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1. Introduction 

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly with 
profound medical and social consequences. The pathogenesis of AD is a complex and 
heterogeneous process which classical neuropathological hallmarks found in the brain are 

extracellular deposits of beta-amyloid (A)-containing plaques and intracellular 
neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein. Mutation of 
presenilin-1 (PS-1), presenilin-2 (PS-2), and altered amyloid precursor protein (APP) genes has 
been reported to cause inherited AD. In addition, other genes such as apolipoprotein E-4 
(APOE), endothelial nitric oxide synthase-3, and alpha-2-macroglubulin have also been 
associated with AD. A further number of hypothesis have been proposed for AD 
mechanism, which include: the amyloid cascade, vascular damage, excitotoxicity, deficiency 
of neurotrophic factors, mitochondrial dysfunction, trace element neurotoxicity, 
inflammation and oxidative stress hypothesis. 
The oxidative stress (OS) hypothesis of aging postulated by Dr. Denham Harman in 1956 
proposed that brain aging is associated to a progressive imbalance between the anti-oxidant 
defenses and the pro-oxidant species that can occur as a result of either an increase in free 
radical production or a decrease in antioxidant defence. The fact that age is the main risk factor 
for AD development provides considerable support to the OS hypothesis since the effects 
produced by reactive oxygen species (ROS) can accumulate over the years (Nunomura et al., 
2001). The link between AD and OS is additionally supported by the finding of decreased 
levels of antioxidant enzymes, increased protein, lipid and DNA oxidation and advanced 
glycation end products (AGEs) and ROS formation in neurons of AD patients (Perry et al., 
2000; Barnham et al., 2004). It has been reported that the accumulation of the oligomeric form 

of A, the most toxic form of the peptide, induces OS in neurons (Butterfield, 2002), 
supporting the hypothesis and suggesting that OS plays a causative role in the development of 
AD. Then, a large amount of literature has demonstrated that OS is an important feature in AD 
pathogenesis that deserves to be deeply studied (Perry et al, 2002: Markesbery et al, 1999). In 
this Chapter, we address the main factors involved in the generation of oxidative stress and 
provide an overview of the oxidative stress biomarkers status in Alzheimer’s disease. The 
Chapter concludes with a revision of the controversial efficacy of antioxidants as potential 
treatment in AD therapy as well as an update of the main antioxidant compounds found to 
have a beneficial effect in AD. 
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2. Mitochondria as a source of reactive oxygen species 

Several years after the postulation of the OS hypothesis, Dr. Harman proposed that life span 
is determined by the rate of ROS damage to the mitochondria (Harman, 1972) giving for the 
first time an important role to this organelle in the ageing process and establishing the basis 
for “mitochondrial theory of ageing”. It is important to note that the central nervous system 
(CNS) is especially vulnerable to oxidative damage as a result of the high oxygen 
consumption rate (20% of the total oxygen consumption), the abundant content of easily 
peroxidizable fatty acids, and the relative paucity of antioxidant enzymes compared to other 
tissues. In aerobic organisms, mitochondria produce semireduced oxygen species during 
respiration. The initial step of the respiratory chain reaction yields the superoxide radical 
(˚O2–), which produces hydrogen peroxide (H2O2) by addition of an electron. The reduction 
of H2O2 through the Fenton reaction produces the highly reactive hydroxyl radical (OH˚), 
which is the chief instigator of oxidative stress damage and reacts indiscriminately with all 
biomacromolecules (Figure 1). Under normal conditions, damage by ROS is prevented by an 
efficient antioxidant cascade, including both enzymatic and non-enzymatic entities. The 
enzymes responsible of the detoxification machinery are the cytosolic copper-zinc 
superoxide dismutase (CuZnSOD) and the mitochondrial manganese superoxide dismutase 
(MnSOD), which convert superoxide to O2 and H2O2. Moreover, monoamine oxidases 
(MAOs) and L-amino acid oxidase can also produce H2O2 during its metabolism which is 
effectively removed by catalase (CAT) and peroxidases (e.g. glutathione peroxidase, GPx). 
Since CAT is compartmentalized into peroxisomes the detoxification of cytosolic and 
mitochondrial peroxides depends predominantly on GPx.  
 

 

Fig. 1. Schematic illustration of the mechanism involved in reactive oxygen species (ROS) 
formation and elimination. Glutathione peroxidase (GPx), glutathione reductase (GR), 
superoxide dismutase (SOD), catalase (CAT), monoamine oxidase (MAO), glutathione 
(GSH), glutathione disulfide (GSSG). 

The non-enzymatic antioxidant defenses include the reduction of the resulting oxidized 
transition metal ions (usually Fe3+ and Cu2+) by cellular reductants such as vitamin C, thiols 
and perhaps even vitamin E. In this context, SOD can also serve as the reductant of oxidized 
metal ions for the production of hydroxyl radical from H2O2, which coupled with the Fenton 
reaction, is known as the Haber-Weiss reaction. In AD, this situation is further exacerbated 
by the fact that redox active transition metals are aberrantly accumulated in cytoplasm of 
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neurons. Moreover, A peptide is considered a strong redox active agent capable of 
reducing transition metals and allowing for conversion of O2 to H2O2 (Bondy et al, 1998).  

