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Complex WKB Approximations in Graphene
Electron-Hole Waveguides in Magnetic Field

V.V. Zalipaev
School of Mathematical Sciences, University of Loughborough, Loughborough

UK

1. Introduction

Application of semiclassical analysis in studying quantum mechanical behaviour of electron

has been demonstrated in various fields of modern physics such as nano-structures, electronic

transport in mesoscopic systems, quantum chaotic dynamics of electronic resonators (1), (2),

(3), (4) and many others. One of the examples of the application of semiclassical analysis

are quantum electronic transport in waveguides and resonators in semiconductors, and in

particularly in graphene structures (see, for example, (5), (6), (7)), (8), (9)).

Here we review some theoretical aspects of semiclassical description of the Dirac electron

motion inside graphene, a one-atom-thick allotrope of carbon (5). A general introduction

of ray asymptotic method and boundary layer techniques of complex Gaussian beams

(Gaussian wave packages) is given to construct semiclassical approximations of Green’s

function inside electron-holes waveguide in graphene structures. The Dirac electrons motion

can be controlled by application of electric and magnetic fields. This application could

lead in some cases to a generation of a waveguide (drift) motion inside infinite graphene

sheets. Constructions of semiclassical approximations of Green’s function inside electronic

waveguides or resonators has been a key problem in the analysis of electronic transport

problems both different types semiconductors ((10), (11), (12), (13)) and graphene structures

such as graphene nano-ribbons (5), (6), (7)), (8), (9)). It is deserved mention that a semiclassical

approximation for the Green’s function in graphene as well as a relationship between the

semiclassical phase and the adiabatic Berry phase was discussed in the paper (14).

An application of semiclassical analysis to graphene quantum electron dynamics is

demonstrated for one important problem of constructions of semiclassical approximation of

Green’s function in electronic waveguide inside graphene structure with linear potential and

homogeneous magnetic field. The problem can be described by the following 2D Dirac system

with magnetic and electrostatic potentials in axial gauge A = 1/2B(−x2, x1, 0) (see (5))

vF < −ih̄∇+
e

c
A, σ̄ > ψ(x) + U(x)ψ(x) = Eψ(x), ψ(x) =

(

u

v

)

, (1)

where x = (x1, x2), u, v are the components of spinor wave function describing electron

localisation on sites of sublattice A or B of honeycomb graphene structure, e is the electron

charge, c is the speed of light, and vF is the Fermi velocity, the symbol <,> means a scalar
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2 Graphene Synthesis

product, and σ̄ = (σ1, σ2) with Pauli matrices

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 − i

i 0

)

.

However, classical trajectories structure for waveguides and resonators with rather strong

magnetic fields is getting very complicated, and, owing to the presence of multiple caustics

and focal points, the semiclassical approximation, well-known as ray asymptotic method, is

not valid. In this case one of the possibilities to tackle the problem of computing Green’s

function is Maslov’s canonical operator method (15). The method gives a cumbersome

universal asymptotic construction depending on geometrical and topological properties of

families of classical trajectories of electronic motion. Fortunately, an alternative method of

summation of Gaussian beams (integral over Gaussian beams) which was developed for

acoustic, and later electromagnetic and elastic wave propagation may be found much more

suitable especially in practical applications and especially numerical analysis of electronic

motion in graphene structures (16), (17).

The theoretical foundations of the method are rather simple in comparison with the

Maslov’s canonical operator method. Gaussian beam as a localised asymptotic solution is

always regular near caustics or focal point. Realization of the method does not require

any knowledge about geometrical properties of caustics, and numerous numerical tests

demonstrated this effect (16), (17). This is due to the fact that the structure of the asymptotic

Gaussian beam solution does not depend on geometrical properties of caustics, and the

final asymptotic approximation is just a superposition of Gaussian beams. Thus, in a

general case, the method of summation of Gaussian beams gives universal semiclassical

uniform approximation for solutions to various problems of wave propagation and quantum

mechanics. This approximation is valid near caustics or focal points of arbitrary geometric

structure. Application of the method to computations of high-frequency acoustic and elastic

wave fields was proved to be very efficient and robust.

This method is convenient to construct a semiclassical uniform approximation for Green’s

function for interior of waveguides and resonators quantum problems. Application of this

method to problems of electron motion in magnetic field in graphene required a generalization

of the approach originally developed for acoustic wave propagation problems. The first step

in this direction has been done in ((18), (19)).

