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1. Introduction 

Despite its initial discovery as one of five protein kinases activities found to phosphorylate 

glycogen synthase (GS) in fractioned extracts of rabbit skeletal muscle (Embi et al., 1980; 

Hemmings et al., 1981), Glycogen Synthase Kinase 3 (GSK-3) is by no means restricted to a 

role in glycogen metabolism. Indeed, the enzyme targets a wide variety of proteins involved 

in signalling, metabolism, structural proteins and a remarkable number of transcription 

factors and plays a far more pleiotropic role than first imagined (Woodgett, 2006). Genetic 

analyses and the use of selective inhibitors have shown that GSK-3 plays critical roles in 

development, metabolic homeostasis, neuronal growth and differentiation (Hur & Zhon, 

2010), cell polarity, cell fate and apoptosis. Its unique position in modulating the function of 

a diverse series of proteins in combination with its association with a wide variety of human 

disorders, from neurodegenerative diseases, stroke, bipolar disorder to diabetes and cancer, 

has attracted significant attention to the protein both as a therapeutic target and as a means 

to understand the molecular basis of these disorders.  

In particular, the involvement of GSK-3 in several key pathophyisiological pathways 

leading to Alzheimer’s disease (AD) and neurodegenerative diseases has placed this enzyme 

in a central position in this disorder. Thus, GSK-3 has recently been proposed as a link 

between the two major pathological pathways in AD, amyloid and tau (Hernández et al., 

2010; Muyllaert et al., 2008) and even a “GSK-3 hypothesis of AD”, suggesting that GSK-3 

might be a casual mediator of the disease, has been put forward (Hooper et al., 2008). This 

review will focus on describing the key role that GSK-3 plays in AD pathobiology and the 

use of GSK-3 inhibition as a potential therapeutic approach to treat this disease. 

2. GSK-3 structure and regulation 

GSK-3 is a highly conserved protein kinase belonging to the CMGC family of 
serine/threonine protein kinases, as genes encoding the enzyme have been identified in 
every eukaryotic genome that has been investigated, such as Dictyostelium discoideum (Kim 
et al., 1999), Xenopus laevis (Itoh et al., 1995), Drosophila melanogaster (Ruel et al., 1993) or 
parasites such like Plasmodium falciparum, Trypanosoma brucei or Leishmania donovani 
(Osolodkin et al., 2011). Mammalian GSK-3 is encoded by two genes, gsk-3┙ and gsk-3┚  
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(Frame & Cohen, 2001; Grimes & Jope, 2001), that encode proteins of 51 and 47 kDa, 
respectively and which display 84% overall identity (98% within their catalytic domains), 

with the main difference being an extra Gly-rich stretch in the N-terminal domain of GSK-3 

(Woodgett, 1990). Mammalian GSK-3 and  are each widely expressed although some 
tissues show preferential levels of some of the two proteins. Furthermore, an alternatively 

splicing event between exons 8 and 9 of GSK-3 gives rise in neurons to a splice variant 

(GSK-32) containing a 13 amino acids insertion within the kinase domain near to the 
substrate binding pocket (Mukai et al., 2002). How this insertion affects kinase activity or 

regulation remains unclear, although some differences between GSK-31 and GSK-32 
isoforms have already been described (see below).  

Crystallographic studies have revealed the three-dimensional structure of GSK-3(Dajani et 
al., 2001; ter Haar et al., 2001), having the overall shape common to most kinases, with a 

small N-terminal lobe mostly consisting of -sheets and a large C-terminal lobe essentially 

formed of -helices (Noble et al., 2005).  The ATP binding pocket is located between the two 
lobes and it is well conserved among kinases (Bain et al., 2007). Very recently, a comparison 
of the human and parasite GSK-3 ATP binding sites has opened the possibility of 
developing selective drugs specifically affecting parasite GSK-3 (Osolodkin et al., 2011). 
Some GSK-3 substrates do not require a very specific sequence but rather a previous 
(primed) phosphorylation  by a priming kinase on a Ser or Thr residue located four amino 
acids C-terminal to the Ser or Thr residue to be modified by GSK-3 (see below for regulation 
through primed phosphorylation).  The crystal structure of human GSK-3┚ has also 
provided a model for the binding of pre-phosphorylated substrates to the kinase. According 
to it, primed Ser/Thr is recognized by a positively charged binding pocket formed by 
residues Arg96, Arg180 and Lys205 that facilitates the binding of the phosphate group of 
primed substrates. GSK-3┚ uses the phosphorylated serine or threonine at position +4 of the 
substrate to align the two domains for optimal catalytic activity (Dajani et al., 2001; ter Haar 
et al., 2001). 

Furthermore, crystal structures of GSK-3 complexes with interacting proteins FRAT/GBP 

and axin have allowed defining the molecular basis for those interactions, which play 

critical roles in some signalling pathways (see below for regulation through protein complex 

formation). These studies confirm the partial overlap of the binding sites of axin and 

FRAT1/GBP predicted from genetic and biochemical studies (Ferkey & Kimelman, 2002; 

Fraser et al., 2002) but reveal significant differences in the detailed interactions, and identify 

key residues mediating the differential interaction with both proteins. This ability of GSK-3 

to bind two different proteins with high specificity via the same binding site is mediated by 

the conformational plasticity of the 285-299 loop, while some residues in this versatile 

binding site are involved in interactions with both axin and FRAT, others are involved 

uniquely with one or the other (Dajani et al., 2003). 

