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1. Introduction 

The mammalian brain restricts the entrance of ions and solutes circulating in the 

bloodstream by two cellular barriers, namely, the blood-brain barrier (BBB) and blood-

cerebrospinal fluid (CSF) barrier (Brightman et al., 1970; Ballabh, 2004). The BBB is built up 

by a monolayer of endothelial cells (ECs) lining the brain capillaries that restricts the 

movement of small polar molecules and macromolecules between the blood and the brain 

interstitial fluid (Reese & Karnovsky, 1967; Brightman & Reese, 1969; Vorbrodt, 1988). The 

endothelial barrier is supplemented with capillary pericytes that share the basement 

membrane with the ECs. Moreover, perivascular end-feet of the astrocyte almost totally 

cover the abluminal surface of the microvascular basement membrane. The blood-CSF 

barrier is built up by a monolayer of epithelial cells of the choroid plexus separating the 

blood from the CSF. This blood-CSF epithelial barrier is of great functional importance 

because the fenestrated endothelium of the choroid plexus capillaries is leaky and 

permeable to blood-borne solutes. Although the choroid plexus is traditionally considered 

the major component of the blood-CSF barrier, a similar barrier is formed by the functional 

complexes between the arachnoid cells. This barrier is also important because substances 

passing into the stroma of the choroid plexus after intravenous presentation may find their 

way into the CSF by crossing the ependyma adjacent to the root of the choroid plexus; this is 

as described as a “functional leak” by Brightman et al. (1970), while van Deurs (1978) denies 

the existence of this functional leak. These barriers maintain a constant chemical 

environment within the central nervous system (CNS), which is optimal for the function of 

neurons. 

The brain capillaries were characterized morphologically as the site of the BBB by Reese and 
Karnovsky (1967) after introduction of electron microscopy and the use of horseradish 
peroxidase as a macromolecular tracer. Further ultrastructural studies (van Deurs, 1980; 
Brightman, 1989) revealed that the continuous endothelium of brain capillaries possesses 
several unique structural and functional features (Vorbrodt & Dobrogowska, 2003). First, the 
paracellular cleft between adjacent ECs is sealed by continuous strands of tight junctions 
(TJs). Second, the endocytic (pinocytic) and transcytotic activities are very low, and 
therefore, the transendothelial traffic of solutes (via plasmalemmal vesicles) is low. Third, 
the uptake of essential nutrients from the bloodstream into the brain interstitial fluid is 
selectively mediated through specific transport-related molecules such as receptors and 
carriers. Fourth, the presence of numerous mitochondria in the EC cytoplasm suggests a 
high metabolic activity and an energy-requiring function of these cells (Oldendorf  et al., 
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1977). In contrast, classical studies on the passage of tracers from the blood have 
demonstrated that the barrier function is defective or absent in certain regions of the brain, 
since these regions become stained by intravenously administered dyes (Brightman, 1989; 
Brightman & Tao-Cheng, 1993; Broadwell, 1992; Broadwell & Sofroniew, 1993). These 
regions have been described collectively as the circumventricular organs (CVOs), which 
comprise the median eminence, the neurohypophysis, the pineal gland, the organum 
vasculosum of the lamina terminalis, the subfornical organ, the subcommissural organ, and 
the area postrema. These are specialized tissues that are not typical of the CNS. The median 
eminence, one of the CVOs, is the site of the portal system of capillaries that receives the 
releasing hormones and transports them to the anterior pituitary. In addition, the CVOs 
contribute to transport from the bloodstream to the brain by bypassing the BBB (Broadwell, 
1992a; Broadwell & sofroniew, 1993), while the BBB protects against the passive entrance of 
solutes circulating in the bloodstream. On the other hand, in order to selectively receive 
nutrients and essential molecules and discharge undesirable substances from the brain, 
there are several kinds of active transporters such as carrier-mediated, active efflux, ion, and 
receptor-mediated transporters in the BBB.  