3. Biomarkers of oxidative stress in Alzheimer’s disease 

Biomarkers, as indicators of signalling events in biological systems or samples, can be used as 
intermediate endpoints or early-outcome predictors of disease development for preventive 
purposes. Most effort is nowadays focused on the search of reliable and robust biomarkers 
which would be useful for an earlier AD diagnosis. The emphasis is being placed on the 
incorporation of oxidative stress biomarkers to study the increased oxidative damage (Lovell 
& Markesbery, 2007a). It has recently been a significant improvement in assay methods and 
measurement accuracy for oxidative biomarkers. Nevertheless, it appears imperative that 
biomarkers of oxidative damage must be validated (Dalle-Donne et al., 2006a) in order to 
incorporate them into epidemiological studies and provide a better understanding regarding 
the role of ROS in the pathogenesis and progression of AD, as well as to assess the possible 
effectiveness of an antioxidant therapy (Griffiths et al., 2002). Strong evidence show that 
oxidative markers are more prevalent in initial rather than in later stages of the disease, and 
thus suggesting that targeting the earlier events of the disease may be more successful that 
targeting the later events (e.g. beta-amyloid (A) plaque deposition and/or intracellular 
neurofibrillary tangles formation). On the other hand, many studies provided evidence for the 
deleterious consequences of oxidative stress products on certain cellular targets in AD. 
Therefore, most highly reactive oxidants react with virtually all biomolecules, including, lipids, 
DNA/RNA, carbohydrates and proteins. Table 1 summarizes the main OS biomarker 
candidates for MCI and AD diagnosis. 
 

Biomarker Specimen Diagnosis Reference 

Lipid Peroxidation 
4-HNE 

 
F2-Isoprostanes 

 
Plasma 

Ventricular fluid 
Urine 
CSF 

CSF, plasma and urine

 
AD 
AD 
AD 
AD 
MCI 

 
Mc Grath et al., 2001 

Lovell et al., 1997 
Kim et al., 2004 

Montine et al., 2011 
Pratico et al., 2002 

DNA oxidation 
8-OHdG 

 
Peripheral lymphocytes 

 

 
MCI 
AD 

 
Migliore et al., 2005 
Mecocci et al., 2002 

AGEs 
CML 

 
CSF 

 
AD 

 
Ahmed et al., 2005 

Oxidized Protein
-1-antitrypsin 
Ig  light chain 
-1-antitrypsin

CSF 
CSF 

Plasma 

AD 
MCI 
AD 

Puchades et al., 2003 
Korolainen et al., 2007 

Yu et al., 2003; Choi et al., 2002 

Table 1. Potential OS biomarkers under validation for Alzheimer’s disease. MCI, mild 
cognitive impairment; AD, Alzheimer’s disease; CSF, cerebrospinal fluid; Ig, 
immunoglobulin; 4-HNE, 4-hydroxy-2-nonenal; 8-OHdG, 8-oxo-7,8-dihydro-2’-
deoxyguanosine; AGEs, Advanced Glycation end products; CML, N-carboxymethyl-lysine. 
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3.1 Biomarkers of lipid peroxidation 
Lipid oxidation (also called lipid peroxidation) has drammatic consequences in ageing and 

age-related disorders. Phospholipids present in brain membranes are mainly 

polyunsaturated fatty acids (PUFAs: arachidonic acid, linoleic acid, linolenic acid, 

docosahexaenoic acid, etc…), which are especially vulnerable to a free radical attack since 

their double bonds allow an easy removal of hydrogen ions. Oxidation of PUFAs produces a 

variety of reactive ,-unsaturated aldehydes such as, acrolein, 4-hydroxy-2-nonenal (4-

HNE), 4-oxo-2-nonenal (4-ONE), 4-hydroxy-2-hexanal (4-HHE), 2-hexenal, crotonaldehyde 

as well as the dialdehydes glyoxal and malondialdehyde (MDA). These species are highly 

reactive cytotoxic substances than can form stable covalent adducts with free amino groups 

of proteins (Lys, His and Cys residues) through Michael addition (Calingasan et al., 1999; 

Carini et al., 2004; Esterbauer et al., 1991; Montine et al., 1997) whick are known as advanced 

lipoxidation end products (ALEs). 4-HNE is a major and toxic aldehyde generated by free 

radical attack on PUFAs and is considered a second toxic messenger of oxygen free radicals. 

Therefore, it has a high biological activity and exhibits numerous cytotoxic, mutagenic, 

genotoxic, and signalling effects in neurons (Eckl et al., 1993; Williams et al., 2006). In 

addition, 4-HNE may be an important mediator of OS-induced apoptosis, cellular 

proliferation and signalling pathways (Uchida, 2003). HNE is permanently formed at basal 

concentrations under physiologic conditions, but its production is greatly enhanced in the 

AD brain where increased lipid peroxidation occurs (Butterfield et al., 2010; McGrath et al., 

2001). Increased concentrations of 4-HNE, 4-HHE and acrolein have been found in 

cerebrospinal fluid (CSF) and in multiple brain regions from individuals with mild cognitive 

impairment and early AD compared with age-matched controls (Bradley et al., 2010a and 

2010b; Lovell et al., 1997; Williams et al, 2006). In addition, a positive feedback in the 

pathogenesis of AD is provoked by HNE that increases A production (Tamagno et al., 

2008) which, in turns, induces lipid peroxidation (Butterfield et al., 2002). Furthermore, 

HNE-adducts have been identified in amyloid plaques and neurofibrillary tangles, the two 

hallmarks of AD pathogenesis (Sayre et al., 1997; Ando et al., 1998; Wataya et al., 2002). 