GSK-3 is ubiquitously expressed and, unlike most kinases, has a relatively high activity in 

resting, unstimulated cells while it is normally reduced in response to a variety of 

extracellular stimuli (Frame & Cohen, 2001). In mammals, GSK-3 and  are each expressed 

widely at both the RNA and protein levels, although some tissues show preferential levels 

of some of the two proteins as for instance, both isoforms are highly expressed in neural 

tissue. Neither gene appears to be acutely regulated at the transcriptional level whereas the 

proteins are controlled post-translationally, largely through protein-protein interactions or 

by post-translational regulation.  
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Given that chemical inhibitors of GSK-3 are unable to discriminate between the various 
GSK-3 isoforms, evaluation of isoform-specific functions it is not possible by using these 
compounds. However, evidence for isoform-specific roles has now emerged from mouse 
models (see below). For instance, some recent findings suggest that there are tissue- and 
isoform-specific roles in regulation of glucose metabolism (Patel et al., 2008; Mol Cell Biol), 

as GSK-3 seems to be the predominant regulator of GS and glycogen synthesis in liver 

whereas GSK-3 has a more prevalent role within skeletal muscle and pancreas. Also, 
although the effect of the inserted sequence on kinase activity, substrate specificity or 
requirement for priming of substrates remains unclear, the neuron-specific alternatively 
spliced GSK-3┚2 isoform appears to phosphorylate unprimed residues on tau and MAP1B 
to a lesser extent than GSK-3┚1 (Mukai et al. 2002, Wood-Kaczmar et al. 2009). 
Three decades after its discovery as a protein kinase involved in glycogen metabolism, GSK-

3 has revealed as a key enzyme in regulating many critical cellular processes, providing a 

link between many different substrates and various signalling pathways as well as gene 

expression. Modulation of its activity has also turned out to be much more complex than 

originally thought. As already mentioned above, one of the main characteristics of GSK-3 is 

that its activity is high in resting, unstimulated cells while regulated by extracellular signals 

that typically induce a rapid and reversible decrease in enzymatic activity. Control of GSK-3 

activity occurs by complex mechanisms that are each dependent upon specific signalling 

pathways (for a recent review see Medina & Wandosell, 2011).  

Early on, GSK-3 was proved to be a dual specificity kinase differentially regulated by 

tyrosine and serine/threonine phosphorylation (Wang et al., 1994). The first regulatory 

mechanism described of GSK-3 activity involved the phosphorylation of specific residues of 

GSK-3 by other kinases; and more recently through auto-phosphorylation (Frame & Cohen, 

2001; Harwood, 2001). Thus, four different regions and residues have been described in the 

GSK-3 molecule. First, it has been clearly established that phosphorylation of serine residue 

at positions 21 in GSK-3 and 9 in GSK-3, correlates with the inhibition of its kinase 

activity (Frame et al., 2001; Stambolic et al., 1994; Sutherland et al., 1993).  Many protein 

kinases are capable of phosphorylating GSK-3 at this residue, such as Akt, ILK, PKA, 

p90Rsk (Delcommenne et al., 1998; Fang et al., 2000), and many physiological situations of 

inhibition of GSK-3 correlate with serine phosphorylation, such as Insulin/IGF1, NGF, or 

Estradiol treatments, not only in neurons but also in other cell types (Cardona-Gomez et al., 

2004). In addition, phosphorylation at threonine 43, present only in the isoform GSK-3┚, by 

ERK also correlates with GSK-3 inhibition (Ding et al., 2005), whereas residues serine 389 

and threonine 390 present in GSK-3┚ have been shown to be phosphorylated by p38 MAPK 

(Thornton et al., 2008), increasing the capacity of Ser-9 to be phosphorylated rather than 

promoting a direct inhibition.  

In contrast, tyrosine phosphorylation present in positions 279 in GSK-3or 216 in GSK-3, 
correlates with an increase of its kinase activity (Hughes et al., 1993). Different candidate 
kinases such as Pyk-2 and Fyn have been reported to be able to phosphorylate GSK-3 on this 
residue in vitro, as MEK1/2 has been shown to do it in mammalian fibroblasts (Hartigan et 
al., 2001; Lesort et al., 1999) or ZAK1 in Dictyostelium discoideum (Kim et al., 1999; 2002), 
although no homologue of this latter kinase has been found in mammals. More recently, it 
has been suggested that phosphotyrosine in GSK-3 in mammalian systems might arise from 
a chaperone-dependent intra-molecular autophosphorylation event perhaps regulated by 
Hsp90 (Cole et al., 2004 Biochem J; Lockhead et al., 2006; Wang et al., 1994). Molecular 
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dynamics and crystallographic studies clearly suggest that pTyr216 renders the kinase active 
through interactions with Arg220 and Arg223, stabilizing the activation loop and allowing 
full substrate accessibility (Buch et al., 2010; Cohen & Goedert, 2004). Very recently, it has 
been also shown that the extent of phosphorylation at both Ser9 and Tyr216 residues is very 

similar  in both GSK-3 splice variants, 1 and 2 (Soutar et al., 2010). 
On the other hand, tyrosine phosphorylation of residue 216 or 279 increased in neuronal 

cells following exposure to LPA (Sayas et al., 1999) and also upon exposure of neurons to -
amyloid or PrP (Muñoz-Montaño et al., 1997; Perez et al., 2003; Takashima et al., 1998) in a 
clear correlation with an increase on GSK-3 activity. In addition, in many neuronal cells the 
pharmacological inhibition of tyrosine phosphatases with ortho-vanadate increases the basal 
level of GSK-3-pTyr (Simon et al., 2008). Thus, taken all together, in addition to the reported 
tyrosine 216/279 autophosphorylation mechanism proposed, some as-yet-unidentified 
tyrosine kinases and/or phosphatases may also regulate GSK-3 activity by phosphorylation 
of this particular residue.  
Another mechanism of GSK-3 regulation through post-translational modification involves 

the removal by calpain of a fragment from the N-terminal region of GSK-3, including the 

regulatory serines 9/21. After removal of that fragment GSK-3 becomes activated (Goñi-

Oliver et al., 2007). The same study showed that both isoforms  and  are cleaved by 

calpain, although with different susceptibility. Moreover, GSK-3 truncation has been 

observed in human and mouse post-mortem brain tissue (Goñi-Oliver et al., 2009a). It is 

noteworthy to consider that a similar mechanism has been described for ┚-catenin in 

hippocampal neurons, where after NMDA-receptor-dependent activation; calpain induces 

the cleavage of ┚-catenin at the N-terminus, generating stable and truncated forms which 

maintain its transcriptional capacity (Abe & Takeichi, 2007). Likewise, GSK-3 truncation is 

mediated by extracellular calcium and can be inhibited by memantine (Goñi-Oliver et al., 

2009b), a NMDA antagonist used for the treatment of Alzheimer’s disease. Interestingly, 

GSK-3 has also been recently shown to be cleaved at the N-terminus (and subsequently 

activated) by matrix metallo-proteinase 2 (MMP-2) in cardiomyoblasts (Kanadasamy & 

Schulz, 2009). 