The chapter is organized as follows. First, in section 2, we give a description of the ray

asymptotic solution and the boundary layer semiclassical method used to construct the

asymptotic solution of the Gaussian beam in the presence of a magnetic field and any scalar

potential. Subsecuently, in section 3, the techniques of the Gaussian beams summation

method is presented. Finally, in section 4, some numerical results of computation of

semiclassical uniform approximation for Green’s function for interior of graphene waveguide

with magnetic field and linear electrostatic potential is described.

2. Electronic Gaussian beams

First, the basic steps of the ray method recurrence relations (see (20), (21)) are presented for

the stationary problem for the Green’s tensor for the Dirac system describing an electron-hole

quantum dynamics in the presence of a homogeneous magnetic field and arbitrary scalar
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Complex WKB Approximations in Graphene Electron-Hole Waveguides in Magnetic Field 3

potential

vF < −ih̄∇+
e

c
A, σ̄ > G(x) + (U(x)− E)G(x) =

(

δ(x) 0

0 δ(x)

)

, (2)

G(x) =

(

G11(x) G12(x)
G21(x) G22(x)

)

.

These are to be used in derivation of electronic Gaussian beam asymptotic expansion. Ray

asymptotic solution is the principal part of the method summation of Gaussian beams.

2.1 Ray asymptotic solutions

Consider the axial gauge of the magnetic field A = B/2(−x2, x1, 0). The WKB ray asymptotic

solution to the Dirac system

(

U(x)− E vF [h̄(−i∂x1 − ∂x2)− i αx1
2 − αx2

2 ]
vF [h̄(−i∂x1 + ∂x2 ) + i αx1

2 − αx2
2 ] U(x)− E

)(

u

v

)

=

(

0

0

)

(3)

is to be sought in the form

ψ =

(

u

v

)

= e
i
h̄ S(x)

+∞

∑
j=0

(
h̄

i
)j

(

uj

vj

)

= e
i
h̄ S(x)

+∞

∑
j=0

(
h̄

i
)jψj(x), (4)

where α = B e
c . Substituting this series into the Dirac system, and equating to zero

corresponding coefficients of successive degrees of the small parameter h̄, we obtain recurrent

system of equations which determines the unknown S(x) and ψj(x), namely,

(H − EI)ψ0 = 0, (H − EI)ψj = −Rψj−1,

H =

(

U(x) vF(Sx1 − αx2
2 − i(Sx2 +

αx1
2 ))

vF(Sx1 − αx2
2 + i(Sx2 +

αx1
2 )) U(x)

)

, R = vF

(

0 ∂x1 − i∂x2

∂x1 + i∂x2 0

)

,

where I is the identity matrix. The hamiltonian H has two eigenvalues and eigenvectors

Heα = hαvα, α = 1, 2,

where

hα = U(x)± vF

√

(p1 −
αx2

2
)2 + (p2 +

αx1

2
)2 = U(x)± vF p,

and

v1 =
1√
2

(

1
p1− αx2

2 +i(p2+
αx1

2 )
p

)

, v2 =
1√
2

(

1

− p1− αx2
2 +i(p2+

αx1
2 )

p

)

,

where Sx1 = p1 and Sx2 = p2. However, for the sake of simplicity instead of vα, below we

shall use

e1 =
1√
2

(

1

eiθ

)

, e2 =
1√
2

(

1

−eiθ

)

, eiθ = vF
p1 − αx2

2 + i(p2 +
αx1
2 )

E − U(x)
,
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4 Graphene Synthesis

If E > U(x), then

E = h1, eiθ =
p1 − αx2

2 + i(p2 +
αx1
2 )

p
, e1 = v1, e2 = v2,

if E < U(x), then

E = h2, eiθ = − p1 − αx2
2 + i(p2 +

αx1
2 )

p
, e1 = v2, e2 = v1.

In a domain Ωe = {x : E > U(x)}, the hamiltonian

h1 = U(x) + vF

√

(p1 −
αx2

2
)2 + (p2 +

αx1

2
)2

on the level set h1 = E describes dynamic of electrons (a quasi-particle described by the

initial Dirac system behaves like electron, negatively charged). The corresponding classical

trajectories can be obtained from the hamiltonian system

ẋ = He
p, ṗ = −He

x, x = (x1, x2), p = (p1, p2),

with hamiltonian (see (15))

He =
1

2

(

(p1 −
αx2

2
)2 + (p2 +

αx1

2
)2 − (

E − U(x)

vF
)2)

on the level set He = 0.