2. The transcytotic pathway in the BBB 

2.1 The transendothelial pathways 
Non-lipid-soluble micromolecules and macromolecules are capable of circumventing the 
“fluid-brain barrier” by intracellular routes related to three separate and distinct endocytic 
processes (Broadwell & Balin, 1988; Broadwell 1992b), namely, fluid-phase endocytosis, 
adsorptive endocytosis, and receptor-mediated endocytosis. First, fluid-phase endocytosis is 
a constitutive process for acquiring extracellular macromolecules and recycling of the 
plasma membrane. This internalization process occurs indiscriminantly and without 
binding to the cell surface (Broadwell & Balin, 1988). Second, adsorptive endocytosis 
concerns molecules such as lectins that bind to carbohydrate moieties on the cell surface 
(e.g., wheat germ agglutinin), and positively charged (cationized) molecules that bind to 
negatively charged cell surface components. Third, receptor-mediated endocytosis has been 
identified in clathrin-coated vesicles with the binding of a ligand (e.g., insulin, transferrin 
(Tf)) to a cell surface receptor specific for that ligand; the binding then triggers the 
internalization of the receptor-ligand complex. Clathrin-mediated endocytosis from the 
plasma membrane allows cells to internalize proteins and other biomolecules from their 
environment via specific receptors. Receptors are endocytosed by their capture in clathrin-
coated vesicles budding from the plasma membrane. In addition, vesiculo-vacuolar 
organelle (VVO) (Kohn et al., 1992) and vesiculo-tubular structures (VTS) (Tagami et al., 
1983; Lossinsky et al., 1983) have been suggested as transendothelial pathways for 
macromolecular extravasation. 
Clathrin is the main scaffold protein of the coat formed by trimers, the so-called triskelions, 
that oligomerize both in vivo and in vitro to form polygonal clathrin cages (Keen et al., 1979; 
Liu et al., 2001). In receptor-mediated endocytosis, clathrin coats assemble on the 
cytoplasmic face of the plasma membrane forming pits that invaginate and pinch off the 
receptor-containing portion of the membrane to form clathrin-coated vesicles (Kirchhausen, 
1999). One clathrin-independent route for endocytosis involves caveolae (small caves), 
which are specialized micro domains of the plasma membranes (Dautry-Varsat, 2001; Stan, 
2002; Parton et al., 2006; Mehta & Malik, 2006). Caveolae are small flasked-shaped 
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membrane invaginations that can be distinguished from coated pits by their size (50-80 nm 
diameter, compared to 100-110nm for coated pits). Caveolae are involved in many cellular 
functions, such as not only endocytosis but also signal transduction, mechano-transduction, 
potocytosis, and cholesterol trafficking. In addition, it is thought that endothelial caveolae 
are involved in capillary permeability via their participation in the transcytosis process. 
Supporting this role in endocytosis are several reports on the uptake of cholera toxin and 
also studies on SV40 virus internalization (Pelkmans et al., 2001; Pelkmans & Helenius, 
2002). On the other hand, the involvement of caveolae in the transcytosis of macromolecules 
was recently questioned by the caveolin knockout mouse model (Drab et al., 2001). 
Hommelgaard et al. (2005) describe that most caveolae are stable microdomains at the cell 
surface and that only a small fraction of caveolae are constitutively internalized, leading to a 
quantitatively minor uptake of ligands and receptors. On the other hand, Pelkman and 
Zerial (2005) have shown the dynamic nature of caveolae trafficking. Using highly advanced 
techniques, it will be possible to determine whether or how the trafficking of caveolae from 
the apical to the basal side of the endothelium regulates endothelial permeability. 
In contrast to normal microvessels, vessels that supply tumors are strikingly 

hyperpermeable to circulating macromolecules such as plasma proteins. Tracer studies have 

shown that macromolecules cross the tumor vascular endothelium by way of a cytoplasmic 

organelle, VVO. VVO is made up of grape-like clusters of interconnecting uncoated vesicles 

and vacuoles, bound by trilaminar unit membranes, that span the entire thickness of the 

vascular endothelium, thereby providing a potential trans-endothelial connection between 

the vascular lumen and the extravascular space (Kohn et al., 1992; Feng et al., 1996; Dvorak 

et al., 1996). Macromolecular tracers preferentially cross hyperpermeable tumor 

microvessels through VVOs. Study results indicate that VVOs provide a major pathway for 

the extravasation of circulating macromolecules across the endothelia of venules in response 

to several mediators and suggest that upregulated VVO function accounts for the well-

known hyperpermeability of tumor blood vessels. 

Based on morphologic evidence from studies of BBB injuries, some authors have discovered 

a unique EC system that fuses together forming transendothelial cell channels. Later, a 

similar EC was profiled as vesiculo-canalicular or VTS. The VTS was described originally in 

brain injury (Tagami et al., 1983), and subsequently considered by others to represent a 

possible structural mechanism for inflammatory or tumor cell transport across the BBB 

(Lossinsky et al., 1983; Azzarelli et al., 1984; Lossinsky et al., 1989; Nag, 1990; Lossinsky & 

Shivers, 2004). 