Besides post-translational modifications, GSK-3 activity can also be regulated by protein 

complex association, for instance through its interaction with structural (scaffold) proteins. 

It is well known that GSK-3 contributes to Wnt signalling by participating in a multiprotein 

complex formed by axin, -catenin and adenomatous polyposis coli (APC), among others 

(for review see, i.e. Moon et al., 2004). Indeed, in the absence of  the Wnt ligand, GSK-3 it is 

able to phosphorylate -catenin and targeting it for proteasome degradation (Aberle et al., 

1997) whereas in its presence GSK-3 is unable to do that, increasing -catenin cytosolic levels  

and eventually mediating TCF/LEF-mediated transcription at the nucleus. Recent data 

suggest that this complex may be specific for the GSK-3┚2 splice isoform (Castaño et al., 

2010). Recent evidence also supports a neuroprotective role for Wnt signaling in 

neurodegenerative disorders such as AD (Inestrosa & Toledo, 2008). 

Moreover, another GSK-3-binding protein (GBP or FRAT) has been reported to regulate 
GSK-3 enzymatic activity (Itoh et al., 1995; Li et al., 1999). From the three different FRATs 
that have been cloned and characterized, FRAT1 appears to act as an inhibitory system (Yost 
et al., 1998) whereas FRAT2 appears to preferentially increase GSK-3-mediated 
phosphorylation in some residues (Stoothoff et al., 2005). Surprisingly, the triple FRAT-
knockout mouse lacks any major defect in brain development (van Amerongen et al., 2005), 
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which underlines the need to better define the precise role of FRAT in GSK-3 regulation and 
brain physiology. Furthermore, using the binding site on GSK-3 for FRAT/GBP, a GSK-3-
interacting protein (GSKIP) has been identified that can block phosphorylation of different 

substrates and functions as a negative regulator of GSK-3 (Chou et al., 2006). Other 
proteins have also been proposed to further contribute to GSK-3 regulation through physical 
interaction with it. Thus, DISC-1 (Disrupted In Schizophrenia-1) regulates neural progenitor 

proliferation via the -catenin/GSK-3 pathway, whereby DISC-1 stabilizes -catenin by 

inhibiting GSK-3 activity through a direct binding (Mao et al., 2009). Finally, the dimeric 
scaffold protein 14-3-3 has been shown to co-elute from brain microtubules together with 

tau and GSK-3 and this interaction has been proposed to facilitate the interaction of the 
kinase with some of its substrates (Agarwal-Mawal et al., 2003). 
As already mentioned, an unusual property of GSK3 is that most of its substrates require 
prior phosphorylation (priming) at a residue 4 or 5 amino acids C-terminal to the target 
residue (Frame & Cohen 2001), thus providing another mechanism of regulation of the GSK-
3 activity. Some priming kinases have been identified, such as cdk5 (Alonso et al., 2006; 
Noble et al., 2003; Sengupta et al., 1997), PAR-1 (Nishimura et al., 2004), casein kinase I 
(Amit et al. 2002), PKC (Liu et al., 2003) or PKA (Sengupta et al., 1997). That said, there are 
examples of unprimed substrates reported, although is not entirely clear as yet whether this 
second set of unprimed substrates may define a different group of functions (Twomey & 
McCArthy, 2006).  

3. GSK-3 activity in AD brain 

Compared to age-matched control samples, increased levels of GSK-3 have been found in 

post-mortem analysis of brains from AD patients (Pei et al., 1997) while a spatial and 

temporal pattern of increased active GSK-3┚ expression correlating with the progression of 

neurofibrillary tangles (NFT) and neurodegeneration has also been shown (Leroy et al., 

2002). Thus, GSK-3 has been shown to localize to pre-tangle neurons, dystrophic neurites 

and NFTs in AD brain (Pei et al., 1997). Neurons actively undergoing granulovacuolar 

degeneration are also immunopositive for active GSK3┚ (Leroy et al., 2002). Taken all 

together, although direct evidence might be lacking, all these studies strongly suggest that 

GSK-3┚ activity is increased in the brains of patients suffering from AD.  

GSK-3is the major kinase to phosphorylate tau protein both in vitro and in vivo.  

Furthermore, GSK-3 has been proposed as the link between the two major 

histopathological hallmarks of AD, the extracellular amyloid plaques and the intracellular 

NFT (Hernández et al., 2010; Ittner and Götz, 2011; Muyllaert et al., 2008). Exposure of 

primary neuronal cultures to A induces activation of GSK-3, tau phosphorylation and cell 

death, whereas blockade of GSK-3 expression by antisense oligonucleotides or its activity by 

lithium inhibits A-induced toxicity (Alvarez et al., 1999; Hoshi et al., 2003; Wei et al., 2000). 