Opposite to this case, in a domain Ωh = {x : E < U(x)}, the hamiltonian

h2 = U(x)− vF

√

(p1 −
αx2

2
)2 + (p2 +

αx1

2
)2

on the level set h2 = E describes dynamic of holes (a quasi-particle described by the initial

Dirac system behaves like hole, positively charged). The corresponding classical trajectories

can be obtained from the hamiltonian system with hamiltonian

Hh =
1

2

(

− (p1 −
αx2

2
)2 − (p2 +

αx1

2
)2 + (

E − U(x)

vF
)2)

on the level set Hh = 0.

Thus, for electrons and holes, two different families of classical trajectories x1,2 = x1,2(t, γ),
p1,2 = p1,2(t, γ) should be taken into account, where t is the time with respect to the

hamiltonian system with hα, and the parameter γ gives the parametrisation of the initial

manifold in a phase space R4
x,p. For the Green’s tensor point source problem, γ is a polar

angle at which a trajectory issues from the source. Thus, taking the initial conditions for

x1,2 = x1,2(t, γ), p1,2 = p1,2(t, γ)

x|t=0 = x(0), p|t=0 =
|E − U(x(0))|

vF

(

cos γ, sin γ

)T

,
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Complex WKB Approximations in Graphene Electron-Hole Waveguides in Magnetic Field 5

we obtain the classical trajectories connecting x
(0) and x.

For electrons and holes one should seek solution to the Dirac system zero-order problem in

the form

ψ0 = σ(0)(x)e1 (5)

with unknown amplitude σ(0)(x). Solvability of the problem

(H − EI)ψ1 = −Rψ0, E = h1,2,

requires that the orthogonality condition with complex conjugation must hold

< e1, R(σ(0)(x)e1) >= 0,

Using the basic elements of the techniques in (15), from the orthogonality condition one

should obtain the transport equation for σ(0)(x)

dσ(0)

dt
+

1

2
σ(0) log J + σ(0)

< e1,
de1

dt
>= 0, (6)

where

J(t, γ) =

∣

∣

∣

∣

∂(x1, x2)

∂(t, γ)

∣

∣

∣

∣

is the geometrical spreading with respect to the hamiltonian system with h1,2 = U ± vF p. It

has a solution

σ(0) =
c0√

J
e−iθ/2, c0 = const.

For upper order terms,

(H − EI)ψj = −Rψj−1,

one should seek solution in the form

ψj = σ
(j)
1 e1 + σ

(j)
2 e2, (7)

where σ
(j)
2 may be found straight forward

σ
(j)
2 =

< e2, R(ψj−1) >

2(E − U(x))
.

Then, from the orthogonality condition,

< e1, R(σ
(j)
1 e1 + σ

(j)
2 e2) >= 0,

one should obtain

σ
(j)
1 =

1√
J

e−iθ/2

(

cj −
t

∫

0

eiθ/2
√

J < e1, R(σ
(j)
2 e2) > dt

)

, cj = const.
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6 Graphene Synthesis

Classical action S(x) satisfies the Hamilton-Jacobi equation

S2
x1
+ S2

x2
− αx2Sx1 + αx1Sx2 +

α2

4
(x2

1 + x2
2)− (

E − U(x)

vF
)2 = 0. (8)

Its solution for electrons and holes is given by the following curvilinear integral over a classical

trajectory

S =

x
∫

x(0)

E − U(x)

vF
ds − e

c

x
∫

x(0)

Adx = (9)

x
∫

x(0)

(

E − U(x)

vF

√

ẋ2
1 + ẋ2

2 −
α

2
(−x2 ẋ1 + x1 ẋ2)

)

dt,

where s is the arck length.

Finally, taking into account finite number of trajectories connecting x
(0) and x up to the leading

order ray asymptotic solution to the Green’s tensor for electrons and holes is given by

G(x, x
(0)) =

1

2h̄

√

k

2π ∑
n

e
i
h̄

S(t(n),γ(n))−i π
2

µn+iπ/4

√

|J(t(n), γ(n))|

(

e−i θ−γ
2 e−i θ+γ

2

ei θ+γ
2 ei θ−γ

2

)

(1 + O(h̄)), (10)

where

k =
E − U(x(0))

h̄vF
,

µn is the Maslov index of the n-th trajectory ((15)).

This solution is singular near caustics or focal points where

J(t, γ) = 0.