 

 

Fig. 2. Lipid peroxidation products. ROS stimulate peroxidation of polyunsaturated fatty 

acids (PUFA) to generate --unsaturated aldehydes and dialdehydes. 

F2-Isoprostanes (F2-IsoPs), which contain an F-type prostane ring, are a group of bioactive 
prostaglandin-like compounds generated via a non-enzymatic mechanism involving the free 
radical-initiated peroxidation of esterified arachidonic acid (AA). Then, they are cleaved and 
released into the circulation by phospholipases before excretion in the urine as free 
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isoprostanes (Basu, 1998). The most studied class of isoprostanes, due to their urine stability, is 
8-iso-Prostaglandin F2a (8-iso-PGF2a; Figure 3). Urinary F2-IsoPs determination has been 
proposed as specific, reliable, and non-invasive marker to assess lipid peroxidation in vivo 
(Cracowski et al., 2002; Montushchi et al., 2004) since an increase in 8-iso-PGF2a levels in CSF 
and urine have been found in subjects with AD (Montine et al., 1998 and 2011; Kim et al., 
2004). On the other hand, oxidation of docosahexanoic acid (DHA) produces F4-
neuroprostanes (F4-NeuroPs; Figure 3) (Morrow et al., 1999; Roberts et al., 1998) which levels 
are elevated in postmortem ventricular CSF of AD patients and are more abundant in the brain 
that F2-isoprostanes. Nevertheless, plasma F2-IsoPs and F4-NeuroPs do not accurately reflect 
central nervous system levels and are not reproducibly elevated in body fluids outside of 
central nervous system in Alzheimer's disease patients (Montine et al., 2002). 
 

 

Fig. 3. Chemical structures of F4-neuroprostane and 8-iso-Prostaglandin F2a arising from 
direct oxidation of docosahexanoic and arachidonic acids, respectively. 

3.2 Biomarkers of oxidative DNA damage 
Among over 30 nucleobase modifications that have been described, the most extensively 
studied that reflect oxidative DNA damage is 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-
oxodG; also known as 8-OHdG), a product of oxidatively modified DNA base guanine 
(Figure 4). The detection of this oxidation is important not only due to its abundance but 
also to its mutagenic potential through GC-to-TA transversion mutations upon replication 
of DNA (Cheng et al., 1992). Nevertheless, oxidatively damaged DNA can be repaired and 
released into the bloodstream and consequently appear without further metabolism in the 
urine (Fraga et al., 1990; Shigenaga et al., 1989). In addition, urinary levels of 8-OHdG have 
been found to be independent of dietary influence in humans. The modified base 8-oxo-7,8-
dihydroguanine (8-oxoGua; Figure 4) and modified nucleoside (8-oxodG; Figure 4), which 
are found in urine, represent the major repair products of oxidatively damaged DNA in 
vivo and have been considered to reflect the whole-body oxidative DNA damage (Hamilton 
et al., 2001; Olinnski et al., 2007). There is considerable evidence supporting that oxidative 
stress occurs in AD, and increased 8-oxodG levels have been found in DNA isolated from 
brain tissues, leukocytes and ventricular CSF of AD patients. In contrast, free 8-OHdG was 
found dramatically decreased in AD samples as compared to the controls (Lovell & 
Markesbery, 2001; Markesbery & Carney, 1999; Mecocci et al., 2002; Migliore et al., 2005). 
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Taken together, these data indicate a double insult in AD patients by increasing oxidative 
damage and decreasing DNA repair mechanisms efficiency. More recent studies showed an 
elevated 8-OHdG in both nuclear and mitochondrial DNA (mtDNA) isolated from 
vulnerable brain regions in amnestic mild cognitive impairment (MCI), the earliest clinical 
manifestation of AD, and thus suggesting that oxidative DNA damage is an early event in 
AD and is not merely a secondary phenomenon (Lovell & Markesbery, 2007b). 
Many methods such as HPLC-ECD, GC-MS, LC-MS, and immunoassay have been 

established to measure 8-OHdG in biological specimens. In this concern, the European 

Standards Committee of Urinary (DNA) Lesions Analysis (ESCULA) was formed in 2006 in 

order to validate the measurement methods of oxidatively damaged DNA and to establish 

reference urine values (Cooke et al., 2008; Evans et al., 2010). Finally, it is important to 

mention that DNA can also be modified by products of lipid peroxidation (ALEs). These -

-unsaturated aldehydes can react with deoxyguanosine through an initial Michael addition 

of the exocyclic amino group followed by ring closure of N-1 onto the aldehydic group to 

generate a bulky exocyclic 1-N2-propanodeoxyguanosine adduct (Liu et al., 2006; Kozekov 

et al., 2003) and therefore participate in the propagation of the oxidative DNA damage. 

 

 

Fig. 4. Chemical structure of 8-oxo-7, 8-dihydro-2’-deoxyguanosine (8-oxodG; 8-OHdG), 
guanine and 8-oxo-7, 8-dihydroguanine (8-oxoGua). 

