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1. Introduction

This chapter is devoted to the numerical methods of the technique near-field acoustic
holography (NAH) introduced by Williams & Maynard (1980). As explained in the book
of Williams (1999), NAH has had a tremendous success analyzing source regions with
geometries which conform closely to one of the separable geometries of the acoustic wave
equation; for example, planar, cylindrical, and spherical geometries. In these analyses the
pressure field radiated from an object is measured on an imaginary surface outside (for
exterior problems) or inside (for interior problems) the source region. This measured pressure
is transformed into a hologram of different frequencies that are used to reconstruct the acoustic
field on the body of the source. The solution of this inverse problem in these geometries
relies on the expansion of the pressure field in terms of a complete set of eigenfunctions along
with a knowledge of the analytical form of the Neumann or Dirichlet Green’s function. The
reconstructions are very efficient, requiring only fractions of a second of computation time per
frequency.
Source regions with boundaries which vary appreciably in shape from one of these
separable geometries require numerical methods that will be based on boundary integral
representations of the solution as in Colton & Kress (1983; 1992). This chapter discusses the
available results in the acoustic literature for the integral representations and the numerical
discretization methods, and finally the regularization methods used for this inverse problem.

2. Integral representations

Let G be a domain in R
3, interior to the boundary surface Γ (as shown in Fig. 1) where we

assume that Γ is allowed to have edges and corners. Similarly we will denote as G+ the
region outside of G that shares the same boundary Γ. For a time-harmonic (e−iωt) disturbance
of radial frequency ω the sound pressure p satisfies the homogeneous Helmholtz equation in
G (or G+)

∆p + k2 p = 0, (1)

where p is given in N/m2 units, k = ω/c is the wave number and c the constant for the speed
of sound given in m/s units. Here ω = 2π f , f is the frequency given in Hz. A solution p that
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Sources

a) b)

Sources

Fig. 1. Setup for the acoustic problem, a)interior problem and b)exterior problem.

satisfies Equation 1 in G+ satisfies the Sommerfeld radiation condition

lim
r→∞

r

{
∂p

∂r
− ikp

}
= 0, r = |�x|, (2)

where �x = (x1, x2, x3) and |�x| =
√

x2
1 + x2

2 + x2
3.

At the boundary Γ the normal vibration v is related to the acoustic pressure p by Euler’s
equation

iρωv =
∂p

∂�n
, (3)

where ρ is the mean fluid density given in kg/m3 units and �n is the vector unit normal with
direction shown in Fig. 1.

2.1 Integral operators

We define the integral operators as in Colton & Kress (1983; 1992)

(SΓ ϕ) (�x) :=
∫

Γ
Φ(�x,�y)ϕ(�y)dS(�y), �x ∈ R

3, (4)

(DΓ ϕ) (�x) :=
∫

Γ

∂Φ(�x,�y)

∂�n(�y)
ϕ(�y)dS(�y), �x ∈ R

3\Γ, (5)

(KΓ ϕ) (�x) :=

(
∂SΓ

∂�n
ϕ

)
(�x) :=

∫

Γ

∂Φ(�x,�y)

∂�n(�x)
ϕ(�y)dS(�y), �x ∈ R

3\Γ, (6)

(HΓ ϕ) (�x) :=

(
∂DΓ

∂�n
ϕ

)
(�x) :=

∫

Γ

∂2Φ(�x,�y)

∂�n(�x)∂�n(�y)
ϕ(�y)dS(�y), �x ∈ R

3\Γ, (7)

where Φ is the free space Green’s function to the Helmholtz equation

Φ (�x,�y) =
exp (ik |�x −�y|)

4π |�x −�y| . (8)

In this work we will not discuss the smoothness properties of the operators. A detailed
description of these properties is given in Colton & Kress (1983) and McLean (2000). The most
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important property for the purpose of NAH will be the evaluation of an operator SΓ at �x ∈ Γ.
We describe this as

(SΓ ϕ)± (�x) := lim
h→0

(SΓ ϕ) (�x − h�n(�x)) ,

where we will understand as the uppercase “+” the exterior problem with the direction of �n
as in Fig. 1b, while uppercase “−” the interior problem with the direction of �n as in Fig. 1a.
We keep this notation for all operators in Equations 4-7. Having explained the notation we
have the continuity relations

(SΓ ϕ)+ (�x) := (SΓ ϕ)− (�x) , (9)

(HΓ ϕ)+ (�x) := (HΓ ϕ)− (�x) , (10)

and the jump relations

(DΓ ϕ)± (�x) :=
∫

Γ

∂Φ (�x,�y)

∂�n (�y)
ϕ (�y) dS (�y)± Ω(�x)ϕ(�x), (11)

(KΓ ϕ)± (�x) :=
∫

Γ

∂Φ (�x,�y)

∂�n (�x)
ϕ (�y) dS (�y)∓ Ω(�x)ϕ(�x), (12)

where Ω(�x) is the solid angle coefficient given by the integral formula

Ω(�x) = −
∫

Γ

∂

∂�n(�y)

(
1

4π |�x −�y|

)
dS(�y), �x ∈ Γ. (13)

2.2 Integral formulations

The classical Helmholtz-Kirchhoff integral equation described in Colton & Kress (1983)
is known as the integral representation of the pressure by the direct formulation.
This classical representation has been used for purposes of solving NAH by several
authors like Kim & Ih (1996; 2000); Kim & Lee (1990); Maynard (1988); Nelson & Yoon
(2000); Sureshkumar & Raveendra (2001); Veronesi & Maynard (1989); Williams (2001);
Yoon & Nelson (2000). The sound pressure in G+ by the direct formulation has the integral
representation

p(�x) =

{
iρω (SΓv) (�x)− (DΓ p) (�x), �x ∈ G+,

0, �x ∈ G,
(14)

and in G

p(�x) =

{
0, �x ∈ G+,

(DΓ p) (�x)− iρω (SΓv) (�x), �x ∈ G.
(15)

The indirect formulations are based on representations to the solution of Equation 1 like the
single source or double source representation found in Augusztinovicz (1999); Delillo et al.
(2000); DeLillo et al. (2001; 2003); Raveendra et al. (1998); Schuhmacher et al. (2003);
Tekatlian et al. (1996); Vlahopoulos & Raveerdra (1998); Williams et al. (2000); Zhang et al.
(2001; 2000). Using the notation of the previous subsection the single source representation
is defined as

p(�x) = (SΓ ϕ) (�x), �x ∈ R
3, (16)

where ϕ is the density function, the double source representation

p(�x) = (DΓ ϕ) (�x), �x ∈ R
3\Γ. (17)
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4 Will-be-set-by-IN-TECH

and the combination of sources

p(�x) = ([SΓ + iηDΓ]ϕ) (�x), �x ∈ R
3\Γ, (18)

where η is a constant.

2.3 Boundary maps

We define the well-known Dirichlet-to-Neumann γdn and Neumann-to-Dirichlet γnd

boundary operators for �x ∈ Γ

p(�x) = (γndv)± (�x), v(�x) = (γdn p)± (�x). (19)

For the direct formulation we found that

(γndφ)± (�x) := iρω
([

D±
Γ ± I

]−1
S±

Γ φ
)
(�x), (20)

(γdnφ)± (�x) :=
1

iρω

((
S±

Γ

)−1 [
D±

Γ ± I
]

φ
)
(�x),

where I is the identity operator. For the indirect formulation with single source formulation
we have the relations

(γndφ)± (�x) := iρω
(

S±
Γ

(
K±

Γ

)−1
φ
)
(�x), (21)

(γdnφ)± (�x) :=
1

iρω

(
K±

Γ

(
S±

Γ

)−1
φ
)
(�x),

for the indirect formulation with double source formulation

(γndφ)± (�x) := iρω
(

D±
Γ

(
H±

Γ

)−1
φ
)
(�x), (22)

(γdnφ)± (�x) :=
1

iρω

(
H±

Γ

(
D±

Γ

)−1
φ
)
(�x),

and for the indirect formulation with a combination of sources

(γndφ)± (�x) := iρω
((

S±
Γ + iηD±

Γ

) (
K±

Γ + iηH±
Γ

)−1
φ
)
(�x), (23)

(γdnφ)± (�x) :=
1

iρω

((
K±

Γ + iηH±
Γ

) (
S±

Γ + iηD±
Γ

)−1
φ
)
(�x).