Here is an example of ray asymptotic expansion of the Green’s tensor of electron or hole in

magnetic field with U(x) = 0

G(x, x
(0)) =

1

1 − exp [iπ( R2α
h̄ − 1)]

1

2h̄

√

k

2π

∑
n=1,2

e
i
h̄ Sn−i π

2 µn+iπ/4

√

|J(s(n), γ(n))|

(

e−i θ−γ
2 e−i θ+γ

2

ei θ+γ
2 ei θ−γ

2

)

(1 + O(h̄)), (11)

where cyclotronic radius R = |E|/α,

S =
RE

2
(

s

R
+ sin

s

R
),

J = R sin
s

R
,

where s being the arc length instead of t and measured along trajectory from x
(0). This ray

asymptotic solution was constructed with the help of the ray coordinates s, γ. For electrons

86 Graphene – Synthesis, Characterization, Properties and Applications
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Complex WKB Approximations in Graphene Electron-Hole Waveguides in Magnetic Field 7

the corresponding family of trajectories is given by

x1 = R[sin(
s

R
+ γ)− sin γ] + x

(0)
1 ,

x2 = R[− cos(
s

R
+ γ) + cos γ] + x

(0)
2 ,

and θ = s
R + γ (see Fig. 1). For holes, we have

x1 = R[sin(γ − s

R
)− sin γ] + x

(0)
1 ,

x2 = R[− cos(γ − s

R
)− cos γ] + x

(0)
2 ,

and θ = γ + π − s
R . The asymptotic solution is valid if kR >> 1. This solution is in full

agreement with the Green’s tensor for the problem in a sense of matching as α → 0

vF < −ih̄∇, σ̄ > G(x)− EG(x) =

(

δ(x) 0

0 δ(x)

)

, (12)

which exact representation can be found by Fourier transform

G(x, (0, 0)) =
−i

4h̄

(

−kH
(1)
0 (kr) (i∂x1 + ∂x2 )H

(1)
0 (kr)

(i∂x1 − ∂x2 )H
(1)
0 (kr) − kH

(1)
0 (kr)

)

= (13)

√
k

h̄

eikr+iπ/4

2
√

2πr

(

1 e−iγ

eiγ 1

)

(1 + O(k−1)),

where r = |x|, x1 = r cos(γ), x2 = r sin(γ), k = E/(h̄vF), and H
(1)
0 (x) is the Hankel function.

The property of the solution being singular at

E = El = ±vF

√

h̄α(2l + 1), l = 0, 1, 2, .... ,

gives the quantization of the energy spectrum already well-known in graphere electron-hole

motion in magnetic field ((5)). This solution is singular at s = νπR, ν ∈ N (see (19)). The set of

singular points are the circle with ν = 2n + 1 (see Fig. 1), which is a smooth caustic, and the

focal point x
(0), where ν = 2n (n ∈ N).

Frequently in practice, the structure of classical trajectories looks very complicated due to the

presence of multiple caustics and focal points. This situation takes place for a charged particle

moving in strong magnetic fields. Thus, the ray method asymptotic expansion is not effective.

Alternative approach is well-known - the method of Maslov canonical operator (15) which

gives a cumbersome asymptotic construction depending on geometrical and topological

properties of lagrangian manifolds represented by families of by-characteristics in the phase

space. In some simple cases it reduces the answer to local asymptotic expansions for wave

fields expressed via special functions of wave catastrophes, for example Airy function for

smooth caustic

v(z) =
1

2π

+∞
∫

−∞

exp

(

i(t3/3 + tz)

)

dt,

87Complex WKB Approximations in Graphene Electron-Hole Waveguides in Magnetic Field
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Fig. 1. Family of classical trajectories (circles) for the problem of the Green’s tensor for

electrons (1a) and holes (1b) in magnetic field with U(x) = 0 and x
(0) = (0, 0).

and Piercy integral - in case of casp

I(x, y) =
1

2π

+∞
∫

−∞

exp

(

i(t4 + xt2 + yt)

)

dt.

However, there exist alternative approach known as the method of Gaussian beams

summation method which is universal, simple, effective and robust in developing numerical

algorithms. It was shown for acoustic, electromagnetic and elastic waves (17). In the

next section a generalization of the method is described for the wave function of graphene

electron-hole motion in magnetic field and potential. It gives analytical representation of

Green’s tensor of Dirac system as an integral over Gaussian beams.