2.2 Transporters in brain microvasculature (Figs. 1, 2, & 3) 
The blood-to-brain influx transporters supply hydrophilic nutrients and other essential 
molecules such as glucose (Pardridge & Oldendorf, 1975), lactate/monocarboxylates 
(Cremer et al., 1979), and creatine (Ohtsuki et al., 2002). In addition, L-tyrosine, L-
tryptophan, and L-histidine are precursors of neurotransmitters, and are transported from 
the blood to the brain via a Na+-independent neutral amino acid transporter (system L) at 
the BBB (Ohtsuki & Terasaki, 2007). The system L is potentially important for drug delivery 
to the brain. L-Dopa is transported across the BBB by system L, and is ready biotransformed 
in the brain to dopamine (Gomes & Soares-da-Silva, 1999). On the other hand, there are 
several kinds of efflux transporters at the BBB such as ATP-binding cassette (ABC) 
transporters, organic anion transport (OAT) systems, aminoacid transport systems, and so 
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Fig. 1. Representative immunoelectron micrographic images of RAGE (a,b), LRP1 (c,d), and 
LDLR (e,f) are shown in the ECs of hippocampal vessels in Wistar-Kyoto (a,c,e) and SHRSP 
(b,d,f) rats. The rat brains were removed after perfusion with physiological saline and 
perfusion-fixed with 4% paraformaldehyde in 0.1M phosphate buffer (PB). The brain tissue 
was embedded in LR White resin after additional fixation in 1% glutaraldehyde in 0.1M PB for 
1 hour. (a,b) Ultrathin sections were stained with goat anti-RAGE antibody (Santa Cruz 
Biotechnol), followed by incubation in a solution of anti-goat IgG antibody conjugated with 
colloidal gold particles of 25 nm diameter (Aurion), diluted with phosphate buffered saline 
(1:20), for 1 h at RT. (c,d) Ultrathin sections were stained with rabbit anti-LRP1 antibody (Santa 
Cruz), followed by incubation in a solution of anti-rabbit IgG antibody conjugated with 
colloidal gold particles of 10 nm diameter (Aurion), diluted with phosphate buffered saline 
(1:20), for 1 h at RT. (e,f) Ultrathin sections were stained with goat anti-LDLR antibody (Santa 
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Cruz), followed by incubation in a solution of anti-goat IgG antibody conjugated with colloidal 
gold particles of 25 nm diameter (Aurion), diluted with phosphate buffered saline (1:20), for 1 
h at RT. The ultrathin sections were stained with uranyl acetate and Reynold’s lead citrate, and 
were examined in a JEM-1200EX electron microcope (JEM, Tokyo, Japan). Labeling by 25, 10, 
or 25-nm gold particles conjugated with the antibody against RAGE, LRP1, or LDLR is found 
in the cytoplasm of the ECs including the luminal (arrowheads) and abluminal (arrows) 

membranes, and the basal lamina. Scale bars indicate 0.5 m. 

 

 

Fig. 2. Representative immunoelectron micrographic images of P-gp labelled by 10-nm gold 
particles (a-d) and albumin labelled by 15-nm gold particles (c,d) are shown in the ECs of 
hippocampal vessels in normotensive Wistar-Kyoto (WKY) (a,c) and stroke-prone 
spontaneously hypertensive rats (SHRSP) (b,d).  The rat brains were processed as shown in 
Fig.1.  (a,b) Ultrathin sections were stained with mouse anti-P-gp antibody (Abcam, 
Cambridge), followed by incubation in a solution of anti-mouse IgG antibody conjugated 
with colloidal gold particles of 10 nm diameter (EY Laboratories), diluted with phosphate 
buffered saline (1:20), for 1 h at RT. (c,d) Ultrathin sections were stained with first antibodies 
against P-gp and albumin, followed by incubation in a solution of second antibodies 
conjugated with colloidal gold particles of 10 or 15 nm diameter (EY Laboratories, CA, 
USA). The immunosignals for P-gp are frequently colocalized with those of serum albumin 
(c,d: arrows). The immunosignals of serum albumin in the basal lamina or perivascular 
areas represent increased vascular permeability. Scale bars indicate 0.5 m. 
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Fig. 3. Representative active efflux and influx transporters of A proteins are shown 
according to data from Figs. 1 & 2.  
Pgp, LRP1, and LDLR of efflux transporters are expressed on each membrane of the 
endothelial cytoplasm, while RAGE, the influx transporter, is also expressed on each 
membrane of the endothelial cytoplasm. 
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on (Ohtsuki & Terasaki 2007). Major representatives of the ABC efflux transporters are the 
multidrug resistance protein (MDR), multidrug resistance associated protein (MRP), and 
breast cancer resistance protein (BCRP) (Tamai & Tsuji, 2000). P-glycoprotein (P-gp), which 
belongs to the MDR family, preferentially transports cationic and/or zwitterionic 
compounds as substrates, whereas the MRP family preferentially transports anionic 
compounds, although there is some overlap between them (Hollo et al., 1996). Newly 
discovered categories of transporters are the OAT family, the organic cation transporter 
(OCT) family, the organic cation transporter novel type (OCTN)/carnitine transporter 
family (Bart et al., 2000; sekine et al., 2000), and the monocarboxylic acid transporter (MCT) 
family (Price et al., 1998), which is expected to be responsible for the transport of some 
organic anions from the brain to the EC and/or from the EC to the blood (Tamai & Tsuji, 
2000). In addition, the concentrative nucleoside transporter, equilibrative nucleoside 
transporter subfamilies, and receptor-mediated transport systems such as the transferrin 
receptors and the scavenger receptors have also been detected in brain capillaries or brain 
capillary EC lines (Brett et al., 1993; de Boer et al., 2003). 