2.4 Transfer functions

The traditional approach for solving NAH (both for direct and indirect formulations) is based
on the operators

p(�x) =
(
Gd

Γ p
)
(�x) :=

∫

Γ
Φd(�x,�y)p(�y)dS(�y), �x ∈ R

3\Γ, (24)

p(�x) = (Gn
Γ v) (�x) :=

∫

Γ
Φn(�x,�y)v(�y)dS(�y), �x ∈ R

3\Γ, (25)

where the functions Φd and Φn are respectively the Dirichlet Green’s function and Neumann
Green’s function for Equation 1. These integral equations are similar to the Rayleigh’s integral
formulas for planar NAH (see Williams (1999)). In general, the knowledge of an explicit
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formula for these Green’s functions will be helpful, but can only be found for some restricted
geometries (see Ouellet et al. (1991); Pan & Bies (1990); Williams (1997)).
With the help of the Dirichlet-to-Neumann γdn and Neumann-to-Dirichlet γnd boundary
operators we can find an explicit representation of the operators Gd

Γ ,Gn
Γ for the direct

formulations
(
Gd

Γ ϕ
)±

(�x) :=
(
±

[
iρωSΓ

(
γ±

nd

)
− DΓ

]
ϕ
)
(�x), (26)

(Gn
Γ ϕ)± (�x) :=

(
±

[
iρωSΓ − DΓ

(
γ±

dn

)]
ϕ
)
(�x).

The indirect formulations with single source will have the expressions

(
Gd

Γ ϕ
)±

(�x) :=
(

SΓ

(
S±

Γ

)−1
ϕ
)
(�x), (27)

(Gn
Γ ϕ)± (�x) := iρω

(
SΓ

(
K±

Γ

)−1
ϕ
)
(�x).

for the double source
(
Gd

Γ ϕ
)±

(�x) :=
(

DΓ

(
D±

Γ

)−1
ϕ
)
(�x), (28)

(Gn
Γ ϕ)± (�x) := iρω

(
DΓ

(
H±

Γ

)−1
ϕ
)
(�x).

and for a combination of sources
(
Gd

Γ ϕ
)±

(�x) :=
(
(SΓ + iηDΓ)

(
S±

Γ + iηD±
Γ

)−1
ϕ
)
(�x), (29)

(Gn
Γ ϕ)± (�x) := iρω

(
(SΓ + iηDΓ)

(
K±

Γ
+ iηH±

Γ

)−1
ϕ
)
(�x).

3. Numerical methods for integral equations

The numerical solution of an integral equation is based on its discretization, which is a
reduction into a linear matrix system where numerical methods can be applied. Boundary
Element Methods (BEM) have been successfully used in the area of acoustic radiation and
scattering (see Bai (1992); Kang & Ih (2000a); Kim & Ih (1996); Langrenne & Garcia (1999);
Seybert et al. (1985); Williams et al. (2000)) for three dimensional surfaces.

3.1 Boundary integral methods

The boundary elements used for approximating the surface integral are schematically shown
in Fig. 2. Nv triangular or quadrilateral elements are used in this study for the construction
of meshes. The global cartesian coordinates �y on any point of an element △j, j = 1, ..., Nv are
assumed to be related to the nodes �y(m,j), m = 1, .., nq by

�y(�ξ) =
nq

∑
m=1

Nm(�ξ)�y(m,j) (30)

in which �ξ = (ξ1, ξ2) and shape functions Nm(�ξ) for the triangular elements are given in Table
1 and for quadrilateral elements are given in Table 2.
Equation 30 is an isoparametric transformation in which a surface element is mapped into
a plane equilateral unit triangle or quadrilateral (as in the lower part of figure 2). Next, the
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(a) triangular elements (b) quadrilateral elements

Fig. 2. Boundary elements used for iso-parametric transformation: linear, quadratic and
cubic elements.

Linear Quadratic Cubic

N1(�ξ) u u(2u − 1) 1
2 u(3u − 1)(3u − 2)

N2(�ξ) ξ2 ξ2(2ξ2 − 1) 1
2 ξ2(3ξ2 − 1)(3ξ2 − 2)

N3(�ξ) ξ1 ξ1(2ξ1 − 1) 1
2 ξ1(3ξ1 − 1)(3ξ1 − 2)

N4(�ξ) 4ξ2u 9
2 ξ2(3u − 1)u

N5(�ξ) 4ξ1ξ2
9
2 ξ2(3ξ2 − 1)u

N6(�ξ) 4ξ1u 9
2 ξ1ξ2(3ξ2 − 1)

N7(�ξ)
9
2 ξ1(3ξ1 − 1)ξ2

N8(�ξ)
9
2 ξ1(3ξ1 − 1)u

N9(�ξ)
9
2 ξ1(3u − 1)u

N10(�ξ) 27ξ1ξ2u

u = 1 − ξ1 − ξ2

q1 = (0, 0), q4 = (0, 1
2 ), q4 = (0, 1

3 ), q5 = (0, 2
3 )

q2 = (0, 1), q5 = ( 1
2 , 1

2 ), q6 = ( 1
3 , 2

3 ), q7 = ( 2
3 , 1

3 )

q3 = (1, 0), q6 = ( 1
2 , 0) q8 = ( 2

3 , 0), q9 = ( 1
3 , 0)

q10 = ( 1
3 , 1

3 ),

Table 1. Shape functions for triangular elements.

boundary variable ϕ given in Equations 4-7 and Equations 9-12 will be represented on each
element j according to

ϕ(�ξ) =
nq

∑
m=1

Nm(�ξ)ϕ(m,j) (31)

where ϕ(m,j) are the values of ϕ at node m of the element j.
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Linear Quadratic Cubic

N1(�ξ)
1
4 (1 − ξ1)(1 − ξ2)

1
4 ξ1(ξ1 − 1)ξ2(ξ2 − 1) 81

256 (ξ
2
1 − 1

9 )(ξ
2
2 − 1

9 )(ξ1 − 1)(ξ2 − 1)

N2(�ξ)
1
4 (1 − ξ1)(1 + ξ2)

1
4 ξ1(ξ1 − 1)ξ2(1 + ξ2)

81
256 (ξ

2
1 − 1

9 )(ξ
2
2 − 1

9 )(1 − ξ1)(ξ2 + 1)

N3(�ξ)
1
4 (1 + ξ1)(1 + ξ2)

1
4 ξ1(1 + ξ1)ξ2(1 + ξ2)

81
256 (ξ

2
1 − 1

9 )(ξ
2
2 − 1

9 )(ξ1 + 1)(ξ2 + 1)

N4(�ξ)
1
4 (1 + ξ1)(1 − ξ2)

1
4 ξ1(1 + ξ1)ξ2(ξ2 − 1) 81

256 (ξ
2
1 − 1

9 )(ξ
2
2 − 1

9 )(ξ1 + 1)(1 − ξ2)

N5(�ξ)
1
2 ξ1(ξ1 − 1)(1 − ξ2

2)
243
256 (ξ

2
1 − 1

9 )(ξ
2
2 − 1)(1 − ξ1)(ξ2 − 1

3 )

N6(�ξ)
1
2 (1 − ξ2

1)ξ2(1 + ξ2)
243
256 (ξ

2
1 − 1

9 )(ξ
2
2 − 1)(ξ1 − 1)(ξ2 +

1
3 )

N7(�ξ)
1
2 ξ1(1 + ξ1)(1 − ξ2

2)
243
256 (ξ

2
1 − 1)(ξ2

2 − 1
9 )(ξ1 − 1

3 )(ξ2 + 1)

N8(�ξ)
1
2 (1 − ξ2

1)ξ2(ξ2 − 1) 243
256 (1 − ξ2

1)(ξ
2
2 − 1

9 )(ξ1 +
1
3 )(ξ2 + 1)