GSK-3┚-deficient mice die during embryonic development (Hoeflich et al. 2000, Liu et al. 2007) 

whereas GSK-3┚ heterozygous (+/-) mice are viable, although they show some neurological 

abnormalities, including reduced aggression, increased anxiety, reduced exploratory activity, 

poor memory consolidation and reduced responsiveness to amphetamine (O'Brien et al. 2004, 

Kimura et al. 2008, Beaulieu et al. 2008). Conversely, transgenic mice over-expressing GSK-3┚ 

result in behavioural changes that appear to recapitulate hyperactivity observed in the manic 

phase of bipolar disorder (Prickaerts et al. 2006).  
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On the other hand, mice lacking GSK-3are viable and develop normally (MacAulay et al. 
2007), but display enhanced glucose tolerance and insulin sensitivity accompanied by 

reduced fat mass. Interestingly, GSK-3 knock-out mice show reduced exploratory activity 
and aggression, similar to the GSK-3┚ heterozygotes, but in addition have decreased 
locomotion, impaired co-ordination and a deficit in fear conditioning (Kaidanovich-Beilin et 
al. 2009). These different in phenotypes in mice lacking one isoform or the other suggest 
non-redundant functions of the GSK-3 genes in the brain, while the overlapping behavioural 

problems between GSK-3 knockout (KO) and GSK-3┚ heterozygous (+/-) mice suggest 
some common substrates. 
Furthermore, loss of both GSK-3 isoforms specifically in the brain results in increased self-
renewal of neuronal progenitor cells, but reduced neurogenesis (Kim et al. 2009), while 

double GSK3/┚ knock-in mice in which endogenous isoforms are replaced by mutant 
proteins where Ser21/9 have been mutated to Ala21/9 respectively, thus preventing 
repression by growth factor signalling, exhibit impaired neuronal precursor cell 
proliferation (Eom & Jope 2009). These data underscore the critical role that proper 
regulation of expression and activity of GSK-3 play in the maturation of these cells during 
mammalian brain development.  
However, we must be careful when interpreting data from transgenic or KO animals since 

some strain specificity has been recently observed, at least in the case of improved insulin 

sensitivity and hepatic glucose homeostasis phenotype observed upon global inactivation of 

GSK-3 (Patel et al., 2011). 

All these observations and the ones described below strongly suggest a central role of GSK-3 

in AD pathogenesis and have also led to several efforts trying to identify sequence 

variations in the gsk-3 gene and its promoter. Despite early reports of a lack of genetic 

association between the gsk-3 coding sequence or its promoter with AD (Russ et al., 2001), 

several groups have now reported this association. Thus, a polymorphism in the promoter 

region (-50) of the gsk-3 gene appears associated with a two-fold increased risk for sporadic 

AD when analysing 333 sporadic AD patients and 307 control subjects from Spain (Mateo et 

al., 2006). More recently, a case-control study has found a rare intronic polymorphism in gsk-

3 that occurred twice more frequently in AD patients than in aged healthy controls 

(Schaffer et al., 2010), strongly supporting the notion of a genetic association of the gsk-3 

gene with AD. Furthermore, two additional independent studies have reported synergistic 

effects (epistasis) between the gsk-3 and either the MAPT (tau) genes (Kwok et al., 2008) or 

the p35 subunit of cdk5 (Mateo et al., 2009) in late-onset AD, further supporting a genetic 

association between gsk-3 and AD. Interestingly, a genetic polymorphism that increases the 

ratio of GSK-31 to GSK-32 interacts with tau haplotypes and modifies risk in Parkinson’s 

and Alzheimer’s disease (Kwok et al. 2005, 2008). 

4. The role of GSK-3 in tau phosphorylation 

Tau protein is a microtubule-associated protein (MAP) that in normal physiological 
conditions binds to microtubules (MT), regulating their assembly, dynamic behaviour, and 
spatial organization (Drechsel et al., 1992; LoPresti et al., 1995). Later on, tau has also been 
shown to regulate the axonal transport of organelles, including mitochondria (Ebneth et al., 
1998). Tau is primarily, though not exclusively, a neuronal protein encoded by a single gene 
but with six major isoforms derived by alternative splicing (Goedert et al., 1989; Himmler et 
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al., 1989). The interaction between tau and tubulin is mediated by four imperfect repeat 
domains (31-32 residues) encoded by exons 9-12 (Lee et al., 1989). Alternative splicing of 
exon 10 gives rise to isoforms with 3 or 4 binding domains (3R and 4R tau) (Goedert et al., 
1989). Adult human brain shows a 1:1 ratio of 3R and 4R isoforms whereas foetal brain, 
however, only expresses 3R tau, demonstrating developmental regulation of exon 10 
splicing. Different brain regions also differ in the relative levels of 3R and 4R isoforms with 
granule cells in the hippocampal formation reported to have only 3R tau (Goedert et al., 
1989). Disturbances in this ratio are a common feature in most neurodegenerative 
tauopathies, including AD. 
Within neurons, tau is predominantly found in axons as a highly soluble phosphoprotein. 

As mentioned in the case of alternative splicing, phosphorylation is also developmentally 

regulated, with a high tau phosphorylation level during embryogenesis and early 

development, when only the shortest of the isoforms is being expressed. By contrast, adult 

brain expresses all six isoforms with relatively reduced phosphorylation levels compared 

with the foetal one (see [Hanger et al., 2009] for a review). 

Upon abnormal phosphorylation, the microtubule-associated protein tau reduces its affinity 

for and dissociates from microtubules. In AD brains tau accumulates in the neuronal 

perikarya and processes as paired helical filaments (PHF). It has been suggested that at the 

single-cell level the defects start with a modification of tau by phosphorylation, resulting in 

a destabilization of microtubules giving rise to a “pre-tangle” stage. After this stage, the 

destabilization of microtubules leads to loss of dendritic microtubules and synapses, plasma 

membrane degeneration, and eventually cell death (Iqbal et al., 2009).  

The knowledge accumulated in the last years strongly suggest that tau-induced 

neurodegeneration is most likely a consequence of a combination of loss of (tau) function as 

well as gain of (toxic) function. On one hand, tau detachment from microtubules after 

hyperphosphorylation (or mutations) causes impaired microtubule function and axonal 

transport and eventually synaptic dysfunction and neurodegeneration (Jaworski et al., 

2010). On the other hand, hyperphosphorylated tau molecules tend to self-assemble into 

filaments such as PHF or straight filaments (SF) that form the NFT. But 

hyperphosphorylated tau seems to also have the capacity of sequestering normal tau 

molecules (and perhaps other microtubule-associated proteins) into the aggregates, which 

will also have a negative impact on the normal microtubule function. At some point after 

detaching from microtubules and getting into the aggregation process, tau molecules also 

suffer other post-translational modifications such as truncation (Delobel et al., 2008; 

Gamblin et al., 2003; Nvak et al., 1993), glycosylation (Wang et al., 1996), O-GlcNAcylation 

(Arnold et al., 1996; Hart et al., 1996), and ubiquitination (Bancher et al., 1991; Mori et al., 

1987), which could also contribute to the pathology. For a recent review on the molecular 

mechanisms by which tau induces neurodegeneration please refer to (Brunden et al., 2009; 

Iqbal et al., 2009).  