2.2 Localized asymptotic solution - electronic Gaussian beam in graphene

Let x0 = (x1(s), x2(s)) be a particle (electron or hole) classical trajectory, where s is the arc

length measured along a trajectory. Consider the neighborhood of the trajectory in terms of

local coordinates s, n, where n is the distance along the vector normal to the trajectory such

that

x = x
(0)(s) + en(s)n, (14)

where en(s) is the unit vector normal to the trajectory.

Following (21), we apply the asymptotic boundary-layer method to the homogeneous Dirac

system (1). We assume that the width of the boundary layer is determined by |n, ṅ| = O(
√

h̄)
as h̄ → 0. Introducing ν = n/

√
h̄ = O(1), we seek an asymptotic solution to (3) in the form

ψ =

(

u

v

)

= e
i
h̄ (S0(s)+S1(s)n)

+∞

∑
j=0

h̄j/2
(

uj(s, ν)

vj(s, ν)

)

(15)

88 Graphene – Synthesis, Characterization, Properties and Applications
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Complex WKB Approximations in Graphene Electron-Hole Waveguides in Magnetic Field 9

= e
i
h̄ (S0(s)+S1(s)n)

+∞

∑
j=0

h̄j/2ψj(s, ν),

where S0(s) and S1(s) were chosen as in (18), (19)

S0(s) =
∫

(

a(s) +
α

2
(x

(0)
1 γ1 + x

(0)
2 γ2)

)

ds,

S1(s) =
α

2
(x

(0)
2 γ1 − x

(0)
1 γ2),

a(s) =
E − U0(s)

vF
,

where

U(x) = U0(s) + U1(s)n + U2(s)n
2 + ...,

γi(s), i = 1, 2 are the cartesian components of en(s). Thus, for unknown ψj(s, ν) we obtain a

recurrent system

(H0 − EI)ψ0 = 0, (H0 − EI)ψ1 = −vF H1ψ0, (H0 − EI)ψ2 = −vF H1ψ1 − vF H2ψ0, ...

with operators H0, H1, H2, ...

H0 =

⎛

⎝

U0 vF((γ2 + iγ1)Ṡ0 + (γ1 − iγ2)Ṡ1 − αx
(0))
2
2 − i

αx
(0))
1
2 )

vF((γ2 − iγ1)Ṡ0 + (γ1 + iγ2)Ṡ1 − αx
(0))
2
2 + i

αx
(0))
1
2 ) U0

⎞

⎠

=

(

U0 (γ2 + iγ1)(E − U0)
(γ2 − iγ1)(E − U0) U0

)

,

H1 = vF

(

(U1 − U0−E
ρ )ν − e−iθ(∂ν + αν)

eiθ(∂ν − αν) (U1 − U0−E
ρ )ν

)

,

H2 = vF

(

(U2 − U1
ρ )ν2 e−iθ( ν

ρ ∂ν +
αν2

2ρ − i∂s)

eiθ(− ν
ρ ∂ν +

αν2

2ρ − i∂s) (U2 − U1
ρ )ν2

)

,

Hj =

⎛

⎝

(Uj −
Uj−1

ρ )νj 0

0 (Uj −
Uj−1

ρ )νj

⎞

⎠ , j > 2,

where eiθ = γ2 − iγ1, ρ(s) is the radius of curvature of the classical trajectory, and Ṡ0 means a

derivative with respect to s.

Solving the zero-order problem (H0 − EI)ψ0 = 0, we come to the eigen-vector problem

H0eα = hαeα, α = 1, 2,

hα = U0 ± vF |a(s)|,

e1 =
1√
2

(

1

eiθ

)

, e2 =
1√
2

(

1

−eiθ

)

.

If E > U0, then E = h1, if E < U0, then E = h2.
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10 Graphene Synthesis

Thus, one should seek solution in the form

ψ0 = σ(0)(s, ν)e1. (16)

Solvability of the problem (H0 − EI)ψ1 = −vF H1ψ0 leads to the orthogonality condition

< e1, H1ψ0 >= 0,

which can be simplified as follows

U1 −
U0 − E

ρ
= α. (17)

This relation is well-known in the asymptotic theory of Gaussian beams (see (20), (21),

(17),(18) (19)). It is equivalent to the requirement that everything is being constructed in a

asymptotically small neighbourhood of the fixed curve which is a classical trajectory - solution

to hamiltonian system.