(a) P-gp (Figs. 2 & 3) 

The multidrug resistance efflux transporter P-gp was the plasma membrane protein first 
demonstrated in cancer cells by reducing intracellular levels of chemotherapeutic drugs 
(Ling, 1995). However, P-gp is also expressed in various normal tissues such as the liver, 
kidney, intestine, and brain, where it functions to protect the tissue against potentially toxic 
exogenous compounds (Bodo et al., 2003; Fromm, 2003; Schinkel & Jonker, 2003). In 
addition, it is known that P-gp is identified not only in normal epithelial cells with 
secretory/excretory functions but also in the ECs of capillary blood vessels in the brain 
(Schinkel et al., 1994) and the testis (Melaine et al., 2002). Until quite recently, P-gp in the 
brain had been thought to be primarily located in the apical (luminal) membrane of capillary 
ECs that form the BBB and to become part of the mechanisms involved in protecting the 
brain from xenobiotics (Schinkel, 1999; Bendayan et al., 2002; de Boer, 2003). A study using a 
new polyclonal antibody against P-gp (Schlachetzki & Pardridge, 2003) demonstrated dual 
expression of P-gp at astrocytes and the endothelium in normal primate brains. In addition, 
Bendayan et al. (2006) recently reported that P-gp localized to both the luminal and 
abluminal membranes of capillary ECs as well as in adjacent pericytes and astrocytes. We 
also confirmed the localization of P-gp to the luminal and abluminal membranes of cerebral 
ECs (Fig. 2). These authors reported that P-gp was distributed along the nuclear envelope, in 
the caveolae, cytoplasmic vesicles, Golgi complex, and rough endoplasmic reticulum. They 
stated that this glycoprotein might regulate drug transport processes in the CNS at both the 
cellular and subcellular levels. 
P-gp substrates include not only a wide variety of antineoplastic agents but also many other 
hydrophobic compounds such as immunosuppressive agents, cardiac glycosides, opioid 
analgesics, antibiotics, pesticides, antiepileptics, antidepressants, and human 
immunodeficiency virus protease inhibitors (Schinkel & Jonker, 2003). Inhibition of P-gp can 
be achieved by antidepressants (Weiss et al., 2003), suggesting the possibility that the usage 
of a medicine together with an antidepressant may lead to an increase in the brain 
concentration of the medicine. It has also been shown that at clinically relevant doses given 
orally, oxytetracycline is able to saturate P-gp and, subsequently, the net absorption of other 
drugs increases (Schrickx & Fink-Gremmels, 2007). In addition, the large number of 
psychoactive drugs that are substrates of P-gp could be potentially involved in a significant 
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number of drug-drug interactions related to P-gp. Because of overlapping substrates 
specificities between CYP3A4 and P-gp, many drug interactions may involve both CYP2A4 
and P-gp (Linnet & Ejing, 2008). Therefore, it is important to distinguish CYP3A4-mediated 
inhibition from P-gp-mediated one in order to make appropriate interpretation of drug 
interaction data. 
P-gp deficiency induces an undesirable effect on the brain. It has been hypothesized that 

A proteins are deposited in periarterial interstitial fluid drainage pathways of the brain, 

contributing significantly to cerebral amyloid angiopathy in Alzheimer’s disease (Weller 

et al., 1998). Vogelgesang et al. (2004) reported that A deposition occurred first in 

arterioles, where P-gp expression was primarily low, and accordingly, the P-gp 

expression disappeared completely with the accumulation of A proteins. In addition, 