N9(�ξ) (1 − ξ2
1)(1 − ξ2

2)
243
256 (ξ

2
1 − 1

9 )(1 − ξ2
2)(ξ1 + 1)(ξ2 +

1
3 )

N10(�ξ)
243
256 (ξ

2
1 − 1

9 )(ξ
2
2 − 1)(ξ1 + 1)(ξ2 − 1

3 )

N11(�ξ)
243
256 (ξ

2
1 − 1)(ξ2

2 − 1
9 )(ξ1 +

1
3 )(ξ2 − 1)

N12(�ξ)
243
256 (ξ

2
1 − 1)(ξ2

2 − 1
9 )(ξ1 − 1

3 )(1 − ξ2)

N13(�ξ)
729
256 (ξ

2
1 − 1)(ξ2

2 − 1)(ξ1 − 1
3 )(ξ2 − 1

3 )

N14(�ξ)
729
256 (ξ

2
1 − 1)(ξ2

2 − 1)( 1
3 − ξ1)(ξ2 +

1
3 )

N15(�ξ)
729
256 (ξ

2
1 − 1)(ξ2

2 − 1)(ξ1 +
1
3 )(ξ2 +

1
3 )

N16(�ξ)
729
256 (ξ

2
1 − 1)(ξ2

2 − 1)(ξ1 +
1
3 )(

1
3 − ξ2)

q1 = (−1,−1), q5 = (−1, 0), q5 = (−1,− 1
3 , q6 = (−1, 1

3 ),
q2 = (−1, 1), q6 = (0, 1), q7 = (− 1

3 , 1), q8 = ( 1
3 , 1),

q3 = (1, 1), q7 = (1, 0), q9 = (1, 1
3 ), q10 = (1,− 1

3 ),

q4 = (1,−1) q8 = (0,−1), q11 = ( 1
3 ,−1), q12 = (− 1

3 ,−1),
q9 = (0, 0) q13 = (− 1

3 ,− 1
3 ), q14 = (− 1

3 , 1
3 ),

q15 = ( 1
3 , 1

3 ), q16 = ( 1
3 ,− 1

3 )

Table 2. Shape functions for quadrilateral elements.

For �x ∈ R
3\Γ the integrals in Equations 4-7 are approximated by

(Sϕ)(�x) ≈
Nv

∑
j=1

nq

∑
m=1

Si
(m,j)ϕ(m,j), (Dϕ)(�x) ≈

Nv

∑
j=1

nq

∑
m=1

Di
(m,j)ϕ(m,j), (32)

(Kϕ)(�x) ≈
Nv

∑
j=1

nq

∑
m=1

Ki
(m,j)ϕ(m,j), (Hϕ)(�x) ≈

Nv

∑
j=1

nq

∑
m=1

Hi
(m,j)ϕ(m,j),

where

Si
(m,j) =

∫

△
Φ(�xi,�y(ξ1, ξ2))Nm(ξ1, ξ2)J(ξ1, ξ2)dξ1dξ2, (33)

Di
(m,j) =

∫

△
∂Φ(�xi,�y(ξ1, ξ2))

∂�n(�y(ξ1, ξ2))
Nm(ξ1, ξ2)J(ξ1, ξ2)dξ1dξ2, (34)

Ki
(m,j) =

∫

△
∂Φ(�xi,�y(ξ1, ξ2))

∂�n(�xi)
Nm(ξ1, ξ2)J(ξ1, ξ2)dξ1dξ2, (35)

Hi
(m,j) =

∫

△
∂2Φ(�xi,�y(ξ1, ξ2))

∂�n(�y(ξ1, ξ2))∂�n(�xi)
Nm(ξ1, ξ2)J(ξ1, ξ2)dξ1dξ2, (36)

in which △ is the unit surface element, J(ξ1, ξ2) is the Jacobian of the coordinate
transformation. This Jacobian is known exactly for some surfaces, however for general

127Numerical Methods for Near-Field Acoustic Holography over Arbitrarily Shaped Surfaces
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surfaces it is more convenient to approximate it numerically using Equation 30

J(ξ1, ξ2) ≈ |∂ξ1
Nm(ξ1, ξ2)× ∂ξ2

Nm(ξ1, ξ2)|

as suggested in Chien (1995). Integrals Si
(m,j), Di

(m,j), Ki
(m,j), Hi

(m,j) are approximated

numerically using the adaptive integration scheme given in (Atkinson, 1997, Chapter 9) with
the formula (T2 : 5.1) from (Strout, 1971, Chapter 8) for triangles and gaussian quadrature for
quadrilaterals.
For �x ∈ Γ the integrals in Equations 9-12 will be approximated by

(Dϕ)±(�x) ≈
Nv

∑
j=1

q

∑
m=1

Di
(m,j)ϕ(m,j) ± Ω(�x)ϕ(�x), (Sϕ)(�x)± ≈

Nv

∑
j=1

nq

∑
m=1

Si
(m,j)ϕ(m,j), (37)

(Kϕ)±(�x) ≈
Nv

∑
j=1

q

∑
m=1

Ki
(m,j)ϕ(m,j) ∓ Ω(�x)ϕ(�x), (Hϕ)(�x)± ≈

Nv

∑
j=1

nq

∑
m=1

Hi
(m,j)ϕ(m,j),

Integrals Si
(m,j)

, Di
(m,j)

, Ki
(m,j)

and Hi
(m,j)

will be approximated using the adaptive integration

scheme used for the previous case when �x �∈ △j. When �x ∈ △j then Si
(m,j)

, Di
(m,j)

, and

Ki
(m,j)

are approximated numerically using a Duffy transformation and Gaussian quadrature

as suggested in Schwab & Wendland (1992).

3.2 Equivalent sources methods

Fig. 3. Setup of integral approximation over element.

We utilize the notation of the previous subsection. The boundary variable ϕ given in
Equations 4-7 will be represented on each element j as in Equation 31 using constant elements.
The constant elements for triangular or quadrilateral shapes are

N1(�ξ) = 1

and q1 = (1/3, 1/3) for triangular elements and q1 = (0, 0) for quadrilateral elements.
For �x ∈ R

3\Γ the mean value theorem applied to Equation 32 gives

Si
(m,j) = Φ(�x,�ζ)A△, Di

(m,j) =
∂Φ(�x,�ζ)

∂�n(�ζ)
A△, (38)

Ki
(m,j) =

∂Φ(�x,�ζ)

∂�n(�x)
A△, Di

(m,j) =
∂2Φ(�x,�ζ)

∂�n(�x)∂�n(�ζ)
A△,

for certain �ζ ∈ △j and

A△j
=

∫

△
J(ξ1, ξ2)dξ1dξ2,

128 Holography - Different Fields of Application
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The multi-dimensional Taylor series are used to expand around �y ∈ R
3

∂α1

�n(x)
∂α2

�n(�ζ)
Φ(�x,�ζ) = ∂α1

�n(�x)
∂α2

�n(�y)
Φ(�x,�y) + D1 + D2 + ... (39)

where α1, α2 = 0, 1 and

D1 =
3

∑
m=1

∂ym

(
∂α1

�n(x)
∂α2

�n(�y)
Φ(�x,�y)

)
(ζm − ym),

D2 =
3

∑
m=1

∂2
ym

(
∂α1

�n(x)
∂α2

�n(�y)
Φ(�x,�y)

) (ζm − ym)2

2

+
3

∑
m,n=1,m �=n

∂ym ∂yn

(
∂α1

xi
∂α2

�n(�y)
Φ(�x,�y)

)
(ζm − ym)(ζn − yn).