Solvability of the problem requires the orthogonality condition

(H0 − EI)ψ2 = −vF H1ψ1 − vF H2ψ0

which leads to transport equation for the unknown σ(0)(s, ν)

2ia(s)σ
(0)
s + σ

(0)
νν − a(s)(ν2a(s)d(s) + θ̇)σ(0) = 0, (18)

d(s) =
1

a(s)

(

2(U2 −
U1

ρ
) +

α

ρ

)

.

This is so-called parabolic equation of Gaussian beam boundary layer (see (20), (21), (17),(18)

(19)). It has a solution

σ(0) =
eiΓν2/2

√
z

e−iθ/2, Γ = a
ż

z
, (19)

(see (20), (21), (18) (19)). Here Γ satisfies the Ricatti equation ,

Γ̇ +
1

a
Γ2 + ad = 0. (20)

The expression

S = S0(s) + S1(s)n +
1

2
Γ(s)n2 + ...

gives the approximate solution to the Hamilton-Jacobi equation (8).

The function z(s) satisfies the system of equations in the hamiltonian form

ż = p/a(s),

ṗ = −a(s)d(s)z (21)

with the hamiltonian

H(z, p) =
p2

2a(s)
+

a(s)d(s)z2

2
.
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It is worth remarking that this is so-called system of equations in variations which describes

a family of trajectories close to x0(s), that is, z(s) = n(s), and these trajectories are given by

x(s) = x0(s) + n(s)en(s),

(see (20), (21), (17),(18) (19)).

The crucial point of the analysis is that it is possible to choose a solution of (21) in such a

way that ImΓ > 0, thus, providing asymptotic localization of ψ. Namely, if z(s) is a complex

solution to (21), wronskian of Re(z(s)) and Im(z(s)) may be chosen in such a way that

a(s)W(Re(z), Im(z)) = 1.

Then, the following inequality holds true

Im(Γ(s)) =
a(s)W(Re(z), Im(z))

Re(z)2 + Im(z)2
=

1

|z(s)|2 > 0

along the trajectory. This leads to the localisation.

Thus, we obtain that to the leading order the Gaussian beam asymptotic solution for electron

or hole is given by

ψ = e

i
h̄

(

S0(s)+S1(s)n+ p(s)
2z(s)n2

)

e−iθ/2

√

z(s)
e1(1 + O(h̄1/2)). (22)

It is always regular near caustics and focal points regardless its complicated geometrical

structure.

3. Asymptotic expansion of the Green’s tensor for electron-hole in magnetic field

in the form of integral of Gaussian beams

The theoretical background of the method of Gaussian beams summation originally was

developed for acoustic wave fields ((16)), and later, for electromagnetic and elastic fields

((17)). The generalisation of the method of Gaussian beams summation for electron motion

in magnetic field was done in (18), (19). In this section, the approximation of electron-hole

Green’s tensor near to caustics and focal points as an integral over Gaussian beams is

described briefly.

According to (17), (18), (19), and taking into account ray asymptotics of electron-hole Green’s

tensor (see (10)), the integral over all Gaussian beams irradiated from the point source x
(0) is

represented as follows

G(x, x
(0), E) =

2π
∫

0

e

i
h̄

(

S0(s)+S1(s)n+ p(s)
2z(s)

n2

)

(

e−i θ−γ
2 e−i θ+γ

2

ei θ+γ
2 ei θ−γ

2

)

A(γ)dγ
√

z(s)
(23)

(1 +O(h̄1/2)), α = 1, 2,
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where A(γ) is unknown amplitude. This integral can be evaluated numerically, and the

corresponding algorithm is very simple. The rectangular or Simpson formula may be used.

The basic idea of the approximation is that the total fan of classical trajectories corresponding

to the discrete set of angular parameter γ ∈ [0, 2π] must stretch for the values of s as large

as possible thus securing total and uniform covering of the observation point x. Then, all the

components of the Gaussian beam asymptotic solution (22), that is, S0(s), S1(s), a(s), z(s), p(s)
must be computed for various values of the discrete set of γ ∈ [0, 2π]. This includes the

coordinates s, n of the observation point with respect to every trajectory determined by γ. The

parameter w is used in the construction of the complex z(s), p(s)

(

z(s)
p(s)

)

=

(

z1(s)
p1(s)

)

+ iw

(

z2(s)
p2(s)

)

where the real functions z1(s), p1(s), z2(s), p2(s) satisfy (21), and the initial conditions

(

z1(0)
p1(0)

)

=

(

1

0

)

,

(

z2(0)
p2(0)

)

=

(

0

1

)

.

