will introduce the basic aspects of

GPU programming required to understand the structure of the proposed system . Functions

in CUDA are called kernels and each kernel can be executed in parallel by several threads1, as

contrary to ordinary C/C++ functions that can only be executed by one processor. A kernel

is not executed as a single thread, but it is executed as a block of threads, each of them

processing the same function on different data, following a single-program multiple data

(SPMD) computing model. Each thread inside the block has a 1D, 2D or 3D identifier (ID),

depending on the applications, which distinguishes the concrete thread, to compute elements

from a vector, matrix or volume of data. All the threads of a block are executed on the same

multiprocessor and therefore they must fit within the available resources. This sets a limit

on the maximum threads per block, which is limited to 512 in current GPUs. To avoid this

limitation a kernel can be executed in several blocks of threads, which are organized as 1D or

2D groups of threads. The only requirement concerning the block of threads is that they must

1 The thread is the basic element of processing
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CUDA cores 128

CUDA Multiprocessors 8

Graphics Clock 738 MHz

Processor Clock 1836 MHz

Global Memory 512 MB

Memory Clock 1100 MHz

Memory Bandwidth 70.4 GB/s

Table 1. GTS 250 NVIDIA GPU main characteristics.
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Fig. 7. Temperatures updating scheme on the GPU.

be independent from each other. Fig. 6 shows threads’ hierarchy and its organization in the

GPU.

3.2 GPU implementation of heat equation solver

GPU’s structure fits perfectly our problem, where the full data can be split up in independent

blocks that can be process the data in parallel. Each multiprocessor can work with a portion

of grid’s nodes increasing the performance of the system. The GPU used in this work was a

GTS-250 from NVIDIA (cost around 250e- 300 $), whose characteristics are summarized in

Table 1.

As was pointed, one of the main important aspects in an efficient CUDA-based system is the

correct management of the memory to reduce the access to the global memory. To this aim the

full grid of points, see Fig. 2(a), was divided into volume slices of size size_blockx × size_blocky,

where the nodes’ temperature of each slice is computed in a block of threads, see Fig. 7. Each

thread of the block is responsible for updating the temperature of the nodes with the same

(x,y) coordinates within the considered piece of soil. The threads advance as a wavefront,

updating the nodes’ temperature starting from the superficial layers to the inside of the soil,

see Fig 7. It can be noted that there are overlapping areas between different blocks of threads,

labeled as boundary nodes and indicated in grey in Fig. 7, which must be taking into account to

compute only once the new temperature value.

Concerning the memory usage, the initial temperatures are stored in the global memory, and

they have been transferred from the HOST memory to GPU global memory prior to the

computation of the new temperatures. The temperatures are duplicated in the memory, as

during one iteration we need to use one location to read temperatures and the other to write
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Fig. 8. Data memory transferences during the updating process.

the updated values and in the following iteration the roles are interchanged. The remainder

constant values needed in the computations, such as F0 and values related to the boundary

conditions, see Eq. (14), are also stored in the global memory. The access to the global memory

should be minimized to increase the speed of the computations, because the global memory

has a high latency access. Thus, we use, during the updating process, the shared memory of

the multiprocessors to accelerate the access to the data. The memory operations are shown in

Fig. 8 where we can see the data transferences between the different memories of the GPU.

In Fig. 8 we will consider the temperature updating process from nodes in Layer K. In STEP

1 the temperatures of Layer K-1 nodes are stored in both the multiprocessor’s shared memory

and in the cores’ local memory. Moreover, nodes’ temperatures from Layer k are read from the

global memory and stored in the local cores’ memory . During STEP 2 the nodes’ temperatures

from Layer K replace those from Layer K-1 in the shared memory, at the same time, the nodes’

temperatures from Layer K+1 are read from global memory and stored in cores’ local memory.

In STEP 3 all data required to perform Layer K nodes’ temperature updating is available on

the local memory and shared memory. The same temperature of a Layer K is required to

update the temperature of several nodes (the node itself and its north, south, west and east

neighbors). If all nodes had to access global memory to read these values the process would

be slowed, however once they are read from cores’ local memory they are transferred to the

shared memory, where they are available to all threads of the block, thus reducing the time

access to the data. Once a thread has updated the temperature of a node, it uploads to the

main memory the updated value and it continues computing the following temperature node

updating. There is a synchronization process when a thread finishes one node’s temperature

updating because we must ensure that prior to continue with a node of the following layer all

threads have finished the temperatures updating of the current layer.