From the derivatives of Φ we obtain the estimates

∣∣∣∂ym ∂α1

�n(�x)
∂α2

�n(�y)
Φ(�x,�y)

∣∣∣ ≤
A(1+α1+α2)(k)

4π|�x −�y|2+α1+α2
,

∣∣∣∂ym ∂yn ∂α1

�n(�x)
∂α2

�n(�y)
Φ(�x,�y)

∣∣∣ ≤
A(2+α1+α2)(k)

4π|�x −�y|3+α1+α2

where

A(1)(k) = C1(k), A(2)(k) = C1(k) + C2(k), A(3)(k) = 3C2(k) + C3(k),

A(4)(k) = 3C2(k) + 4C3(k) + C4(k),

C1(k) = |ik|�x −�y| − 1| ,

C2(k) =
∣∣∣k2|�x −�y|2 + 3ik|�x −�y| − 3

∣∣∣ ,

C3(k) =
∣∣∣ik3|�x −�y|3 − 6k2|�x −�y|2 − 15ik|�x −�y|+ 15

∣∣∣ ,

C4(k) =
∣∣∣k4|�x −�y|4 + 10ik3|�x −�y|3 − 45k2|�x −�y|2 + 105ik|�x −�y| − 105

∣∣∣ ,

We use the above estimates to obtain

|D1| ≤
3A(1+α1+α2)(k)

4π

|�y −�ζ|
|�x −�y|2+α1+α2

=
3A(1+α1+α2)(k)

4π

|�y −�ζ|
|�x −�y|1+α1+α2

(
|�y −�ζ|
|�x −�y|

)
,

|D2| ≤
9A(2+α1+α2)(k)

8π

|�y −�ζ|2
|�x −�y|3+α1+α2

=
9A(2+α1+α2)(k)

8π

|�y −�ζ|2
|�x −�y|1+α1+α2

(
|�y −�ζ|
|�x −�y|

)2

.

It is not hard to observe from Fig. 3 that δ ≤ |�x −�y| ≤ δ + d1 and |�y − �ζ| <
√

2d2 where d2

is the arc-length distance of the element △j and d1 the distance between �x and �x′ which is the

projection of �x into the element △j. Under the assumption that δ >
√

2d2 then we can utilize
the approximation

∂α1

�n(x)
∂α2

�n(�ζ)
Φ(�x,�ζ) = ∂α1

�n(�x)
∂α2

�n(�y)
Φ(�x,�y) +

3A(1+α1+α2)(k)

4π

|�y −�ζ|
|�x −�y|2+α1+α2

+O

(
|�y −�ζ|
|�x −�y|

)2

. (40)

The error estimate in Equation 40 has been studied in Valdivia & Williams (2006) for the case
α1 = α2 = 0, δ < d2 < 2δ. A similar behavior of the error should be expected for other cases

129Numerical Methods for Near-Field Acoustic Holography over Arbitrarily Shaped Surfaces

www.intechopen.com



10 Will-be-set-by-IN-TECH

of α1, α2. Finally Equation 40 is used to justify the approximations of Equation 38 that results
in the approximation

(Sϕ)(�x) ≈
Nv

∑
j=1

Φ(�x,�yj)qj, (41)

(Dϕ)(�x) ≈
Nv

∑
j=1

∂Φ(�x,�yj)

∂�n(�yj)
qj, (42)

(Kϕ)(�x) ≈
Nv

∑
j=1

∂Φ(�x,�yj)

∂�n(�x)
qj, (43)

(Hϕ)(�x) ≈
Nv

∑
j=1

∂2Φ(�x,�yj)

∂�n(�yj)∂�n(�x)
qj, (44)

where qj = ϕ(1,j)S△j
.

4. Near-field acoustic holography

Sources

a) b)

Sources

Fig. 4. Boundary setup for (a) interior NAH and (b) exterior NAH.

As shown in Fig. 4, for interior(exterior) NAH the acoustical sensors are placed on a surface Γ0

inside (outside) the domain G. These are used to measure the pressure p and the fundamental
problem is to recover the acoustic field (pressure, normal velocity and normal intensity) on Γ.
The NAH problem for the explicit approach is reduced to the solution of the integral equations

(
Gd

Γ p
)±

(�x) := p(�x), �x ∈ Γ0 (45)

(Gn
Γ v)± (�x) := p(�x), �x ∈ Γ0. (46)

The superscript sign “+” in Equations 45 and 46 is used for exterior NAH and “−” for interior
NAH. This notation will be kept throughout the rest of this chapter.
In practice for the NAH technique we will take M pressure measurements on the surface Γ0

and will want to recover N pressure or normal velocity points on the surface Γ. In general we
will find that M ≥ N, but there is no major theoretical contradiction if M < N. We will denote
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as p the column vector with M pressure measurements on Γ0. The N points of the recovered
normal velocity and pressure on Γ will be given respectively by the column vectors vs, ps.

4.1 Boundary element methods

For each �xi ∈ Γ0 the sums in Equation 32 can be reduced for the N points on Γ to produce the

M × M complex matrices
[
S (Γ0,Γ)

]
,
[
D (Γ0,Γ)

]
,
[
K (Γ0,Γ)

]
and

[
H (Γ0,Γ)

]
that correspond to

discrete approximations of the operators in Equations 4-7. Similarly, for �xi ∈ Γ the sums in

Equation 37 will be reduced to obtain the N × N complex matrices
[
S ±

(Γ)

]
,
[
D ±

(Γ)

]
,
[
K ±

(Γ)

]

and
[
H ±

(Γ)

]
that correspond to discrete approximations of the operators in Equations 9-12.

4.1.1 Explicit approach

The discretization of the Dirichlet-to-Neumann
[
Υ

±
(dn,Γ)

]
and Neumann-to-Dirichlet

[
Υ

±
(nd,Γ)

]
boundary operators gives the matrix equation

vs =
[

Υ
±
(dn,Γ)

]
ps, ps =

[
Υ

±
(nd,Γ)

]
vs (47)

For the direct formulation we found that

[
Υ

±
(nd,Γ)

]
:= iρω

([
D ±

(Γ)

]
± [I]

)−1 [
S ±

(Γ)

]
, (48)

[
Υ

±
(dn,Γ)

]
:=

1

iρω

[
S ±

(Γ)

]−1 ([
D ±

(Γ)

]
± [I]

)
,

where [I] is the N × N identity matrix. For the indirect formulation with single source
formulation we have the relations

[
Υ

±
(nd,Γ)

]
:= iρω

[
S ±

(Γ)

] [
K ±

(Γ)

]−1
, (49)

[
Υ

±
(dn,Γ)

]
:=

1

iρω

[
K ±

(Γ)

] [
S ±

(Γ)

]−1
,

for the indirect formulation with double source formulation

[
Υ

±
(nd,Γ)

]
:= iρω

[
D ±

(Γ)

] [
H ±

(Γ)

]−1
, (50)

[
Υ

±
(dn,Γ)

]
:=

1

iρω

[
H ±

(Γ)

] [
D ±

(Γ)

]−1
,

and for the indirect formulation with a combination of sources

[
Υ

±
(nd,Γ)

]
:= iρω

([
S ±

(Γ)

]
+ iη

[
D ±

(Γ)

]) ([
K ±

(Γ)

]
+ iη

[
H ±

(Γ)

])−1
, (51)

[
Υ

±
(dn,Γ)

]
:=

1

iρω

([
K ±

(Γ)

]
+ iη

[
H ±

(Γ)

]) ([
S ±

(Γ)

]
+ iη

[
D ±

(Γ)

])−1
.

The boundary element methods give the discretization of Equations 45 and 46

[
G

(d,±)
(Γ0,Γ)

]
ps = p,

[
G

(n,±)
(Γ0,Γ)

]
vs = p. (52)
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With the help of the boundary operators
[
Υ

±
(dn,Γ)

]
,
[

Υ
±
(nd,Γ)

]
we can find an explicit

representation of the operators
[
G

(d,±)
(Γ0,Γ)

]
,
[
G

(n,±)
(Γ0,Γ)

]
for the direct formulations

[
G

(d,±)
(Γ0,Γ)

]
:= ±

(
iρω

[
S (Γ0,Γ)

] [
Υ

±
(nd,Γ)

]
−

[
D (Γ0,Γ)

])
, (53)

[
G

(n,±)
(Γ0,Γ)

]
:= ±

(
iρω

[
S (Γ0,Γ)

]
−

[
D (Γ0,Γ)

] [
Υ

±
(dn,Γ)

])
.