Cirrito et al. (2005) reported that P-gp deficiency at the BBB increased amyloid- 

deposition in a murine model of Alzheimer’s disease, suggesting that P-gp normally 

discharges A out of the brain or periarterial interstitial fluid, and that perturbation of A 

efflux directly affects A accumulation within the brain or perivascular areas. P-gp 

expression was increased in the BBB-damaged vessels of a stroke-prone hypertensive rat 

(Fig. 2). It is likely that the expression of P-glycoprotein increases as a temporary 

physiological compensatory response in BBB-damaged vessels to discharge intracerebral 

or periarterial undesirable substances from the brain. These findings suggest that 

endothelial P-gp contributes to efflux of undesirable substances from the brain or 

periarterial interstitial fluid. Concerning transendothelial transport of -amyloid protein, 

the receptor for advanced glycation end products (RAGE) is thought to be a primary 

transporter of -amyloid across the BBB into the brain from systemic circulation, while the 

low-density lipoprotein receptor-related protein (LRP)-1 mediates transport of -amyloid 

out of the brain (Donahue et al., 2006; Zlokovic, 2005). RAGE versus LRP balance 

regulates Alzheimer amyloid -peptide clearance through transport across the BBB 

(Deane et al., 2004). In addition, BBB efflux function of the P-gp transport system was 

decreased at later disease stages of Parkinson’s disease, suggesting that the P-gp 

dysfunction contributes to neuronal damage due to increased accumulation of toxins such 

as insoluble -synuclein (Bartels et al., 2008). According to a paper reported by Widder et 

al. (2007), the P-gp is a major exporter of oxidized glutathione and plays a crucial role in 

the genesis of multiple vascular abnormalities that accompany hypertension. Moreover, 

its presence is essential for the hypertensive response to angiotension II. These findings 

suggest that the increased expression of P-gp in vessels may directly induce the BBB 

damage. We showed the colocalization of P-gp with serum albumin (Figs. 2c, 2d), 

suggesting that the expression of P-gp is upregulated in the vessels with mild BBB 

damage. 

(b) MRP 

MRP1 is a member of the ATP-binding cassette superfamily and is expressed in non-P-gp 
expressing MDR cell lines (Cole et al., 1992). Of the MRP family, MRP1, MRP3, and MRP5 
are expressed in the BBB (Kool et al., 1997; Huai-Yun et al., 1998; Regina et al., 1998). Since 
MRP is involved in extrusion of conjugated xenobiotics that may be harmful to the brain, 
some authors suggest that MRP1 and/or its closely related proteins are expressed at the 
luminal side of the brain capillaries (Kusuhara et al., 1998; Seethataman et al., 1998). 
However, this has not been proven experimentally.  
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(c) Scavenger receptors (Figs. 1a,b & 3) 

Scavenger receptors are multifunctional receptors with a wide substrate specificity [98]. 
Particularly, the class A, type I scavenger receptor (SR-AI) and the class B, type I scavenger 
receptor (SB-BI) are expressed at endothelial cells of cerebral capillaries (de Vries et al., 1993; 
Silver & Tall, 2001; Goti et al., 2001). In addition, these receptors are widely expressed in 
mammalian tissues, particularly the liver, macrophages, endothelial cells, etc. This makes 
these receptors less suitable for targeting drugs to the brain. Their role at the BBB seems to 
be a very important one because the SR-AI receptor seems to be involved with 
neurodegenerative diseases. In addition, the SR-BI receptor has been shown to play a role in 
the transport of cholesteryl esters at the BBB. Malfunction of this receptor can also result in 
atherosclerotic events leading to neurodegenerative processes in the brain. Mackic et al. 
(1998) found binding of the soluble monomeric 1-40 amino acid peptide Alzheimer amyloid-

beta (A) at the SR-AI and the receptor for advanced glycation end products (RAGE) at 
endothelial cells of brain capillaries.  

(d) Transporters of A protein (Figs. 1, 2, & 3) 

Concerning A clearance in the brain, continuous removal of toxic substances such as A-
peptide species from the central nervous system is important for preventing their potentially 
neurotoxic accumulations in brain interstitial fluid (Deane et al., 2004). It has been suggested 

that vascular A receptors are expressed in endothelial cells, transfer A across the BBB into 

circulation, and thus mediate clearance of A from the brain (Zlokovic, 2004, 2008a, 2008b). 