The parameter w determines the width of localized Gaussian beams. The thinner Gaussian

beams, the more accurate approximation for solution may be obtained ((16)), ((17)). For

example, for the case U(x) = 0, we obtain the equation in variations in the form

z̈ + R−2z = 0,

and the corresponding solution

z = cos
s

R
+ iw sin

s

R
, w > 0,

leads to

Im(Γ) = aIm(
ż

z
) = a

s

R[cos2 s
R + w2 sin2 s

R ]
> 0, a = E/vF .

The amplitude A(γ) can be determined by the steepest descent method (see ((16)), ((17))). In

the region close to x
(0), where the structure of electron classical trajectories is regular away

from caustics, the approximation (23) has to coincide with the ray asymptotic solution

G(x, x
(0)) =

1

2h̄

√

k

2π

e
i
h̄ S(t,γ0)+iπ/4

√

Jα(t, γ0)

(

e−i
θ−γ0

2 e−i
θ+γ0

2

ei
θ+γ0

2 ei
θ−γ0

2

)

(1 + O(h̄)), (24)

where γ0 determines the trajectory connecting x
(0) and x. Taking into account that

asymptotically small neighbourhood of trajectories close to the trajectory γ = γ0 contribute

into the integral (23) as h̄ → 0, and using inside this neighbourhood the following

approximations (see (17))

S = S0 + S1n +
1

2

p̃(s)

z̃(s)
n2 + O(n3),

n = z̃(s)(γ − γ0) + O((γ − γ0)
2),
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where real functions z̃(s), p̃(s) satisfy (21) with initial conditions z̃(0) = 0, p̃(0) = |a(0)|, we

obtain

G(x, x(0), E) = e
i
h̄ S(t,γ0) A(γ0)

√

z(s)

(

e−i
θ−γ0

2 e−i
θ+γ0

2

ei
θ+γ0

2 ei
θ−γ0

2

)

∫ ∆1

−∆1

exp

(

− i

2h̄

a(0)z̃(s)

z(s)
(γ − γ0)

2

)

d(γ − γ0) + ...

= e
i
h̄ S(t,γ0) A(γ0)

√

z̃(s)

(

e−i
θ−γ0

2 e−i
θ+γ0

2

ei
θ+γ0

2 ei
θ−γ0

2

)
√

2πh̄

|a(0)| e∓iπ/4,

where ∆1 is a positive constant. Since J(s, γ0) = z̃(s), matching the leading term for

G(x, x(0), E) given in (24) leads to

A(γ0) =
ik

4πh̄

for electrons,

A(γ0) =
−ik

4πh̄

for holes. Thus, we obtain

A(γ) =
i|k|
4πh̄

.

4. Testing the method of Gaussian beams summation for electron-hole waveguide

motion in magnetic field

In this section the method of Gaussian beams summation for electron-hole motion in magnetic

field is tested for a special case with linear electrostatic potential U = βx2 in (2), and we

assume that vF = 1. For this case we compare applicability of both asymptotic representations

(10) and (23) for the Green’s tensor component G11(x, x(0), E). The hamiltonian dynamics of

electrons motion is determined by the Hamilton function in Landau gauge A = B(−x2, 0, 0)

h1 = βx2 +
√

(p1 − αx2)2 + p2
2,

in the domain Ωe = {x : E > βx2} on the level set h1 = E, or

He =
1

2

(

(p1 − αx2)
2 + p2

2 − (E − βx2)
2

)

,

on the level set He = 0. The hamiltonian dynamics of holes motion is determined by the

Hamiltilton function

h2 = βx2 −
√

(p1 − αx2)2 + p2
2,

in the domain Ωe = {x : E < βx2} on the level set h2 = E, or

Hh =
1

2

(

− (p1 − αx2)
2 − p2

2 + (E − βx2)
2

)

,

on the level set Hh = 0.
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In the case |β| < |α|, a drift motion of electrons and holes takes place in the right direction of

the axis x1. For electrons E > 0, the family of classical drift trajectories are given by

x1(t, γ) = (π1 −
π1α2 − αβE

Ω2
)t +

απ2

Ω2
(cos Ωt − 1) +

π1α2 − αβE

Ω3
sin Ωt,

x2(t, γ) =
βE − π1α

Ω2
(cos Ωt − 1) +

π2

Ω
sin Ωt,

where Ω =
√

α2 − β2, t ≥ 0, 0 ≤ γ < 2π, and

p1|t=0 = π1 = E cos γ, p2|t=0 = π2 = E sin γ, E =
√

π2
1 + π2

2 > 0.