The indirect formulations with single source will have the expressions

[
G

(d,±)
(Γ0,Γ)

]
:=

[
S (Γ0,Γ)

] [
S ±

(Γ)

]−1
, (54)

[
G

(n,±)
(Γ0,Γ)

]
:= iρω

[
S (Γ0,Γ)

] [
K ±

(Γ)

]−1
,

for the double source
[
G

(d,±)
(Γ0,Γ)

]
:=

[
D (Γ0,Γ)

] [
D ±

(Γ)

]−1
, (55)

[
G

(n,±)
(Γ0,Γ)

]
:= iρω

[
D (Γ0,Γ)

] [
H ±

(Γ)

]−1
,

and for a combination of sources
[
G

(d,±)
(Γ0,Γ)

]
:=

([
S (Γ0,Γ)

]
+ iη

[
D (Γ0,Γ)

]) ([
S ±

(Γ)

]
+ iη

[
H ±

(Γ)

])−1
, (56)

[
G

(n,±)
(Γ0,Γ)

]
:= iρω

([
S (Γ0,Γ)

]
+ iη

[
D (Γ0,Γ)

]) ([
K ±

(Γ)

]
+ iη

[
H ±

(Γ)

])−1
.

4.1.2 Implicit approach

Using the boundary element method for the indirect formulation we obtain the equations for
the single source

[
S (Γ0,Γ)

]
ϕ = p, (57)

[
S ±

(Γ)

]
ϕ = ps,

1

iρω

[
K ±

(Γ)

]
ϕ = vs, (58)

for the double source [
D (Γ0,Γ)

]
ϕ = p, (59)

[
D ±

(Γ)

]
ϕ = ps,

1

iρω

[
H ±

(Γ)

]
ϕ = vs, (60)

for a combination of sources
([

S (Γ0,Γ)

]
+ iη

[
D (Γ0,Γ)

])
ϕ = p, (61)

([
S ±

(Γ)

]
+ iη

[
D ±

(Γ)

])
ϕ = ps,

1

iρω

([
K ±

(Γ)

]
+ iη

[
H ±

(Γ)

])
ϕ = vs, (62)

and for the direct approach the system

[
p
0

]
=

⎡
⎣±iρω

[
S (Γ0,Γ)

]
∓
[
D (Γ0,Γ)

]

±iρω
[
S ±

(Γ)

]
∓

([
D ±

(Γ)

]
± [I]

)
⎤
⎦
[

vs

ps

]
(63)

132 Holography - Different Fields of Application

www.intechopen.com



Numerical Methods for Near-field Acoustic Holography over Arbitrarily Shaped Surfaces 13

4.1.3 Modified approach

Sources

a) b)

Sources

Fig. 5. Boundary setup with source surface for (a) interior NAH and (b) exterior NAH.

One of the major drawbacks of the previous methods is the calculation of the singularity

for the matrices
[
S ±

(Γ)

]
,[
[
D ±

(Γ)

]
],
[
K ±

(Γ)

]
and

[
H ±

(Γ)

]
. A modified approach requires the

definition of a conformal surface Γs as in Fig. 4. We construct the M × Ns complex matrices[
S (Γ0,Γs)

]
,
[
D (Γ0,Γs)

]
,
[
K (Γ0,Γs)

]
and

[
H (Γ0,Γs)

]
in the same way as in previous sections,

but the integration is over Ns points in the surface Γs. Similarly we obtain the N × Ns

complex matrices
[
S (Γ,Γs)

]
,
[
D (Γ,Γs)

]
,
[
K (Γ,Γs)

]
and

[
H (Γ,Γs)

]
that correspond to discrete

approximations of the operators in Equations 9-12.
For the indirect formulation we obtain the equations for the single source

[
S (Γ0,Γs)

]
ϕ = p, (64)

[
S (Γ,Γs)

]
ϕ = ps,

1

iρω

[
K (Γ,Γs)

]
ϕ = vs, (65)

for the double source
[
D (Γ0,Γs)

]
ϕ = p, (66)

[
D (Γ,Γs)

]
ϕ = ps,

1

iρω

[
H (Γ,Γs)

]
ϕ = vs, (67)

and for a combination of sources
([

S (Γ0,Γs)

]
+ iη

[
D (Γ0,Γs)

])
ϕ = p, (68)

([
S (Γ,Γs)

]
+ iη

[
D (Γ,Γs)

])
ϕ = ps,

1

iρω

([
D (Γ,Γs)

]
+ iη

[
H (Γ,Γs)

])
ϕ = vs. (69)

4.2 Equivalent sources method

The equivalent sources method can be understood as an approximation of the boundary
element method modified approach. For �xi, i = 1, ..., M, in Γ0 and �zi, i = 1, ..., Ns in Γs we
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obtain the matrix approximations of
[
S (Γ,Γs)

]
,
[

D (Γ,Γs)

]
,
[
K (Γ,Γs)

]
and

[
H (Γ,Γs)

]
given by

Equation 41-44. There

[
S (Γ0,Γs)

]
q = p, (70)

[
S (Γ,Γs)

]
q = ps,

1

iρω

[
K (Γ,Γs)

]
q = vs, (71)

for the double source
[

D (Γ0,Γs)

]
q = p, (72)

[
D (Γ,Γs)

]
q = ps,

1

iρω

[
H (Γ,Γs)

]
q = vs, (73)

and for a combination of sources
([

S (Γ0,Γs)

]
+ iη

[
D (Γ0,Γs)

])
q = p, (74)

([
S (Γ,Γs)

]
+ iη

[
D (Γ,Γs)

])
q = ps,

1

iρω

([
K (Γ,Γs)

]
+ iη

[
H (Γ,Γs)

])
q = vs. (75)

5. Numerical regularization

For the experimental problem, the exact pressure p is perturbed by measurement errors. We
denote the measured pressure as p̃. If the elements of the perturbation e = p̃−p are Gaussian
(unbiased and uncorrelated) with covariance matrix σ2

0 [I], then E
(
‖e‖2

2

)
= Mσ2

0 , where ‖.‖2

is the 2-norm. It is well known that the linear systems in Equation 52, Equations 57,59,61,63,
Equations 64, 66,68, and Equations 70, 72,74, are ill-posed, i.e., the errors in p̃ will be amplified
on the solutions ps, vs, ϕ or q and in most of the cases the recovery will be useless.
Consider the solution of the generic ill-posed linear matrix system

[A] z = p̃. (76)

Here [A], z, p̃ represent the ill-posed matrix, the solution of the linear system and the
measurement vector of Equations 52,57,59, 61,63, 64, 66, 68, 70, 72, and 74. Let M × N be
the dimension of the matrix [A]. Then z, P̃ are column vectors of N, M entries respectively.
For Equations 52,57,59, and 61, M = M and N = N. For Equation 63, M = 2M and N = 2N.
For Equations 64,66,68, 70, 72, and 74, M = M and N = Ns. The ill-posedness of the matrix
system Equation 76 can be explained using the singular value decomposition (SVD)

[A] = [U][Σ][V]H

where [U] and [V] are unitary matrices of dimension M× M and N× N, respectively, and [V]H

is the conjugate transpose of [V]. [Σ] = is a diagonal matrix with values σ1 ≥ ... ≥ σN∗ ≥ 0
where N∗ = rank ([A]). The values σi are called the singular values.
Denote ui, i = 1, ..., M and vi, i = 1, ..., N, the columns of [U] and [V] respectively. For NAH,
ui, vi will be an approximation to the acoustic field by basic acoustic waves or mode shapes

(see Williams et al. (2000)). In particular when [A] =
[
G

(n,±)
(Γ0,Γ)

]
(as in Equation 52), ui will be

the modes of the measured pressure on Γ0 and vi will be the modes of the normal velocity
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on Γ. These modes are organized in such a way that the first modes are related with the
non-evanescent waves and the last modes will be related with the evanescent waves.
The solution to Equation 76 by conventional methods can be explicitly written as

zLS =
N∗

∑
i=1

(
uH

i p̃
)

σi
vi. (77)

Notice that this solution will include modes ui, vi that are related to both non-evanescent
and evanescent waves. It is well known that the modes related to the evanescent waves will
produce the fine details of the reconstruction zLS, but at the same time will amplify the noise
in p̃ . Regularization methods for the solution to this inverse acoustic problem will need to
include enough of these modes in order to obtain the desired resolution, and at the same time
exclude some of these modes that are totally corrupted with noise.
As explained in Hansen (1998), regularization methods for the solution z of Equation 76 can
be distinguished as direct and iterative.