3.3 Advanced glycation end products 
Advanced glycation end products (AGEs), formed by a non-enzymatic reaction of sugars 
with amino groups in long-lived proteins, lipids, and nucleic acids, are also potent 
neurotoxins and proinflammatory molecules. Glycation of proteins starts as a non-
enzymatic process with the spontaneous condensation of ketone or aldehyde groups of 
sugars with a free aminoacid group of proteins to form a labile Schiff base, consistent with 
the classical reaction described by Louis Camille Maillard in 1912 (Figure 5).  
 

 

Fig. 5. Non-enzymatic reaction of the carbonyl groups of reducing sugars with primary 
amino groups produce corresponding Schiff bases, which undergo Amadori rearrangement 
to give ketoamines. 
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Glycation is the first step in the cascade of a complex series of very slow reactions in the body 

known as Amadori reactions, Schiff base reactions and Maillard reactions, all leading to the 

formation of irreversibly cross-linked heterogeneous aggregates. AGEs are continuously 

formed in the human body and progressively accumulate with age in plasma and tissues. In 

diabetes mellitus and AD the rate of AGEs formation is accelerated and consequently, they 

have been considered potentially useful biomarkers for monitoring the treatment of these 

disorders. Chemical structures of representative markers of AGEs are summarized in Figure 6. 

Supporting the argument that AGEs are involved in the pathogenesis of AD, some studies 

have shown the presence of AGEs in association with two major proteins of AD, Aβ and MAP-

tau (Smith et al., 1995; Vitek et al., 1994; Yan et al., 1994). Extracellular AGEs accumulation has 

been demonstrated in senile plaques in different cortical areas. Intracellular proteins deposits 

including NFTs, Lewy bodies of patients with Parkinson’s disease and Hirano bodies are also 

crosslinked by AGEs, which may explain their insolubility in detergents and resistance to 

proteases (Loske et al., 2000). The major component of the NFTs, the microtubuli-associated 

protein tau (MAP-tau) has been shown to be subject to intracellular AGEs formation. MAP-tau  

 

 

Fig. 6. A variety of highly reactive carbonyl intermediates such as 3-deoxy-glucosone, 
glyoxal and methyl-glyoxal can be formed by glucose or Schiff’s base or Amadori product 
auto-oxidation which, in turn, can react with free amino groups to form AGE products. N-
carboxymethyl-lysine (CML), N- carboxyethyl-lysine (CEL), glyoxal-derived lysine dimer 
(GOLD), methylglyoxal-derived lysine dimer  (MOLD), furoyl-furanyl-imidazole (FFI), 
Lysine (Lys) and arginine (Arg). 
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can be glycated in vitro, inhibiting its ability to bind to microtubules. In addition, MAP-tau 
isolated from brains of AD patients is glycated in the tubulin-binding region, giving rise to the 
formation of β-sheet fibrils (Ledesma et al., 1998). AGEs accumulate in the human brain during 
aging (Kimura et al., 1996) and are present in neurofibrillary tangles and senile plaques in 

patients with AD (Castellani et al., 2001). Furthermore; AGE-modified A peptides accelerate 

aggregation of soluble nonfibrillar A peptides. In older adults with cerebrovascular disease, 
elevated N-carboxymethyl-lysine (CML) has been found in cortical neurons and cerebral 
vessels and has been related to the severity of cognitive impairment (Southern et al., 2007). 
Brain tissue AGEs can therefore be considered tissue biomarkers for AD, and increased brain 
AGEs concentrations are reflected in CSF (Ahmed et al., 2005) but no necessarily in plasma 
(Thome et al., 1996). 
A positive feedback loop in the pathogenesis of AD is provoked by AGEs which increase OS 

and inflammation through binding with AGEs receptor (RAGE). The RAGE signalling 

pathway, found upregulated in AD brains, can be initiated by a diverse repertoire of pro-

inflammatory ligands that include AGEs, S100/calgranulins, amphoterin, and amyloid- 

peptide. Ligand binding with RAGE triggers the induction of increased reactive oxygen 

species, activates NADH oxidase, increases the expression of adhesion molecules, and up-

regulates inflammation through NF-kB and other signalling pathways.  

3.4 Biomarkers of oxidative protein damage 
Carbonylation of proteins is an irreversible oxidative process, often leading to a loss of 

protein function, which is considered a widespread indicator of severe oxidative damage 

and disease-derived protein dysfunction (Dalle-Donne et al., 2006). Protein carbonyl groups 

are introduced to proteins by direct oxidation of several amino acid residues into ketone or 

aldehyde derivates (particularly lysine, arginine, threonine and proline; Figure 7) or by 

secondary reaction with the primary oxidation products of sugars (forming AGEs) and 

lipids (forming ALEs) (Berlett & Stadtman, 1997). Several studies have proved that proteins 

are major initial cell targets of ROS, leading to earlier formation of the protein carbonyls in 

biological systems. Detection of increased levels of protein carbonyls in AD has been 

proposed as a sign of disease-associated dysfunction, suggesting the potentiality as 

biomarkers for early AD diagnosis.  