Alternatively, A receptors may also mediate A clearance via phagocytosis of A by 
microglia and astrocytes. Both the low-density lipoprotein receptor (LDLR) and the LDLR-

related protein 1 (LRP1) act as receptors for A efflux (Fryer et al., 2005; Abdulkarim & 
Hameed, 2006; Sagare et al., 2007) (Figs. 1c, 1d, 1e, 1f & Fig. 3). LDLR also regulates 
apolipoprotein E (apoE) levels in the CNS and LDLR-deficient Alzheimer transgenic mice 

show increased cerebral A deposition (Cao et al., 2006). The LDLR is an important apoE 
receptor that regulates human and murine apoE endocytosis and levels in the brain 
(Mahley, 1988). In addition, it has been clarified that the LDLR itself regulates the level of 
apoE in the CNS and LDLR deficiency causes an increase in murine apoE level (Sagare et al., 
2007). Accordingly, it is likely that LDLR expression is inversely related with the level of 
apoE. Interestingly, the apoE displays antioxidant activity (Hayek et al., 1994; Miyata & 
Smith, 1996). LRP1 is a member of the LDLR family and functions both as a multi-functional 
scavenger and signaling receptor and as a transporter and metabolizer of cholesterol and 

apoE-containing lipoproteins (Herz & Marschang, 2003). LRP1 binds both ApoE/A 

complexes and A and regulates their clearance from brain to blood (Zlokovic, 2004; Shibata 

et al., 2000). Besides the LDLR family, some other potential A-binding receptors have been 
identified. P-glycoprotein (multidrug resisitance 1, MDR1) (Lam et al., 2001), scavenger 
receptor CD36 (Coraci et al., 2002), the formylpeptide receptor-like-1 (FPRL1) (Le et al., 
2001), and the transmembrane amyloid precursor protein (APP) itself (Lorenzo et al., 2000) 

also function as A receptors.   

In contrast, the RAGE binds A proteins and transports them from blood to brain (Deane et 

al., 2003). It is thought that the RAGE versus LRP balance regulates Alzheimer A-peptide 
clearance through transport across the BBB (Zlokovic, 2004) (Figs. 1a, 1b, 1c, 1d & Fig. 3). 

The net flux of A into or out of the brain is the algebric sum of the inward flux and 
outward flux and presumably depends upon the density and activity of these receptors. 
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RAGE is a member of the immunoglobulin superfamily of cell surface molecules and 
engages diverse ligands relevant to distinct pathological processes (Schmidt et al., 1999). The 

RAGE ligands include not only A proteins but also glycation products, termed advanced 
glycation end products (AGEs), which occur at sites of oxidant stress in diabetes and 
atherosclerosis. The AGEs diminish vascular barrier function in the ECs of diabetic 
vasculopathy (Wautier et al., 1996).  The engagement of RAGE with AGEs is shown to elicit 
oxidative stress generation and subsequently evoke inflammatory responses in ECs, thus 
being involved in atherosclerosis (Schmidt & Stern, 2000). In addition, the exogenously 
administered soluble form of RAGE may capture and eliminate circulating AGEs, thus 
protecting against the AGE-induced vascular cell damage by acting as a decoy receptor for 
AGEs (Park et al., 1998). Accordingly, oxidative damage may be induced in conditions with 

excess AGEs or few RAGEs.  Actually, concerning the localization of A transporters in the 
rat ECs, the immunoreaction of LRP1, LDLR, P-gp, and RAGE is seen in the cytoplasm of 
the ECs including the luminal and abluminal membranes (Figs. 1, 2 & 3). It is likely that the 
localization may move to the other areas of the ECs or appear in another cell in pathological 
conditions. In vessels of normotensive rats without BBB damage, the immunosignals of P-gp 
are located in luminal and abluminal membranes of the ECs (Figs. 2a, 2c). In contrast, in 
vessels of hypertensive rats, which were reported to show mild BBB damage, more 
immunosignals of P-gp are located to abluminal membranes of the ECs and the basal lamina 
than in vessels of normotensive rats (Figs. 2b, 2d). In addition, the immunosignals of P-gp 
are frequently colocalized with those of albumin (Fig. 2c, 2d). These may be a response to 
discharge intracerebral or periarterial undesirable substances from the brain. 