5.1 Direct regularization

For the direct regularization the solution of Equation 76 is written explicitly with the help of
the SVD as

zα =
N∗

∑
i=1

f α
i

(
uH

i p̃

σi

)
vi, (78)

where α is the regularization parameter and f α
i , i = 1, ..., N∗ are the filter factors (see

Engl et al. (1996); Hansen (1998)). The parameter α will control the inclusion of modes
related to evanescent waves into the solution zα. The topic of direct regularization methods
for linear matrix systems has been extensively studied in the last few decades. The best
known regularization approach is the classical Tikhonov regularization, but there are many
other approaches depending on the particular problem like damped SVD, truncated SVD or
Tikhonov with High-pass filter. These approaches are defined by their respective filters

f (1,αi) =
σ2

i

σ2
i + α2

, f (2,αi) =
σi

σi + α
, f (3,αi) =

{
1, i ≤ α
0, i > α

, f (4,αi) =
σ2

i

σ2
i + α2

(
α2

α2+σ2
i

) .

Tikhonov regularization with a high-pass filter (see Williams (2001)) uses the physical
behavior of the evanescent waves to produce an optimal filter.

5.2 Iterative methods

Iterative regularization methods for the linear system Equation 76 are based on iteration
schemes that access the coefficient matrix [A] only via matrix-vector multiplications with [A]

and [A]H . They produce a sequence of iteration vectors z(l), l = 1, 2, 3, ..., that converge
to �zLS in Equation 78. For ill-posed linear systems these methods produce the phenomena
of “semi-convergence”, i.e., the vector z(l) approaches the optimal regularization solution
after a few iterations l. If the iteration is not stopped, the method converges to the least
squares solution zLS in Equation 78 which is generally totally corrupted by the noisy data
p̃. In this case each iteration vector z(l) can be considered as a regularized solution, with the
iteration number l playing the role of the regularization parameter. These iterative methods
are preferable to direct methods when the matrix [A] is so large that it is too time consuming
or too memory-demanding to work with the SVD of [A]. In the next section we will discuss a
special type of iterative methods named Krylov subspace methods.
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starting vector z(0) = 0

r(0) = p̃

d(0) = [A]H r(0)
for l = 1, 2, ... (≤ min(M, N))

α(l) =
∥∥∥[A]H r(l−1)

∥∥∥
2

2
/
∥∥∥[A]d(l−1)

∥∥∥
2

2
,

z(l) = z(l−1) + α(l)d(l−1),

r(l) = r(l−1) − α(l) [A]d(l−1)

β(l) =
∥∥∥[A]H r(l)

∥∥∥
2

2
/
∥∥∥[A]H r(l−1)

∥∥∥
2

2
,

d(l) = [A]H r(l) + β(l)d(l−1),

Table 3. Algorithm for Conjugate Gradients for the Normal Equations.

initial step
z(0) = 0

β(1)u(1) = p̃, α(1)v(1) = [A]Hu(1)

w(1) = v(1), φ(1) = β(1), ρ(1) = α(1)
for l = 1, 2, ...(≤ N∗)
p = [A]v(l) − α(l)u(l)

for j = 1, ..., (l − 1)

p = p −
(

uH
(j)

p
)

u(j)

}
(Reorthogonalization)

β(l+1)u(l+1) = p

r = [A]Hu(l) − β(l)v(l−1)

for j = 1, ..., (l − 1)

r = r −
(

vH
(j)

r
)

v(j)

}
(Reorthogonalization)

α(l+1)v(l+1) = r(l)

ρ(l) =
√
(ρ(l))

2 + β2
(l+1)

c(l) = ρ(l)/ρ(l) s(l) = β(l+1)/ρ(l)

}
(Givens Rotations)

θ(l+1) = s(l)α(l+1), ρ(l+1) = c(l)α(l+1)

φ(l+1) = c(l)φ(l), φ(l+1) = −s(l)φ(l)

z(l) = z(l−1) +
(

φ(l)

ρ(l)

)
w(l)

w(l+1) = v(l+1) −
(

θ(l+1)

ρ(l)

)
w(l)

Table 4. Algorithm for LSQR.

5.2.1 Krylov subpace iterative methods

This section presents some general features of the Krylov subspace methods, and focuses on
two of these methods: conjugate gradients for the normal equations (CGNE) (see Table 3) and

136 Holography - Different Fields of Application

www.intechopen.com



Numerical Methods for Near-field Acoustic Holography over Arbitrarily Shaped Surfaces 17

least squares QR (LSQR) (see Table 4). Consider the normal equations of Equation 76,

[A]H [A] z = [A]H p̃. (79)

The solution to Equation 79 is equal to the least squares solution zLS given in Equation 78. The
CGNE iterative algorithm (given in Table 3) produces, for each iteration l, the vector z(l) that
approximates the least squares solution zLS to Equation 79. Notice from Table 3, line 6, that

on iteration l = 1 of CGNE, z(1) is formed by the vector [A]H p̃ multiplied by a constant. On

iteration l = 2, z(2) is formed by c1 [A]H p̃ + c2

(
[A]H [A]

)
[A]H p̃, where c1, c2 are constants.

Similarly, for each l, a vector z(l) can be expressed as

z(l) =
l−1

∑
i=0

ci

(
[A]H [A]

)i
[A]H p̃, (80)

where ci, i = 0, ..., l − 1 are constants. In mathematical notation, this combination of vectors

is called the Krylov subspace l, and is denoted as K(l)
(
[A]H p̃, [A]H [A]

)
. We write, instead

of Equation 80, z(l) ∈ K(l)
(
[A]H p̃, [A]H [A]

)
. There are a variety of iterative methods

that, for each iteration l, produce vectors z(l) that belong to the Krylov subspace l (at each
iteration z(l) can be written as Equation 80). For that reason these methods are called Krylov
Subspace methods (see Hanke (1995)). It is not obvious, but it can be shown that in general the
Krylov subspace methods will approximate the least squares solution zLS to Equation 79 as
l increases (see Hanke (1995), Valdivia & Williams (2005)). CGNE is the most representative
Krylov subspace method for the solution to the normal equations in Equation 79. There is
also a wide variety of well known Krylov subspace methods like Landweber or Generalized
Minimal Residual (GMRES) (see Hanke (1995) for more information). When the matrix [A] in
Equation 76 is square (the dimensions M = N) then Krylov subspace methods like GMRES
are more commonly used. These methods are based directly in the solution to Equation 76

where z(l) ∈ K(l) (p̃, [A]) (see Calvetti et al. (2001a;b; 2002)).
Despite the simplicity of the CGNE algorithm, each iterate z(l) satisfies

‖ [A] z(l) − p̃‖2 ≤ ‖ [A]h − p̃‖2, (81)

for all vectors h ∈ K(l)
(
[A]H p̃, [A]H [A]

)
. Another important property of the CGNE

algorithm is that

‖ [A] z(l) − p̃‖2 ≤ ‖ [A] z(l−1) − p̃‖2, ‖z(l−1)‖2 ≤ ‖z(l)‖2. (82)

The proof of these properties is rather technical, so we recommend references Engl et al.
(1996); Hanke (1995) for more details.