Recent studies show an increase in protein carbonyls together with NFTs in multiple brain 
regions of AD subjects (Sultana & Butterfield, 2011). Oxidative modifications of proteins can 
cause cross-linking of covalent bonds of proteins leading to fibril formation and insolubility. 
NFTs are characterized by the aggregation and hyperphosphorilation of tau proteins which 
is linked to oxidation through the microtubule-associated protein kinase pathway and 
through the activation of the transcription factor NF-kB. A wide number of studies have 
reported differences in specific carbonated proteins in brain, plasma and CSF of AD patients 
compared with control group by using 2-dimensional gel electrophoresis in combination 
with mass spectroscopy techniques (Castegna et al., 2002a, 2002b; Davidsson et al., 2001; 
Puchades et al., 2003). Some of these studies reveal the presence of specific targets of protein 
oxidation in AD brain: creatine kinase BB, glutamine synthase, ubiquitin carboxy-terminal 
hydrolase L-1, dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 
71. Glutamine synthase and creatine kinase, both markedly decreased in AD brains, are 
especially sensitive to oxidative modifications since they may cause alteration of glutamate 
concentrations (glutamine sinthase), and therefore enhance excitotoxicity, and decrease 
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energy metabolism (creatine kinase). Recently, several oxidized carbonylated proteins have 
been characterized in frontal cortex (Korolainen et al., 2006), plasma (Yu et al., 2003; Choi et 
al., 2002) and CSF (Korolainen et al., 2007) of patients suffering from AD by two-
dimensional oxyblotting technique. 
 

 

Fig. 7. Chemical structures of protein carbonyls arising from direct oxidation of aminoacid 
side chains. Glutamic semialdehyde (resulting from direct oxidation of arginyl and prolyl 
residues) and aminoadipic semialdehyde (resulting from direct oxidation of lysyl residue). 

4. Antioxidant therapies in Alzheimer’s disease 

Currently, the only Food and Drug Administration (FDA) approved treatment for AD is the 
administration of the cholinesterase inhibitors (AChEI) donepezil, galantamine and 
rivastigmine and the N-methyl-D-aspartate (NMDA) receptor antagonist, memantine (Birks 
et al., 2000, 2006; Loy et al., 2004; Areosa et al., 2005). Nevertheless, to date, these drugs have 
demonstrated to produce only modest symptomatic improvements in some of the patients, 
but not to cure or stop the disease progression. Moreover, AChEI are expensive and may 
have side effects resulting from activation of peripheral cholinergic systems (Green et al., 
2005). Then, effective treatments are greatly needed. The current therapeutic strategies being 
investigated for AD include targeting neurotransmission with multifunctional compounds, 
anti-amyloid and anti-tau therapies, drugs targeting mitochondrial dysfunction, 
neurotrophins, statins and also other approaches such us PUFAs and antioxidants (for 
review see Mangialasche et al., 2010). Among them, antioxidant therapies and PUFAs are 
particularly attractive due to their low toxicity, low cost and their ability to target earlier 
changes of the disease (e.g oxidative stress) which are linked to cognitive and functional 
decline. However, there is still much skepticism regarding the likelihood of success with an 
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antioxidant therapy since to date these compounds tested in randomised controlled trials 
(RCTs) have given controversial results.  

4.1 Vitamins  
A large amount of literature exists in relation to the potential benefits of vitamins, which act 

as natural free radical scavengers, in the prevention of AD (Figure 8). Vitamin A has been 

traditionally considered as antioxidant and it seems essential for learning, memory and 

cognition. Retinoic acid, a metabolic product of vitamin A, is known to slow cell death and 

protect from A (Sahin et al., 2005). Thus, since levels of vitamin A decline with age and are 

found lower in AD individuals (Goodman et al., 2006) vitamin A supplementation might be 

useful for the treatment of some features in the ageing process. B-vitamins (B6, B12 and folic 

acid) are lipid soluble antioxidants involved in the methylation of homocysteine (Hcy) 

which is highly cytotoxic. Cellular catabolism and cellular export mechanisms are the 

responsible for keeping low intracellular Hcy concentration. AD patients tipically present 

high levels of Hcy (McIlroy et al., 2002) and low levels of vitamin B12 and folate which 

appear to be associated with an increased rate of cognitive decline (Tucker et al., 2006; 

Morris et al., 2007). Nevertheless, in a recent study, a combination of vitamins B12, B6 and 

folate in mild to moderate AD individuals, although lowering Hcy, did not produce any 

effect on cognition compared to controls. Vitamin C (ascorbic acid), found in many fruits 

and vegetables, is the major water-soluble antioxidant and acts as first defence against free 

radicals in blood and plasma. Bagi et al, 2003, have shown that chronic vitamin C treatment 

is able to decrease high levels of isoprostanes in animal models. In contrast, other studies 

have shown that it can also act as pro-oxidant inducing neuronal oxidative stress via its  

 

 

Fig. 8. Chemical structures of the principal polyphenols, herbal suplements and vitamins 

investigated as promising agents for the treatment of AD. 
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interaction with metal ions (White et al., 2004). Vitamin E (-tocopherol), present in whole 

grains, cereals and vegetable oils, is a lipid-soluble vitamin found in cell membranes and 

circulating lipoproteins. Its antioxidant capacity acts directly to a variety of ROS. It is found 

low in AD patients (Jiménez-Jiménez et al., 1997) and although in vitro and animal studies 

have been encouraging, human trials have produced conflicting results (Berman et al., 2004). 