3. Glycocalyx in endothelial surface 

The glycocalyx is a negatively charged, surface coat of proteoglycans, glycosaminoglycans, 
and adsorbed plasma proteins lining the luminal surface of the ECs (Luft, 1966). Some 
researchers have put forward the concept that the endothelial glycocalyx contributes to the 
vasculoprotective effects of the vessel wall (Nieuwdorp et al., 2005). This layer has also been 
shown to be involved in maintaining vascular permeability (Henry & Duling, 1999). The 
endothelial glycocalyx can be evaluated by measuring the binding capacity of cationized 
ferritin on the luminal endothelial surface. In addition, the glycocalyx harbours a wide array 
of enzymes that might contribute to its vasculoprotective effect. Extracellular superoxide 
dismutase, an enzyme that converts oxygen radicals to hydrogen peroxide, is bound to 
heparan sulphate proteoglycans within glycocalyx (Li et al., 1998). Damage to the glycocalyx 
is accompanied by increased shedding of extracellular superoxide dismutase, which is 
probably related to the decreased availability of heparan sulphate binding sites. The 
glycocalyx damage shifts the balance towards a pro-oxidant state. These observations are of 
particular interest because altered vascular permeability, attenuated nitric oxide 
bioavailability, and redox dysregulation are the earliest characteristics of atherogenesis 
(Libby, 2002). In addition, disappearance of the glycocalyx is expected to be followed by 
exposure of adhesion molecules on ECs and subsequent leukocyte rolling, tethering, and 
transmigration, which are critical in the course of atherogenesis (Mulivor & Lipowsky, 
2002). This evidence suggests that intact glycocalyx is necessary for the maintenance of 
normal vascular function, and that disruption of glycocalyx by atherogenic stimuli increases 
the vascular vulnerability to atherogenesis. Moreover, it is known that endothelial 
glycocalyx is disturbed in various types of vascular diseases (Luft, 1966). It is also known 
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that inflammation induces glycocalyx shedding (Mulivor & Lipowsky, 2002). One of the 
most common chemokines expressed in the CNS during inflammation is monocyte 
chemoattractant protein-1 (Mulivor & Lipowsky, 2002). High chemokine expression is found 
in many pathological settings accompanied by inflammation, providing a chemoattractant 
gradient for leukocyte influx to the brain (Murphy, 1994; Rollins, 1997).  

4. Extracellular pathways bypassing the BBB 

It is known that a blood-borne protein gaining extracellular access to non-BBB sites can 
move not only within the CSF of the subarachnoid space but also into the brain parenchyma 
adjacent to each of the leaky sites (Broadwell & Sofroniew, 1993). Once in the Virchow-
Robin and superficial perivascular clefts, blood-borne protein is free to circulate in the 
perivascular tree throughout the CNS, conveyed by the pulsatile activity of beating 
arterioles, and for endocytosis by perivascular phagocytes (Roher et al., 2003). It is possible 
in experimental animals that blood-borne macromolecules escaping the subfornical organ, a 
BBB-free area, have ready access not only to the white matter of the corpus callosum 
(Broadwell & Sofroniew, 1993), but also to the hippocampus. In addition, a drainage 
pathway through the subarachnoid spaces of olfactory nerves from the brain to deep 
cervical lymph nodes has been proposed by Bradbury et al. (1981). 

5. Potential pathway of blood-borne compounds into the brain 

As mentioned above, the endothelial glycocalyx with extracellular enzymes covers the 
luminal surface of the ECs and accordingly works at the first line of the BBB. The ECs of 
brain capillaries are morphologically characterized by limited vesicular transcytosis and 
tight junctions. Enzymatic constituents in the endothelial cytoplasm of brain capillaries 
inactivate some substrates. The endothelial transcytosis in brain capillaries is limited to 
specific substrates because several kinds of influx and efflux transporters are located at the 
BBB. In these ways, the BBB impedes the influx of intravascular compounds from the blood 
to the brain. In order to work medicines on brain function, medicines should be transferred 
into the brain through the BBB, and the medicines entering the brain should be prevented 
from discharging into the blood by the transporters or modification by the enzymes. Various 
trials for medicines to pass the BBB into the brain parenchyma have been performed.  
Osmotic opening of TJs has been reported in several types of animal models (Neuwelt & 
Dahlborg, 1989), since the original reports by Broman and Olsson in the 1940s (Brosman & 
Olsson, 1948). It is likely that reversible opening of TJs would be useful for delivery of 
medicines into the brain. It is also known that the intra-arterial administration of 
alkylglycerols transiently increases the penetration of drugs and macromolecules across the 
BBB, suggesting that the administration of alkylglycerols could be a unique method for 
enhanced drug delivery to the brain and to brain tumors (Erdlenbruch et al., 2000; Lee et al., 
2002). It is most likely that increased lipophilicity of drugs makes transportation into the 
brain easy. Compounds bound to lectins are thought to be easily transported by adsorptive 
vesicular transport. Enhanced vesicular transport can be used to deliver compounds into the 
brain. Transient inhibition of P-gp by medicines such as antidepressants may be useful for 
delivery of anticancer drugs into the brain. It is likely that the manipulation of P-gp will be 
useful for delivery of medicines in the brain with cerebrovascular diseases. The RAGE 