Interestingly, recent data strongly indicates that some soluble, oligomeric (pre-filament, 
immature filaments) tau species, rather than the tangles, are indeed the pathogenic ones 
(Bretteville & Planel, 2008, Congdon & Duff, 2008), reminiscent of what has happened in recent 

years in the amyloid field regarding plaques and intermediate A oligomers (Haass & Selkoe, 
2007; Walsh & Selkoe, 2007). For a very long time, tangles or fibrils have been considered to be 
the pathological species, but it has become clear now that, much like amyloid plaques, NFT are 
the final stages of a pathological process, but the real damage might actually be done by some 
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intermediate hyperphosphorylated, most likely soluble tau species (Brunden et al., 2009; Iqbal 
et al., 2009; Jaworski et al., 2010). In fact, there is some evidence suggesting that NFT might be 
protective indeed, as tangle-bearing neurons seem to survive for long periods of time 
(Andorfer et al., 2005; de Calignon et al., 2009; Morsch et al., 1999). More recently, some novel 
mechanisms of propagation of tau protein misfolding from the extracellular to the intracellular 
space, both in vitro (Frost et al., 2009) and in vivo (Clavaguera et  al., 2010) have been described. 
The demonstration of a link between tau oligomers and brain pathology in animal models has 
lately sparked the interest of tau immunotherapies (Boutajangout et al., 2010; Kayed & 
Jackson, 2009; Medina, 2011; Sigurdsson, 2008). 
GSK-3 induces tau phosporylation in several primed and unprimed PHF phosphoepitopes, 

both in vitro and in cell cultures. Activation of the insulin or Wnt signalling pathways increase 

tau phosphorylation mediated by GSK-3 (Caricasole et al., 2004; Lesort et al., 1999). 

Furthermore, some genetic studies show an association of Wnt signalling with AD through the 

low-density lipoprotein receptor-related protein 6 (LRP6), a co-receptor for Wnt signalling, 

which has been identified as a genetic risk for a subpopulation of late onset AD (De Ferrari et 

al., 2007). In addition, epidemiological and genetic studies also associate diabetes and insulin 

resistance with AD (Biessels & Kappelle, 2005; Hamilton et al., 2007; Reiman et al., 2007). 

Persistent tau phosphorylation might results in neuritic dystrophy. Lipophosphatidic acid 

treated neurons result in GSK-3-dependent persistent tau phosphorylation followed by neurite 

retraction and growth cone collapse (Sayas et al., 2002). Several animal models, which exhibit 

persistent tau phosphorylation, also display neuritic dystrophy. For instance mice lacking 

either Reelin, mammalian disabled (mDab1), or VLDLR2 and ApoER2 exhibit persistent tau 

phosphorylation and have neuritic dystrophy and cytoskeletal abnormalities associated with 

them (Hiesberger et al., 1999; Sheldon et al., 1997). It is conceivable that persistent 

phosphorylation by GSK-3 results in neuritic dystrophy and subsequent cytoskeletal 

breakdown. In Drosophila, tau overexpression in combination with phosphorylation by the 

Drosophila GSK-3 homolog Shaggy, exacerbated neurodegeneration induced by tau 

overexpression alone, leading to neurofibrillary pathology (Jackson et al., 2002).  

Recent evidence points out to GSK-3 linking tau and neuronal polarity through a protein 

called CRMP-2 (collapsing response mediator protein-2) which is essential for regulating 

axon growth and promotes assembly of microtubules (Cole et al., 2004). GSK-3 not only 

phosphorylates tau but also several CRMPs (Cole et al., 2006), including CRMP-2 

(Yoshimura et al., 2005) at Thr514, a residue crucial for controlling its activity. Low levels of 

phosphorylated CRMP-2 at that residue are present in the growth cone and are associated 

with axon growth, which is consistent with previous data demonstrating that inhibition of 

GSK-3 results in enhanced neurite outgrowth (Muñoz-Montaño et al., 1999). These data 

were substantially backed up by a different group (Jiang et al., 2005) that also found that 

GSK-3 is spatially regulated, with the ratio of inactive (phosphorylated at S9) versus active 

(unphosphorylated) being highest in the axon tips, consistent with the fact that higher levels 

of unphosphorylated CRMP-2 drive axon development, and hence, neural polarity. 

5. The role of GSK-3 in Aβ formation and neurotoxicity 

While not universally accepted, the so-called amyloid hypothesis of AD has provided the 
main conceptual framework for studying the causes of the diseases and developing new 
therapeutic interventions during the last quarter of century. According to it, the gradual 
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cerebral accumulation of soluble and insoluble assemblies of the amyloid A peptide 
triggers a cascade of biochemical and cellular alterations that produce the clinical phenotype 
of AD (Hardy & Higgins, 1992; Hardy & Selkoe, 2002; Selkoe, 1991). The reasons for 

elevated A levels in most patients with sporadic, late-onset AD are unknown, but recent 

evidence suggest that these could turn out to include increased neuronal release of A 
during some kind of synaptic activity (Selkoe, 2002; 2008). 