For holes E < 0, the family of classical drift trajectories are given by

x1(t, γ) = −(π1 −
π1α2 − αβE

Ω2
)t +

απ2

Ω2
(cos Ωt − 1)− π1α2 − αβE

Ω3
sin Ωt,

x2(t, γ) =
βE − π1α

Ω2
(cos Ωt − 1)− π2

Ω
sin Ωt,

and

p1|t=0 = π1 = |E| cos γ, p2|t=0 = π2 = |E| sin γ, E = −
√

π2
1 + π2

2 < 0.

−1 0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

x1

x2

A B

Fig. 2. Classical trajectories of electronic waveguide in magnetic and electrostatic fields.
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Fig. 3. Classical trajectories of holes waveguide in magnetic and electrostatic fields.
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Fig. 4. The values of |G11(x, x(0), E)|2h̄2/k at the points of vertical cut A for electronic
waveguide in magnetic and electrostatic fields (data 1 - Gaussian beams summation, data 2 -
ray asymptotics).
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Fig. 5. The values of |G11(x, x(0), E)|2h̄2/k at the points of vertical cut B for electronic
waveguide in magnetic and electrostatic fields, Gaussian beams summation.

For both families of the classical trajectories, it can be shown rigorously that all of them are

bounded from the corresponding turning lines. That is, for electrons it is always E > βx2(t, γ),
and for holes E < βx2(t, γ), for arbitrary (t, γ).
Consider the case with following values of the dimensionless parameters of the problem E =
1, α = 2.5, β = 1, h̄ = 0.05, w = 2. The structure of trajectories for holes and electrons

is shown in Fig. 2, 3. It is worth to remark that in both cases shown in Fig. 2 and 3, the

electron-hole waveguide propagation is clearly seen to be isolated from the potential turning

lines, for electrons x2 ≤ 1, for holes x2 ≥ −1. This waveguide propagation (drift) takes

place to the right from the source (x(0) = (0, 0)). In Fig. 4 the values of electronic Green’s

tensor normalised component |G11(x, x(0), E)|2h̄2/k at the points of vertical cut A = {x :

x1 = 0.75,−1.7 < x2 < −0.2} are presented that were computed by means of Gaussian

beams summation approximation (23) and the ray asymptotics (10). Both graphs again show

a good agreement within the domain that is away from caustics. It is clear that near to caustics

the ray asymptotics blows up. Instead, Gaussian beams summation approximation shows a

smooth transition through the caustic line with exponential decay into geometrical shadow

domain. Discretizing the integral (23) by means of 128 Gaussian beams was used. In Fig.

5 the values of electronic Green’s tensor normalised component |G11(x, x(0), E)|2h̄2/k at the

points of the second vertical cut B = {x : x1 = 1.25,−1.8 < x2 < 0.75} are presented

that are computed only by means of Gaussian beams summation approximation (23). One

should observe the oscillatory behaviour of Green’s tensor components between caustic lines

confining the waveguide and exponential decal away from the waveguide. Similar results

could be expected for the hole Green’s tensor normalised components.

96 Graphene – Synthesis, Characterization, Properties and Applications

www.intechopen.com



Complex WKB Approximations in Graphene Electron-Hole Waveguides in Magnetic Field 17

5. Conclusion

Using the basic steps of techniques of Gaussian beams summation, known for acoustic wave

propagation, this method was applied for electron-holes motion described by Dirac system in

magnetic field and arbitrary potential in graphene to construct the Green’s tensor semiclassical

uniform approximation. This approximation was tested for a special cases of waveguide

excitation by point source for electron-hole motion in magnetic and linear electric fields.

The asymptotic results for the Green’s tensor computed by Gaussian beams summation were

found to be in a very good agreement with data obtained by the ray asymptotic solution. The

method of Gaussian beams summation is efficient for construction of WKB approximation

describing electron-hole motion in magnetic field and any scalar potential including problems

of electron-hole waveguide transport through resonators.

It is worth to remark that the semiclassical analysis for the Dirac system considered in this

chapter corresponds to the case of the first K Diract point in the first Brillouine zone. The case

of the second K′ Dirac point is treated in a similar way.
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