4. Results

In this section we will introduce the results of the complete system. We divide this section

into two main topics. On the one hand the results of the detection algorithm are shown for

a scenario from the TNO Physics and Electronics Laboratory, Jong et al. (1999). On the other

hand, we will show the performance of the GPU implementation and how it improves the

usability of the detection system reducing the processing time.

4.1 Landmine detection algorithm

Next, we will show the result of the previously described detection algorithm to images

acquired in a real test field. The scenario considered corresponds to the sand lane of the
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Fig. 9. Ground truth of the test field used during the experiment corresponding to a sand
lane with different types of surrogated mines and non-mine targets.

Symbol Category Total

• Surface mine 14

◦ Mine at 1 cm 9

� Mine at 6 cm 9

⊕ Mine at 10cm 1

△ Mine at 15cm 1

� Undefined test object 5

� Shell marker 4

Table 2. Symbols used to represent the different categories of targets present in the test field
in Fig. 9.

test facilities of the TNO Physics and Electronics Laboratory. For the experimental setup

considered, the measured thermal diffusivity of the soil was αsand = 6 × 10−7 m2/s. With

respect to the test mine targets present, they are surrogated mines and most of them have been

built at TNO-FEL. In all test mines the same substitute for the explosive has been used, RTV,

having the same relevant properties as the real explosive and particularly αRTV = 1.13 × 10−7

m2/s. Fig. 9 shows a sample image of the sand lane acquired with the IR sensor and the

position of the different targets considered. Table 2 summarizes the symbols used for

the different categories of targets present. The total number of targets is 43, 34 of which

correspond to landmines. The remaining nine targets are five undefined test objects and four

shells used as markers. We will concentrate on the results of the quasi-inverse and full-inverse

procedures for the classification of mines and non-mine targets respectively.
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Location Detected and classified Total

Surface 12 12

Buried at 1 cm 6 6

Buried at 6 cm 5 6

Buried at 10 cm 1 1

Buried at 15 cm 0 1

Table 3. Summary of the mines correctly detected and classified after the application of the
quasi-inverse operator.

4.1.1 Results of the quasi-inverse operator for the classification of mine targets

The quasi-inverse operator classifies the detected targets as Mine or Unknown. Moreover,

for the Mine class, sub-categories corresponding to their depth of burial are produced. For

the experimental setup in Fig. 9, the results of the application of the quasi-inverse operator

are summarized in Table 3, showing the distribution of mine targets correctly detected and

classified according to their depth of burial with emax = 2.6. As can be seen, all the mine

targets on the surface or at 1cm depth were correctly detected and classified, and so were five

out of six of the mines buried at 6 cm. The results for depths of 10 and 15 cm are not conclusive

since only one of each is present, but a degraded performance of the quasi-inverse operator

with depth is to be expected.

The performance of the classification operator is evaluated by making use of two properties,

sensitivity and specificity, Hanley & McNeil (1982),

Sensitivity =
TP

TP + FN
Specificity =

TN

TN + FP
(37)

being TP the number of true positives, TN the number of true negatives, FP the number of

false positives and FN the number of false negatives. The performance depends strongly on

the election of emax, being a trade-off between sensitivity and specificity, i.e. , between the

number of mine targets correctly classified and the number of false alarms. In humanitarian

operations, the stress is put on the correct location of mines, while reducing the number

of false alarms, although highly desirable, is a secondary goal. With respect to the global

performance, it is clearly a function of the particular value of emax. For emax = 2.6 we find

that 24 mines were correctly detected and classified over a total of 26.At the same time, the

number of false positives is 13 compared to the 27 after the application of the detection stage

alone.

4.1.2 Results of the full-inverse approach for the classification of non-mine targets

Now, we will illustrate the process of estimating the thermal parameters of non-mine targets

making use of the full inverse process previously described. To this aim, we will consider the

test object V82 present on the minefield (see Fig. 9). This target was classified as unknown by

the quasi-inverse operator and we now aim to infer what type of object it is by estimating its

thermal properties. If we estimate the measurement error to be δ = 0.3◦C and setting η = 0.2,

we have,

μ > 2
1 + η

1 − 2η
= 4. (38)
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Fig. 10. Test target V82: (a) Evolution of the error in the estimation of α; (b) Evolution of the
value of α during the inverse problem procedure.

For μ = 4.1, the discrepancy principle determines the stopping rule as,

‖yδ − F[pδ
k(δ,yδ)]‖ ≤ 1.23 < ‖yδ − F[pδ

k ]‖, 0 ≤ k ≤ k(δ, yδ) (39)

The evolution of the error for the Landweber iteration method is shown in figure 10(a). The

stopping criteria in (39) corresponds to a number of iterations of the algorithm Nit = 230.