5.3 Regularization parameter choice methods

We utilize the following definition for our presentation of parameter choice

z = [A]† p, zα = [A]# p̃

where [A]† =
(
[A]H [A]

)−1
[A]H is the generalized inverse and [A]# is the operator of the

regularization method.
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The most widespread parameter choice method is the discrepancy principle, usually
attributed to Morozov. This method is based on a good estimation of the error ‖e‖ = δe

so we solve the problem
‖ [A] zα − p̃‖2 = δe, (83)

for a parameter α.
There are very successful methods that do not depend on the estimation of noise. Two of the
most successful methods are Generalized Cross-Validation (GCV) and the L-curve analysis.
In GCV we define the function

G(α) = ‖ [A] zα − p̃‖2
2

trace
(
[I]− [A] [A]#

)2
, (84)

and the optimal regularization parameter α is the parameter that is the minimum of the
function G .
In the L-curve analysis we define the parametric curve (x(α), y(α) where

x(α) = log ‖ [A] zα − p̃‖2, y(α) = log ‖zα‖2,

and the optimal parameter will be the point α where the curvature

κ(α) =
x′y′′ − x′′y′

((x′)2 + (y′)2)
3/2

(85)

attains its maximum. Here the differentiation ′ is with respect to α.

5.3.1 Direct regularization

For direct regularization we utilize the following simplifications that come from the SVD, to
obtain

‖ [A] zα − p̃‖2
2 =

N∗

∑
i=1

( f
j,α
i − 1)2|uH

i p̃|2,

trace
(
[I]− [A] [A]#

)
= M −

N∗

∑
i=1

f
j,α
i ,

‖zα‖2
2 =

N∗

∑
i=1

f j,α |uH
i p̃|2
σ2

i

,

where the filter factors f
j,α
i describe the direct regularization methods defined previously. The

GCV and L-curve can be applied directly using the above formulae.
For the Morozov’s discrepancy principle in acoustics it was proposed that the error ‖e‖2 be
estimated in the following manner. We can define the SNR dB level of tolerance T of our
measurements, that under laboratory controlled conditions we can expect T = −40 dB. Define
the decreasing function γi = 20 log10(σi/σ1) and we denote as i′ the index where γi < T, for

i > i′. Then σ0 can be approximated by the mean value of the coefficients |uH
i p̃| for i > i′.

This gives the estimate

‖e‖2 ≈
√

M

N∗ − i′ + 1

N∗

∑
i=i′

|uH
i p̃|. (86)
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5.3.2 Iterative regularization

For iterative methods like CGLS and LSQR if there is a good approximation of δe, then in the
discrepancy principle, the method will iterate while

‖ [A] z(l) − p̃‖2 ≤ δe. (87)

To apply GCV (as suggested in Hansen (1998)), we use the approximation to the function G

G(l) =
‖ [A] z(l) − p̃‖2

2

(M − l)2
. (88)

For L-curve Hansen & O’Leary (1993), we plot the coordinates

x(l) = log
(
‖ [A] z(l) − p̃‖2

)
, y(l) = log

(
‖�z(l)‖2

)
, (89)

which gives a curve that resembles an L-shape. The optimal iteration lopt is the iteration
with coordinates (x(lopt), y(lopt)) which are closer to the point of maximum curvature of the
L-shaped curve.
Finally we discuss the rule designed by Hanke and Raus Hanke & Raus (1996). In the CGNE
algorithm (Table 3) or LSQR algorithm (Table 4), for iteration l we include the sequence

γ(l) =

(
α(l)β(l−1)

α(l−1)
+ 1

)
γ(l−1) −

(
α(l)β(l−1)

α(l−1)

)
γ(l−2) + α(l), (90)

where γ(0) = γ(−1) = 0. The optimal iteration lopt is the iteration for which the function

H(l) = |γ(l)|1/2‖�r(l)‖2, (91)

has its minimum value.

6. Numerical examples

In this section we use numerically generated data to help explain some of the numerical
difficulties involved in the NAH technique. Here Γ, Γ0 and the source surface Γs are spherical
surfaces. Let the acoustic constants in air be denoted as c = 343m/s and ρ = 1.21kg/m3. The
wave-length given in units of m is defined as λ := c/ f .
We consider the problem of recovering the acoustic field on the surface Γ from pressure
measurements on Γ0. The acoustic field is generated at a point �x ∈ R

3 for a dipole using
the formula in Williams (1999)

{
p(�x) = iρωQ {�α · ∇Φ(�x,�z)}
v(�x) = Q ∂

∂�n(�x) {�α · ∇Φ(�x,�z)} (92)

where Q is the source strength with m3/s units, �z is the source location and unit direction
�α = (α1, α2, α3). We denote as p the complex column vector of M entries, where each entry
corresponds to a point p(�xi) where �xi ∈ Γ0. Similarly we denote as ps, vs the complex column
vectors of N entries where each entry corresponds to a point p(�xj), v(�xj), �xj ∈ Γ. We compute
p̃ = p + e where

e =
(

10−D/20‖p‖2/
√

M
)

eu,
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where eu is the column vector with Gaussian entries (with normal distribution) and D the
signal-to-noise ratio (SNR) used to simulate measurement errors.
The Fourier theory suggests that the maximum distance between adjacent points in the
discretization of any of the surfaces Γ0, Γ, Γs for a frequency f needs to be less than λ/4
to avoid any aliasing problem.
We quantify the numerical error in our reconstructions using the relative errors

‖ps − ps
r‖/‖ps‖ × 100% or ‖vs − vs

r‖/‖vs‖ × 100%

where ps
r,vs

r are the pressure and normal velocity fields reconstructed using our NAH schemes
described in previous sections.

6.1 Boundary element methods

For BEM the distance between adjacent points in an element should be less than λ/10 to avoid
aliasing problems and guarantee a proper integration over the element. We consider as Γ the
unit sphere with the following discretization points

�x1 = (0, 0, 1), �x2 = (1, 0, 0), �x3 = (0, 1, 0)

�x4 = (−1, 0, 0), �x5 = (0,−1, 0), �x6 = (0, 0,−1)

and triangular elements

△1 = [�x1, �x2, �x3], △2 = [�x1, �x3, �x4], △3 = [�x1, �x4, �x5], △4 = [�x1, �x5, �x2]

△5 = [�x6, �x3, �x2], △6 = [�x6, �x4, �x3], △7 = [�x6, �x5, �x4], △8 = [�x6, �x2, �x5].

The surface Γ0 will have the same point distribution as Γ, but Γ0 will be a sphere of radius 1.1
m.

6.1.1 Higher order elements

At f = 100 Hz the wavelength λ = 3.43 m, and λ/10 = 34.3 cm. We refine our initial
triangular discretization △1, ...,△8 using the quadratic element scheme shown in Fig. 2a).
The first refinement will produce 18 points and 24 linear triangular elements and 6 quadratic
triangular elements. In Table 5 we show the relative error for the reconstruction of the pressure
p in Γ0 and pressure ps in Γ that results from a dipole with position�z = (0, 0, 0.7) and direction

�α = (1/
√

3, 1/
√

3, 1/
√

3) (given in Equation 92), using the direct formulation

pr = iρω
[
S (Γ0,Γ)

]
ps −

[
D (Γ0,Γ)

]
vs, ps

r = iρω
[
S +

(Γ)

]
ps −

[
D +

(Γ)

]
vs,

for successive refinements. Each refinement reduces the maximum element diameter by half

each time. Notice that the recovery of p utilizes the non-singular matrices
[
S (Γ0,Γ)

]
,
[
D (Γ0,Γ)

]

and the recovery of ps utilizes the singular matrices
[
S +

(Γ)

]
and

[
D +

(Γ)

]
.