GSK-3 inhibition per se decreases A production in cells and in an animal model of 
amyloidosis, as shown  using non-isoform selective pharmacological inhibitors such as 

lithium, kenpaullone as well as small interfering RNA against the  isoform of GSK-3 (Phiel 
et al., 2003; Su et al., 2004; Sun et al., 2002). The exact mechanism by which this occurs 

remains unclear and in fact the isoform specificity of the effect on A production is still 
highly controversial. However, the observation that amyloid precursor protein (APP) C-
terminal fragments accumulate in the presence of these inhibitors suggests that GSK-3 may 

influence -secretase activity. -secretase activity is a multiprotein complex that is necessary 

for the terminal cleavage of APP to generate the A fragment. Interestingly, inhibition of 
GSK-3 failed to demonstrate accumulation of C-terminal fragments of the Notch protein, 

which is also a substrate for -secretase (Phiel et al., 2003). Actually, GSK-3 has been shown 

to bind and phosphorylate presenilin 1 (PS1), the catalytic component of the -secretase 
complex, acting perhaps as a docking protein and regulating phosphorylation of some GSK-

3 substrates such as tau and -catenin  (Palacino et al., 2001; Su et al., 2004; Takashima et al., 
1998; Tesco & Tanzi, 2002; Twomey & McCarthy, 2006). PS1 has been shown to inactivate 
GSK-3 through PI3K/Akt signalling, preventing tau phosphorylation and apoptosis. 
Interestingly, PS1 FAD mutations inhibit PS1-dependent PI3K/Akt signalling, facilitating 
GSK-3 and thus tau phosphorylation (Baki et al., 2004).  Furthermore, APP has also been 
shown to be a substrate for GSK-3 in vitro (Aplin et al., 1996) and in vivo (Rockenstein et al., 
2007), suggesting a role of GSK-3 in APP transport and maturation (da Cruz e Silva & da 
Cruz e Silva, 2003; Lee et al., 2003) from the early secretory pathway through the axon 
terminals, perhaps controlling APP processing. Finally, modulation of the GSK-3 signalling 
pathway by chronic lithium treatment of transgenic animals has been shown to have 
neuroprotective effects by regulating APP maturation and processing (Rockenstein et al., 
2007). 

A substantial body of evidence has established the toxic properties of extracellular A 
peptides on neuronal cells (Selkoe, 2008). Non-neuronal cells however are generally 

resistant to A treatment, with some exceptions such as endothelial cells and smooth muscle 

cells (Suhara et al., 2003). On the other hand, oligomers of the A peptide have been 
reported to act as antagonists for insulin (Towsend et al. 2007) or Wnt (Magdesian et al. 
2008) receptors, resulting in an increase in GSK-3 activity. Also, a PS1 lack of function by 
mutations such as those present in some familial AD patients has been suggested to result in 
an increase of GSK-3 activity (Baki et al., 2004). 
As mentioned, the aggregation of A┚ peptide into soluble oligomers is considered an early 
event in Alzheimer's disease and the presence of these aggregates seems to lead to 
neurodegeneration in the context of this disease. However, the mechanisms underlying A┚-
induced neurotoxicity are not completely understood. Although previous studies in mice 
have suggested that GSK-3 alters A┚ levels via modulation of APP processing (Phiel et al., 
2003; Rockenstein et al., 2007), the direct effects of the enzyme on A┚ toxicity, and in the 
adult nervous system, have not been examined in depth. A recent study has tackled this 
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particular issue of the specific role of GSK-3 in regulating A┚42 toxicity in adult neurons in 
vivo, by modulating its activity in an adult-onset Drosophila model of Alzheimer's disease 
(Sofola et al., 2010). This study shows that GSK-3 inhibition ameliorates A┚42 toxicity in 
adult flies, and also highlights a novel mechanism of protection by which GSK-3 directly 
regulates A┚42 levels in the absence of any effects on APP processing. 

6. The role of GSK-3 in synaptic plasticity, learning and memory 

GSK-3 has also been shown to phosphorylate and inhibit kinesin-mediated motility. Fast 
axonal transport misregulation has been hypothesized to play a role in Alzheimer’s 

disease pathogenesis (Morfini et al., 2002). Fibrillar A binds to and induces the clustering 
of the integrin receptors, leading to the activation of paxillin and focal adhesion kinases. 
Interestingly, active GSK-3 associates with focal adhesion proteins suggesting the 
possibility that GSK-3 might mediate neuritic dystrophy via these interactions  (Grace & 
Busciglio, 2003). Abnormal increase in GSK-3 activity has been shown to cause 
neurodegeneration and interfere with synaptic plasticity (for review see Bhat & Budd, 
2002; Bhat & Froelich-Fabre, 2004). 
Another important aspect of GSK-3 function is its role in the assembly and disassembly of 
synapses determining synaptic plasticity. Regarding memory, some states of synaptic 
plasticity may be considered as a balance between long-term potentiation (LTP) and long-
term depression (LTD), with the former strengthening synaptic connections and the latter 
weakening them. Interestingly, GSK-3 appears to be a key factor in swaying that balance 
(Hooper et al., 2007; Peineau et al., 2007) since after LTP induction, GSK-3 becomes 
temporarily inactivated, support for LTD is lost and LTP comes out on top. This is 
relevant from the drug discovery point of view, since it implies that inhibition of GSK-3 
might boost LTP and depress LTD, in principle a good thing for learning and memory. 
The precise molecular mechanism by which GSK-3 influences these processes remains to 
be elucidated, although some preliminary data seems to suggest that installation or 
maintenance of AMPA receptors might play a role (Peinau et al., 2007). Several GSK-3 
downstream substrates such as CRMP-2 or the cAMP responsive element-binding protein 
(CREB) are also involved in synaptic remodelling, a key process required for memory 
formation. All this evidence has led to propose that GSK-3 acts as a gate through which 
LTP and memory are established (Hooper et al., 2008) and that memory failure in AD may 
be due to the inhibition of LTP by GSK-3 overactivity, with neuronal loss ensuing during 
disease progression. 

It is well established that A oligomers inhibit LTP and enhance LTD (Shieh et al., 2003; 

Walsh et al., 2002; Selkoe, 2008), although the precise mechanisms by which A interferes 
with long-term plasticity have remained largely unknown. Very recently, GSK-3 has 

revealed as a key enzyme in mediating A-induced LTP inhibition (Jo et al., 2011). In this 

study, treatment of rat hippocampal slices with A oligomers induced caspase 3-mediated 
cleavage of Akt-1, resulting in GSK-3 activation. Consistent with it, treatment with a GSK-3 

inhibitor completely prevented A oligomers from inhibiting LTP. 