A Cochrane study shows that tocopherol is not effective in a prevention trial in mild 

cognitive impairment (MCI) to reduce progression to AD nor clearly effective in AD patients 

(Tabet et al., 2000; Luchsinger et al., 2003). Besides, a harmfull effect of tocopherol at high 

doses has also been suggested (Tucker et al., 2005). However, several studies correlate a 

reduced risk to AD in elderly persons treated with vitamin E and C alone or in combination 

(Grundman et al., 2004; Morris et al., 1998; 2002; 2005). On the other hand, brain 

bioavailability of vitamin E in humans is very low and, as suggested elsewhere may not be 

enough to quickly inhibit AD neuropathology unless administered as a prophylactic at very 

early ages. The large amount of contradictory data found in literature about the use of 

vitamins as antioxidants indicates intricate physiological and pharmacological features of 

AD and remain questionable its use in human.   

4.2 Polyphenols and herbal supplements 
Polyphenols are a group of plant-derived chemical substances which protect plants from the 
stress induced by physical damage, disease, radiation and pests (Figure 8). It has been 
suggested that curcumin, the yellow pigment extracted from the plant curcuma longa 
(turmeric), may be a promising therapy for AD due to its extended neuroprotective actions 
(Mishra et al., 2008; Cole et al., 2007), including antioxidant, anti-inflammatory, inhibition of 

A formation and removal of existing A as well as cooper and iron chelation. 
Epigallocathechin-3-gallate (EGCg) is found in green tea and it has been described that 

prevents A aggregation by directly binding to the unfolded peptide. It also modulates 
signal transduction pathways, expression of genes regulating cell survival and apoptosis 
and its actions in mitochondrial function make it a potent antioxidant (Mandel et al., 2008). 
Resveratrol is present in red wine, peanuts and other plants and it has been found that it 

reduces OS, inflammation and Adeposition, decreases cell death and protects DNA 
(Mishra et al., 2008; Karuppagounder et al., 2009). A recent study suggests that moderate 
consumption of red wine reduces the risk of developing AD. Nevertheless, the translation to 
humans is still somewhat problematic and has some caveats since although polyphenols 
easily penetrate blood-brain barrier, they show bioavailabity problems such us low 
absorption, rapid metabolism and quick elimination. Efforts to increase bioavailability have 
been reviewed (Anand et al., 2007) and the adjuvant use widely extended (Shoba et al., 
1998). Indeed, there is currently a clinical trial underway addressing curcumin 
bioavailability (http://clinicaltrials.gov/NCT01001637). Furthermore, the anti-AD effects of 
polyphenols may not be mediated solely through their direct antioxidant action but rather 
indirectly through any other functions. Then, it is still to be clarified whether polyphenols 
are able to slow the progression of AD. Herbal supplements such us gingko biloba have been 
suggested to possess beneficial properties against AD (Luo et al, 2002). Numerous animal 
and in vitro studies report that gingko biloba extract EGb761 possess neuroprotective benefits 

(Defeudis et al., 2002) including antioxidant, anti-inflammatory, and regulator of A 
processing. It has also been described that gingko improves cognitive function in mild to 
moderate AD patients (Oken et al., 1998; Le Bars et al., 2003) and reduces deterioration in 
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subjects with more severe dementia via inhibition of the A induced free radical generation 
(Napryeyenko et al., 2009; Yao et al., 2001). Nevertheless, a double-blind placebo controlled 
study found no beneficial effect of gingko on dementia in AD patients (Schneider et al, 2005) 
and DeKosky et al, 2008 showed that gingko was not better than placebo at preventing the 
onset of dementia. Additionally, there are two more studies finding no correlation between 
cognitive decline and the use of gingko biloba (Snitz et al., 2009; Dodge et al., 2008). Although 
data is controversial, it then appears that gingko may be useful delaying cognition 
impairment but not preventing the onset of AD. The ongoing clinical trial will help to 
elucidate this question (http://clinicaltrials.gov/NCT00814346). 

4.3 Mitochondrial-related antioxidants  
Since mitochondria are the major sources of ROS in the central nervous system, therapeutic 
strategies have largely focused in targeting mitochondria and mitochondrial-related 
pathways. There are several compounds showing an in vitro and in vivo antioxidant and 
neuroprotective action but only a few have been tested in human clinical trials with mixed 
results. 

4.3.1 Quinone family 
Ubiquinone (Coenzyme Q, CoQ) and idebenone, a synthetic analog of CoQ, (Figure 9) are 
the major mitochondrial targets used as therapeutics against ROS-mediated damage. They 
have demonstrated antioxidant properties in vitro and in animal models (Wadsworth et al., 
2008). CoQ has not been yet tested in humans but idebenone has been investigated in 
clinical trials for its capacity to inhibit lipid peroxidation. Several studies report a significant 
effect in memory and attention improvements (Gutzmann et al., 2002; Senin et al., 1992; 
Weyer et al., 1997) but a larger study reported no effect in slowing the disease progression 
(Thal et al., 2003). 