Figure 10(b) shows the evolution of the estimation of the α parameter in this case. The final

result obtained for the non-mine target V82 is,

αV82 = 170 × 10−7m2/s.

This value is two orders of magnitude bigger than that of the sand (αsand ≈ 6 × 10−7m2/s)

which coincides with typical values of the thermal diffusivity of metallic solids.

4.2 GPU heat equation solver

We will now introduce the results obtained with the GPU implementation in terms of system

throughput. As was pointed in the introduction a NVIDIA GTS 250 GPU, a low-cost GPU,

was used to perform the comparison between a purely CPU implementation ( Core2Duo 2.8

GHz implementation in C++) of the heat equation solver and a GPU implementation. One

of the first issues is to think about the blocks threads’ distribution and partitioning. The full

volume of nodes which form the grid of points must be divided into blocks of threads, each

of which is responsible for the nodes’ temperature updating. The idea can be seen in Fig. 7,

where the volume has been divided into blocks of threads of size size_blockx×size_blocky which

are sent to the MP of th GPU, in this case a 1D array of blocks is shown for the shake of

clarity. Fig. 11(a) shows the performance of the GPU for various block sizes, where we have

chosen size_blockx = size_blocky, and a volume of 800×800×50 nodes. The results from these

simulations can be seen in Table 4, where the speedup is compared to a purely CPU simulation

of the full volume. It can be noted that the throughput of the system raises up as the size of

the block is increased. This is due to the fact that when small blocks are used there are a lot
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(a) Throughput of GPU heat equation solver for different blocks’ size.
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(b) Throughput of GPU and CPU heat equation solvers
implementations for different volume of simulated points. In
the GPU implementation the block grids’ size was set to 16×16.

Fig. 11. Performance results comparing GPU and CPU throughputs for different setups.

of such small blocks spread over all MP, and therefore there will be a long cue of pending

blocks to be processed. On the contrary, if the size of the blocks is increased we will have less

blocks and the cue of pending blocks to be processed by the MP will be reduced. There is a

limit, imposed by GPU’s structure, given by the maximum number of threads that a MP can

process (512). It can be seen from Fig. 11(a) and Table 4 that the throughput of the system is

increased one order of magnitude when we go from 2×2 to 16×16 blocks of threads. Thus

in the following simulations we will used this block’s size for GPU simulations. Fig. 11(b)

shows the GPU and CPU throughput for different nodes volumes, the data can be seen in

Table 5. It can be noted how the performance of the GPU grows up one order of magnitude

when the size of the volume is increased. This is due to the fact that for small volume of nodes

not all GPU’s resources are being used, whereas for big enough size volumes the inherent

parallelism of the GPU increases the throughput of the system. It is obvious that for very

big volumes the throughput will be low because there will be a cue of pending blocks to be

processed which degrades the throughput of the system (note the reduction of the throughput

for the 1024×1024×50 volume).
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block_dimx × block_dimy GPU throughput (Mpoints/s) GPU time (s) Speedup

2×2 120.0 25.6 3.1

4×4 336.5 9.1 8.7

8×8 634.3 4.8 16.7

16×16 1400.0 2 40

Table 4. GPU throughput for a given volume of points and varying block thread’s
dimensions.

Volume GPU throughput (Mpoints/s) CPU throughput (Mpoint/s) Speedup

32×32×50 332 39.3 8.4

64×64×50 1289.33 39.3 32.6

256×256×50 1476.67 39.3 37.0

512×512×50 1496.02 39.3 39.3

1024×1024×50 1402.8 39.3 36.7

Table 5. Throughput and CPU and GPU solvers of the heat equation solver for different size
volumes.

5. Conclusions

In this chapter, two inverse procedures for the inspection of soils by non-invasive means with

application in antipersonnel mines detection have been presented. The first quasi-inverse

procedure aims at the detection of surface-laid and shallowly buried mines, giving an

estimation of their depth of burial that will be of critical importance during the removal stage.

In the second approach, a full inverse procedure for the identification of the thermal properties

of other objects present on the soil was presented. Both procedures need the recursive solution

of the heat equation problem for different soil configurations, which constitutes a very time

consuming task on a conventional computer. The efficient solution of the aforementioned

procedures is successfully solved using a heat equation solver accelerator based on the use of

GPUs, obtaining speed-up factors over 40. The speedup obtained with the proposed system

with respect to nowadays computers, together with its low-cost and portability justifies the

implementation as it permits its use on the field during demining operations.
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