7. Lithium as a GSK-3 inhibitor 

The finding that the mood stabilizing drug lithium directly inhibited GSK-3 initially sparked 
the interest for this enzyme as a potential target for mood disorders. Lithium and valproic 
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acid are mood stabilizers widely used in the chronic treatment of bipolar disorders. Lithium 
ions directly inhibit GSK-3 (Klein & Melton, 1996), most likely by competing with 
magnesium, while valproic acid inhibits GSK-3 activity in relevant therapeutic 
concentrations in human neuroblastoma cells (Chen et al., 1999), most likely through an 
indirect mechanism (Rosenberg, 2007).  
The mechanism of action by which lithium exerts its therapeutic effects is not known but it 
is conceivable that the acute effects on GSK-3 results in changes in gene regulation and 
cellular changes which could affect the neuronal plasticity over time (Gould & Manji, 2002; 
Jope, 1999; Lennox & Hahn, 2000). Lithium also inhibits at least four phosphomonoesterases 
(including inositol monophosphatase) (York et al., 1995), and phosphoglucomutase (Ray & 
Szymanki, 1978; Stambolic & Woodgett, 1994), apart from GSK-3 (Klein & Melton, 1996; Li-
Smerin et al., 2001). That said, GSK-3 is significantly inhibited at therapeutic lithium 
concentrations (Gould & Manji, 2002; Phiel et al., 2003; Shaldubina et al., 2001). Thus, if a 
significant proportion of lithium’s therapeutic actions in bipolar disorder results from the 
inhibition of GSK-3, then this enzyme would be an important target for bipolar disorder (Li 
et al., 2002; Rowe et al., 2007).  
In spite of these attributes, lithium has a narrow therapeutic window (blood serum levels 0.6 
to 1.2 mM) above which side effects are intolerable. Overdose can lead to severe 
neurological dysfunction and in some cases death. Non-CNS side effects of lithium (not 
uncommonly within therapeutic levels) include tremor, polyuria, polydipsia, nausea, and 
weight gain. Lithium can have adverse reactions with other drug classes including diuretics, 
NSAIDS, and other drugs that alter kidney function (see Gould & Manji, 2006 for a review).  
There are only a few observational studies that have attempted to address the clinical effect 
of lithium in patients with AD. A retrospective study with a large sample of patients with 
dementia resulted in an increased risk of AD in patients who had been treated with lithium 
within 4 years prior to diagnosis (Ayuso-Mateo et al., 2001), although it is possible that this 
is partially accounted for by the increased occurrence of depression associated with AD. 
Moreover, a single case study reported in dementia patient showed that lithium treatment 
alleviated symptoms of aggression and agitation, while cognition persisted after 1.5 years of 
treatment (Havens et al., 1982). Furthermore, a significantly increased global cognitive 
ability as measured by MMSE in non-demented patients appears associated with lithium 
intake (Terao et al., 2006). The study design and low sample size precludes however to draw 
any causative conclusion from those studies.  
Some pilot studies have been carried out to directly address the effect of lithium treatment 
in AD patients. An open label feasibility and tolerability study on a small cohort of 22 
subjects patients receiving a low dose of lithium was carried out in UK, reported a high 
discontinuation rate despite few, relatively mild and reversible side effects (MacDonald et 
al., 2008). A second randomized, single-blind, placebo-controlled, parallel group, 
multicentre 10-week study was carried out in Germany as a proof-of-principle (Hampel et 
al., 2009). A total of 71 patients with mild AD (MMSE scores between 21 and 26)  were 
treated with lithium or placebo for 10 weeks after which neuropsychological and 
neuropsychiatric assessment was performed together with some biomarkers determinations 

in plasma (A1-42), lymphocytes (GSK-3 activity) and CSF (total tau, phospho-tau, and A1-
42). In spite of the fact that lithium plasma levels were within the therapeutic range, no 
treatment effect was observed in any the cognition assessment scales used or the selected 
biomarkers. Given the short time of treatment of this study, the possibility that lithium has 
long-term effects on cognition or any other biomarker in AD remains to be tested. 
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8. Development of GSK-3 inhibitors and their therapeutic potential 

The unique position of GSK-3 as a pivotal and central player in the pathogenesis of both 
sporadic and familial forms of AD has attracted significant attention to this enzyme as a 
therapeutic target and also as a means to understand the molecular basis underlying AD 
and related disorders. This has led to the synthesis of a high number of GSK-3 inhibitors, 
some of which are currently being tested in phase II proof-of-concept clinical trials 
(Mangialasche et al., 2010; Medina & Avila, 2010). Inhibition of GSK-3 with small molecules 
would be expected to slow down progression of neurodegeneration in AD and perhaps 
other tauopathies as well. 
A number of novel potent and fairly selective small-molecule inhibitors of GSK-3 activity 
from different chemical families have recently been described, including hymenialdisine, 
indirubins, paullones, maleimides, amino pyrazoles, thiazoles, and 2,4-disubstituted 
thiadiazolidinones (TDZD) (reviewed in Medina & Castro, 2008). Most of them are ATP-
competitive inhibitors, although more recently new small molecule derivatives that exhibit 
substrate competitive inhibition activity toward GSK-3 have been reported. Since the 
different GSK-3 isoforms display a high degree of homology within the ATP binding site, 
inhibitors are unable to exhibit isoform selectivity, as they all show similar potencies 

towards purified GSK-3 and GSK-3. 
Although the ATP-competitive inhibitors occupy the general area of the highly conserved 
ATP-binding site, they do explore other available space nearby depending upon their 
structure and it is possible to obtain selective inhibitors by taking advantage of the small 