4.3.2 Other mitochondrial antioxidants 
Alpha-lipoic acid (LA) is an organosulfur compound derived from octanoic acid and 
primarily a cofactor in aerobic metabolism for pyruvate dehydrogenase complex. Its 
reduced bioactive form produced into cells provides its antioxidant properties (Haenen et 
al., 1991). Acetyl L-carnitine (ALCAR) is formed within mitochondria by carnitine-O-
acetyltransferase. Both LA and ALCAR (Figure 9) are good candidates for being used 
therapeutically as mitochondrial antioxidants since it was found that a combination of 
both decreased mitochondrial dysfunction and its consequent ROS-mediated damage in 
aged rats, improving cognitive functions (Aliev et al., 2009). Additional neuroprotective 

functions, including binding to targets involved in A production have been reported 
(Epis et al., 2008). However, several clinical trials with ALCAR have been conducted with 
contradictory results: one showed no effectiveness in early onset AD (Thal et al., 2000) 
whereas another showed a slower deterioration in cognition (Pettergrew et al., 1995). A 
recent meta-analysis of ALCAR treatment trials showed an improvement in clinical scales 
in patients with MCI and AD (Montgomery et al., 2003). Dimebon (Figure 9), a non 
selective antihistamine, possesses several mechanisms of action including the inhibition of 

A toxicity and the prevention of ROS-mediated damage (Doody et al., 2009; Okun et al., 
2010). Several clinical trials have been performed in AD patients with contradictory 
results: in a phase 2 clinical trial, dimebon improved cognition and behaviour, overall 
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function in MCI and AD (Doody et al., 2008) whereas more recently, a phase 3 
CONNECTION trial with AD patients showed no improvement in any parameter 
(http://clinicaltrials.gov/NCT00675623).  
 
 

 

Fig. 9. Chemical structures of mitochondrial-related antioxidants investigated as promising 
agents for the treatment of AD. 

4.3.3 Monoamine oxidase inhibitors 
The therapeutic potential of monoamine oxidase inhibitors (MAOIs) for the treatment of AD 
has been largely reported (Thomas, 2000; Riederer et al., 2004; Youdim et al., 2005) due to 
their capacity to reduce the formation of toxic metabolites or oxygen radicals by blocking 
the catalytic activity of monoamine oxidase (MAO), enzyme located in the mitochondrial 
membrane and responsible of amine metabolism. It has been extensively reported that 
MAO-B activity besides increasing with age is found in high levels in AD patients. 
Selegiline, the classic MAO-B inhibitor, and also other propargylamines (Figure 9) possess 
potent antioxidant properties (Kitani et al., 2000; Sanz et al., 2004). Moreover, it has also 
been described that propargylamine-derived MAOIs exert neuroprotective effects by acting 
in very diverse type of targets, including metal chelation (e.g M30), reduction of 

Aaggregation and toxicity (Bar-Am et al., 2009; Youdim et al., 2005) as well as direct 
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actions on diverse mitochondrial-related components. Among this direct functions, 
propargylamines increase the expression of anti-apoptotic proteins (Akao et al., 2002), 
prevent citocrom c release and preserve the mitochondrial membrane potential (Mayurama 
et al., 2000). The great amount of beneficial functions found for MAOIs make them 
promising molecules for the treatment of AD. Indeed, current pharmacological challenges in 
AD involve the design and development of multifunctional compounds able to bind to a 
very diverse type of targets and among them MAO inhibition is strongly recommended. 

4.4 PUFAs  
The beneficial effects of omega-3 polyunsaturated fatty acids (PUFAs) have been widely 

reported which make them good candidates for AD therapy (Cole et al., 2005) since they act 

directly on intracellular pathways and regulate oxidative stress mechanisms. DHA is the 

major omega-3 fatty acid in the brain. A recent study although showing no effect of DHA on 

subjects with mild-to-moderate AD it found a slower rate of cognitive decline among those 

patients without de APO 4 allele (Quinn et al., 2009). As reviewed by Mangialasche et al, 

2010, some studies have reported a beneficial effect of DHA on cognitive function in patients 

with AD (Yurko-Mauro et al., 2009; Chiu et al., 2008) whereas others did not found a 

correlation (Quinn et al., 2009). In effect, a recent study showed that treatment of patients 

with PUFAs did not modify the neuropathology of this disorder in CSF or plasma, nor the 

biomarkers of inflammation (Freund-Levi et al., 2009) and a randomised control trial in 

patients with mild to moderate AD did not delay the rate of cognitive decline (Freund-Levi 

et al., 2006). Some authors suggest that benefits of omega-3 fatty acids are limited to those 

with very mild cognitive impairment. A phase 2 randomised clinical trial is currently 

ongoing (http://clinicaltrials.gov/NCT01058941). 

4.5 Multiple nutrients 
Dietary supplementation with a plethora of nutrients such us apple juice concentrate, red 

wine, caffeine, fish oil or green tea as well as calorie restriction diets have been conducted. 

Diverse human studies have shown that multiple formulations improve all measures of 

cognition, although some authors reported that the increase in memory was not found 

significant (Chan et al., 2008). A recent study correlates frequent consumption of fruits and 

vegetables, fish, and omega-3 rich oils with a decreased risk of dementia in AD (Barberger-

Gateau et al., 2007). In contrast, interventional trials with antioxidants, B-vitamines and 

DHA did not give the promising expectations from the epidemiological data. As reported by 

Von Arnim et al., 2010, although some trials are encouraging, larger randomised clinical 

trials with combined supplements are needed to draw any conclusion. Supplement 

composition is still a matter of debate, because high doses of a single antioxidant have been 

associated with no beneficial effects for AD patients and even with an increase in mortality 

risk (e.g vitamin E). Many interventional studies are started very late in the disease state, 

when AD pathology is already at a fulminant level which severely reduces therapeutic 

effectiveness of tested agents. The multifactorial nature of AD and the necessity to target the 

earlier production of OS makes important the combination of multiple supplements. 