versus LRP balance regulates Alzheimer A-peptide clearance through transport across the 
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BBB (Zlokovic, 2004). Accordingly, the influx/efflux of some substances is regulated under 
the expressions of these receptors. If a targeted region is situated near one of the 
circumventricular organs (CVOs), the delivery of medicines to that region could be achieved 
via CVO capillaries. There are extracellular pathways bypassing the BBB. Blood-borne 
proteins gaining extracellular access to non-BBB sites can move not only within the 
cerebrospinal fluid of the subarachnoid space, but also into the brain parenchyma adjacent 
to each of the leaky sites (Broadwell & Sofroniew, 1993). It is possible in experimental 
animals that blood-borne macromolecules escaping the subfornical organ, a BBB-free area, 
have ready access not only to the white matter of the corpus callosum (Broadwell & 
Sofroniew, 1993), but also to the hippocampus. A drainage pathway through the 
subarachnoid spaces of olfactory nerves from the brain to deep cervical lymph nodes has 
been also proposed by Bradbury et al. (1981). Accordingly, nasally inhaled medicines can 
affect parts of the brain through the subarachnoid spaces of olfactory nerves.  In addition, it 
has been investigated in experimental animals whether the treatment of brain diseases is 
possible by using gene targeting technology that delivers the gene across the BBB after i.v. 
administration of nonviral formulation of the gene (Shi et al., 2001). In the experiment, the 
plasmid DNA was targeted to the brain with pegylated immunoliposomes using a targeting 
ligand such as an antibody to transferrin receptor or insulin receptor.  Thus, detailed 
information on the BBB is necessary and useful to plan a strategy and develop therapies 
against various brain and vascular diseases.  

6. Conclusion 

The blood-brain barrier (BBB) not only impedes the influx of intravascular substances from 

blood to brain, but also promotes transport of substances from blood to brain or from brain 

to blood through several transport systems such as carrier-mediated transport, active efflux 

transport, ion transport, or receptor-mediated transport systems. The multidrug resistance 

transporter P-glycoprotein is an ATP-dependent efflux pump and contributes to efflux of 

many drugs such as anti-cancer drugs and undesirable substances such as amyloid- (A) 

proteins from the brain or periarterial interstitial fluid into the blood. The deficiency of P-

glycoprotein, a representative efflux transporter of A, at the BBB increases A deposition in 

an Alzheimer disease mouse model.  Continuous removal of toxic substances such A-

peptide species from the central nervous system is important for preventing their potentially 

neurotoxic accumulation in brain interstitial fluid. It has been suggested that vascular A 

transporters in endothelial cells transfer A across the BBB into circulation and thus mediate 

clearance of A from the brain. The low-density lipoprotein receptor-related protein 1 

(LRP1) is a major efflux transporter for A. In addition, the low-density lipoprotein receptor 

(LDLR) may also act as A receptors. In the central nervous system, LDLR also regulates the 

level of apolipoprotein E (apoE), which displays antioxidant activity. LDLR-deficient 

Alzheimer transgenic mice show increased cerebral A deposition. Besides the LDLR 

family, some other potential A-binding receptors have been identified. Scavenger receptor 

CD36, the formylpeptide receptor-like-1 (FPRL1), and the transmembrane amyloid 

precursor protein (APP) itself also function as A receptors. In contrast, the receptor for 

advanced glycation end products (RAGE) binds A proteins and transports them from 

blood to brain. It is thought that the influx versus efflux transporters balance regulates 

Alzheimer A-peptide clearance through transport across the BBB. The RAGE ligands 
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include not only A proteins but also advanced glycation end products (AGEs), which occur 

at sites of oxidant stress in diabetes and atherosclerosis. The AGEs diminish vascular barrier 

function in the endothelium of diabetic vasculopathy. The net flux of A into or out of the 

brain is the algebric sum of the inward flux and outward flux and presumably depends 

upon the density and activity of these receptors. Thus, A clearance in the brain endothelial 

cells is an important function of the BBB. Dysfunction of the BBB with efflux and influx 

transporters of A proteins may contribute to the pathogenesis of several kinds of 

degenerative neuronal dysfunction or disorders including Alzheimer’s disease.  
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