differences that exist between the different kinases.  Crystal structures of GSK-3 complexed 
with a variety of ligands, together with molecular modelling approaches, provide the 
necessary clues for enhancing selectivity towards GSK-3 (Patel et al., 2007; ter Haar et al., 
2001). All ATP-binding site inhibitors make hydrogen bonds with backbone atoms of the 
kinase domain hinge (residues Asp 133 to Thr 138).  The hydrogen bonds are the same as 
observed with ATP although different inhibitors make different combinations of hydrogen 
bonds.  For instance, the two indirubin complexes (PDB 1UV5 and 1Q41) have four 
hydrogen bonds.  In contrast, the Alsterpaullone complex (PDB 1Q3W) only has three 
hydrogen bonds (with the two backbone atoms of Val 135). 
Some GSK-3 inhibitors also target other areas of the ATP pocket.  For instance the nitro-
group of the Alsterpaullone (PDB 1Q3W) and the chlorine of I-5 (3-anilino-4-arylmaleimide) 
interact with the conserved catalytic lysine, Lys 85.  The bromine atom of 6-bromoindirubin 

(PDB 1UV5) is buried in the hydrophobic pocket of GSK-3between residues Leu 132, Leu 
130 and Met 101. This is a pocket that is often targeted to increase the selectivity of the 
inhibitor since it is one of the most diverse areas in the ATP-binding site of kinases and has 

been successfully used for instance to increase the selectivity in favour of p38 over ERK2.  

The GSK-3 ATP-binding site inhibitors do not cover the -phosphate transfer area.  
Targeting this part of the ATP-binding site does not appear to improve the selectivity of the 
inhibitor, although it may improve the potency as additional contacts between the inhibitor 
and the protein are established (ter Haar et al., 2006). 
Some physiological peptides act as GSK-3 inhibitors, including GBP, a maternal Xenopus 
GSK-3 binding protein homologous to a mammalian T cell proto-oncogene (Yost et al., 1998) 
and p24, a heat resistant GSK-3 binding protein (Martín et al., 2002).  That finding led to a 
synthetic strategy to develop new inhibitors, such as L803-mts, a peptidic inhibitor that 
binds to the substrate site (Plotkin et al., 2003). L803-mts has been more recently used to 
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examine the impact of long-term in vivo inhibition of GSK-3 and its effects in specific tissues 
(Kaidanocih-Beilin & Eldar-Finkelman, 2006).  
One classical approach for identifying GSK-3 inhibitors has exploited screening programs 
specifically aimed at finding new hits among compounds that exhibit other pharmacological 

profiles. However, the availability of X-ray crystallographic data of GSK-3and several of 
its complexes with different inhibitors (ter Haar, 2006) in recent years has enabled the 
application of rational drug optimisation programs to discover new lead compounds. 
Molecular docking studies on the inhibitors of GSK-3 kinase in the enzyme binding sites of 
the X-ray complexes studies provide valuable insights into computational strategies useful 
for the identification of potential GSK-3 inhibitors (Gadakar et al., 2007). As a result of the 
great amount of information concerning current GSK-3 inhibitors, there are a huge number 
of reported empirical structure-activity relationships (SAR) that may guide a rational design 
of more potent and selective inhibitors. However, only a few studies based on Quantitative 
Structure-Activity Relationships (QSAR) are available for predicting the inhibitor potency 
against this specific kinase, and they involve mainly molecular modelling and 3D-QSAR 
(Medina & Castro, 2008). 
The last few years have seen the synthesis of quite a number of fairly selective, potent GSK-3 
inhibitors which have started to show in vivo efficacy in a diverse array of animal models of 
human diseases, including Alzheimer’s disease. Despite the challenges faced by this 
approach with respect to safety and specificity, a number of efforts are underway to develop 
kinase inhibitors and in fact, Noscira’s tideglusib (NP12), is already in phase II clinical trials 
for the treatment of both Alzheimer’s disease and progressive supranuclear palsy (PSP), a 
tauopathy (Medina & Castro, 2008; Medina & Avila, 2010).  

9. Conclusion 

Three decades after its discovery as a protein kinase involved in glycogen metabolism, GSK-
3 has revealed as a cellular nexus, integrating several signalling systems, including several 
second messengers and a wide selection of cellular stimulants. Modulation of its activity has 
also turned out to be much more complex than originally thought as control of GSK-3 
activity occurs by complex mechanisms that are each dependent upon specific signalling 
pathways, including post-translational modifications, protein complex formation and 
subcellular localization. Although there seems to be a good degree of functional overlapping 
between the different isoforms, some tissue- and isoform-specific functions and substrates 
are starting to emerge and more will most likely be discovered within the next few years 
and will open the possibility to design better, more specific inhibitors. 
Deregulation or abnormal GSK-3 activity appears to be associated with various relevant 
pathologies, including Alzheimer’s disease, as the enzyme is uniquely positioned as a key, 
central player in AD pathogenesis, having a critical role in key events such as tau 

phosphorylation, A formation and neurotoxicity, microtubule dynamics, synaptic 
plasticity, neuritic dystrophy, cognition, neuronal survival, and neurodegeneration. 
Furthermore, recent reports point out to a genetic association of the gsk-3 gene with the risk 
of AD either by itself or synergistically with tau or cdk5 genes. 
Drug discovery and development efforts for AD in the last two decades have primarily 
focused on targets defined by the amyloid cascade hypothesis, so far with disappointing 
results, underscoring the need of novel therapeutic approaches and targets. A  significant 
effort has being made in the last few years to synthesize a high number of fairly selective, 
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potent GSK-3 inhibitors, while some of them have shown in vivo efficacy in various animal 
models of AD. Some of the known drug discovery and development challenges will be 
faced: lack of good predictive animal models, lack of good validated biomarkers of disease 
progression, clinical trial design, early diagnosis and treatment, definition of target 
population, difficulties in demonstrating disease modifying effects, etc. Despite the 
challenges faced by this approach with respect to safety and specificity, a number of efforts 
are underway to develop GSK-3 inhibitors as useful drugs for the treatment of AD as some 
compounds have already reached phase II clinical trials and some proof-of-concept studies 
are currently ongoing or planned.  
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