Therefore, studies combining nutrients are of particular interest and at present in progress 

(e.g. T-diet, NKOTM, and Memory XL; http://clinicaltrials.gov/NCT01192529, 

NCT00867828, NCT00903695).  
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Exposure Assessment Design 
Case 

source
Major findings 

Reference 
 

EGb 761 
(intravenous) 

NA 
 

RCT 
AD 
VaD 

ADL improvement.
Clinical impression of 

change

Haase et al, 
1996 

EGb 761 
(oral) 

NA RCT 
AD
VaD 

Cognitive 
improvement 

Le Bars et al, 
2000 

PUFAs 
Plasma 
assay 

Cross-
sectional 

Normal, 
CI, 

dementia

Low n-3 and high n-6 
associated with CI 

and AD

Conquer  et 
al, 2000 

PUFAs 
Plasma 
assay 

Cross-
sectional 

Normal, 
CI, 

dementia 

High n-3 associated 
with CI and AD. 
Strengthened in 

ApoEe4 non-carriers 

Laurin et al, 
2003 

PUFAs 
Plasma 
assay 

Prospective Normal 

No association 
between PUFAs and 

reduced risk of 
dementia

Kroger et al, 
2009 

Fish intake FFQ Prospective Normal 
Reduced risk of 

incident dementia 

Barberger-
Gateau et al, 

2002 

DHA Serum assay
Case-

control
Normal

AD
MMSE and CDR 

improvement
Tully et al, 

2003 

Fish oil FFQ Prospective Elderly 
Slow rate of decline 
but not on overall 
cognitive status

Morris et al, 
2005 

PUFA FFQ Prospective Elderly 
Reduced MMSE 

decline over 5 years
Van Gelder 
et al, 2007 

-carotene NA Prospective Elderly 
Less cognitive decline 

only in ApoE4 
carriers

Hu et al, 
2006 

Vitamin E NA RCT MCI 

No significant 
differences compared 

to placebo or 
donepezil

Petersen, 
2005 

-tocopherol 
and/or 

selegiline 
NA RCT 

Moderate 
AD 

Longer time to 
institutionalization in 

all cases 

Sano et al, 
1997 

 

Table 2. Studies on antioxidants. EGb 761, Gingko biloba special extract 761; NA, not 
applicable; VaD, Vascular Disease; ADL, Activities of Daily Living; RCT, Randomised 
Controlled Trial; ApoE, apolipoprotein E; n-3, omega-3 fatty acids; n-6, omega-6 fatty acids; 
FFQ, food frequency questionnaire; AD, Alzheimer’s Disease; CI, cognitive impairment; MCI, 
Mild cognitive impairment;  DHA, docohexanoic acid; PUFAs, polyunsaturated fatty acids; 
MMSE, Folstein Mini- Mental State examination; CDR, Clinical Dementia Rating Scale.  
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5. Conclusions 

Oxidative stress increases with ageing and seems to be a consequence of an imbalance 
between ROS production and antioxidant defences. The accumulation of endogenous 
oxygen radicals generated in mitochondria and the consequent oxidative modifications of 
biological molecules have been indicated as responsible for the ageing process. There is 
therefore an urgent need to identify biomarkers that would help to diagnose and monitor 

the early AD or “preclinical AD”. Indeed, a few CSF proteins (e.g. amyloid-1-42, total tau 
and phospho-tau) have already shown promise as diagnostic biomarkers for AD. 
Nevertheless, these biomarkers are not yet optimal diagnostic tools to identify those MCI 
patients at higher risk of conversion to AD. Thus, a key objective in the research of OS 
biomarkers is to identify prodromal stages of the disorder, prior to cognitive decline, for 
gauging the long-term therapeutic effects of drugs. The contradictory results obtained with 
diverse antioxidants in clinical trials may be explained by other related differences in health 
problems as well as due to the fact that most studies are very short and conducted with very 
few subjects. Methodological problems and poorly matched epidemiological studies have 
also been pointed as reasons for mixed findings. In fact, very few trials are adequately 
addressing the effect of antioxidants in AD. Although at this time there is no rationale for 
recommending antioxidant use for prevention or treatment of AD, the current 
epidemiologic evidence points toward an important role of nutrition in this pathology. The 
optimal time for prevention seems to be important and still to be determined. Nevertheless, 
it seems clear that therapies acting in the beginning of the pathological cascade may be more 
effective than treatments that act after the fact (e.g., removal of amyloid plaques). Then, 
therapy should begin as early as possible while reversal of cellular pathologies is still 
achievable. In conclusion, properly addressed studies with antioxidants are greatly needed 
to obtain convincing data about its beneficial effects as anti-AD. There is also an urgent need 
for better formulations with increased bioavailability. Due to the multifactorial nature of 
AD, it seems imperative that future trials may use drug combinations or even 
multifunctional molecules, rather than a single compound, able to bind to a very diverse 
type of target and that an antioxidant capacity may be contemplated.  
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