In Table 5 the order refers to the ratio between refinement errors. In the theory found in the
book of Atkinson (1997) this ratio is 2h, where h is the order. The theory also states that linear
elements for a smooth surface like a sphere will have h = 1, quadratic elements h = 2 and
cubic elements h = 3. The results in Table 5 show that in practice this order can be higher, and
this has always been the major motivation for the use of higher order elements for accurate
solutions of the forward problem. The use of higher order element will not be a good idea
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linear quadratic
N Non-singular(order) Singular(order) Non-singular(order) Singular(order)

18 57.5929 42.7929 39.6083 30.3930
66 17.6444(3.2641) 12.7465(3.3572) 29.2035(1.3563) 22.1742(1.3707)

258 7.5391(2.3404) 5.6551(2.2540) 4.7439(6.1560) 4.5844(4.8368)
1026 2.0327(3.7089) 1.5385(3.6757) 0.2107(22.5112) 0.8449(5.4260)

Table 5. relative error comparison for linear and quadratic elements

a)

b)

c)

Quadratic 

Cubic 

Fig. 6. Triangular decomposition for quadratic and cubic elements. a) multiple triangle
intersection for vertex nodes, b) simple edge intersection and c) interior triangle point.

for the inverse problem, where increasing the resolution will pay the penalty of reducing the
smoothness of the solution, as we will show.
Let the quantities Wm,j, m = 1, ..., nq,

Wm,j =
∫ 1

0

∫ 1−ξ2

0
Nm(ξ1, ξ2)J(ξ1, ξ2)dξ1dξ2,

for the triangular elements shape functions given in Table 3. These quantities can be thought
as approximations of S i

(m,j)
, Di

(m,j)
, Ki

(m,j)
, Hi

(m,j)
when the field point�xi is far from the element

△j. We can consider Wm,j as an estimate of the column normalized weights (CNW) for the

matrices
[
S (Γ0,Γ)

]
,
[
D (Γ0,Γ)

]
,
[
K (Γ0,Γ)

]
and

[
H (Γ0,Γ)

]
.

The following explanation of the CNW will be given for the matrix
[
S (Γ0,Γ)

]
, but will also

apply to
[
D (Γ0,Γ)

]
,
[
K (Γ0,Γ)

]
and

[
H (Γ0,Γ)

]
. Notice that

[
S (Γ0,Γ)

]
is obtained by a reduction

of the sum S i
(m,j)

and this reduction depends on the triangular elements decomposition used

for the surface Γ. Fig. 6 shows quadratic and cubic triangular elements. Observe that the case
shown in Fig. 6b) is when a point is intersected by six triangles. This means that when the

sum of the quantities S i
(m,j) are reduced into a column of the matrix

[
S (Γ0,Γ)

]
, this point will

be associated with the CNW of 6. Using the same argument for the case in Fig. 6a) a column

of the matrix
[
S (Γ0,Γ)

]
that corresponds to this point will be associated with the CNW of 2.
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Finally, in the case of Fig. 6c), a column of the matrix
[
S (Γ0,Γ)

]
that corresponds to this point

will be associated with the CNW of 1. As a result when cubic elements are used, the columns

of matrix
[
S (Γ0,Γ)

]
associated with interior points like Fig. 6c will have a CNW of 1. Cubic

and quadratic elements for edge points like Fig. 6a) will have a CNW of 2. All elements will
have a CNW of 6 in the vertex points.

a)

b)

c)

Fig. 7. Plot of the first columns of [U] from the SVD of
[
S (Γ0,Γ)

]
at f = 100 Hz. a) linear

elements, b) quadratic elements, and c) cubic elements.

a)

b)

c)

Fig. 8. Plot of the first columns of [U] from the SVD of
[
S (Γ0,Γ)

]
at f = 100 Hz. a) linear

elements, b) quadratic elements, and c) cubic elements.

For the reasons exposed in the paragraph above, linear elements will have a constant CNW

while quadratic and cubic elements will have an imbalance CNW. The SVD of
[
S (Γ0,Γ)

]
at

f = 100 Hz is shows in Fig. 7 and Fig. 8. The imbalance of the CNW for quadratic and cubic
elements will produce “zero” dots in the columns of the matrix [V] as seen in Fig. 8. Notice
that the plots of the columns of [U] show that these modes are smooth.

6.1.2 direct regularization methods in action

It was found in the previous section that the use of higher order elements will have a negative
influence in the inverse problem. For that reason we will just consider discretizations with
linear elements. In this section we will include noise to the measurements and study the effect
of noise in the normal velocity reconstructions. Here Γ0 and Γ are spheres of 1026 points
defined as in the previous subsection, and we use the same dipole data at f = 100 Hz to
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Transfer Function Single Source
SNR LS TK TKH TSVD CGLS LS TK TKH TSVD CGLS

∞ 8.21 8.13 8.18 8.21 8.21 11.94 7.83 11.87 11.94 11.92
40 45.54 11.17 12.29 13.64 12.94 39.92 8.03 12.13 13.80 13.26
30 > 100 15.97 15.45 17.50 16.72 > 100 9.67 13.20 16.23 15.30
20 > 100 26.50 24.10 26.96 25.85 > 100 16.94 18.60 23.94 21.75
10 > 100 42.89 38.36 39.90 40.88 > 100 31.79 30.28 35.18 35.85

Table 6. Relative error for the normal velocity reconstruction using the transfer function and
single source matrix systems with different SNR levels. The reconstruction system is solved
using LS inversion and different regularization methods like Tikhonov (TK), Tikhonov with
High-pass filter (TKH), Truncated SVD (TSVD) and CGLS.

generate the measurements and compare the reconstructions. In Table 6 we show the normal
velocity reconstruction relative errors for 2 different systems of the NAH problem, like the
transfer function in Equation 53 and the single source in Equations 57-58. For each system we
use the conventional LS solution Equation 77 and 4 regularization methods: Tikhonov (TK),
Tikhonov with Highpass (TKH), Truncated SVD (TSVD) and CGLS. In each regularization
method we utilize the optimal regularization parameter, i.e., the regularization parameter
with minimal relative error. Notice that when a lower SNR noise is added, then the errors
dominate in the LS solution. For that reason is important to use regularization methods to
obtain useful reconstructions.
Finally in tables 7 and 8 solve the same systems than Table 6 using the regularization
parameter choice methods discussed in section 5.3: Morozov’s discrepancy principle (MDP),
Generalized Cross Validation (GCV) and L-curve (LC).

SNR Tikhonov Tikhonov with Highpass TSVD
MDP GCV LC MDP GCV LC MDP GCV

∞ 8.5379 8.5379 8.3218 8.2066 10.5212 8.1918 8.2066 11.3525
40 19.6985 19.6985 17.9174 12.4270 13.0708 23.9702 13.7205 13.7475
30 30.5376 30.5376 30.4623 16.0863 17.6388 42.1274 18.5756 18.5133
20 40.6067 40.6067 36.7362 23.9023 25.0874 47.7316 27.0894 27.1740
10 56.3087 56.3087 42.6911 42.9117 39.5407 44.1020 44.7310 41.4242

Table 7. Relative error for the normal velocity reconstruction using the transfer function
matrix system with different regularization methods and Morozov’s Discrepancy Principle
(MDP), Generalized Cross-Validation (GCV) and L-curve (LC) regularization parameter
choice rule.

6.2 BEM and ESM

As shown in the previous subsections, the BEM produces accurate reconstructions in
noise-less examples. When the measurements are contaminated by noise, then this accuracy
is lost and these methods can be compared to the ESM. We utilize the same setup for Γ0

and Γ as in the previous subsection, and we define Γs as a sphere of radius 0.9 m (since
the maximum diameter between triangular elements is about 10 cm) with the same point
distributions as Γ. As in the previous subsections we use the same dipole data at f = 100 Hz to
generate the measurements and compare the reconstructions. In Table 9 we show the normal
velocity reconstruction relative errors for 2 different methods for the NAH problem, the single
source with the modified BEM approach in Equations 64-65, and the the single source with

143Numerical Methods for Near-Field Acoustic Holography over Arbitrarily Shaped Surfaces

www.intechopen.com



24 Will-be-set-by-IN-TECH

SNR Tikhonov Tikhonov with Highpass TSVD
MDP GCV LC MDP GCV LC MDP GCV

∞ 11.7515 11.7515 11.7593 11.9404 12.4217 11.8831 11.9404 12.8008
40 18.6586 18.6586 16.8357 12.8603 13.8236 22.4443 14.0582 14.0609
30 27.7760 27.7760 26.7282 13.8372 16.4718 38.9839 17.1767 17.4955
20 37.9266 37.9266 31.9003 20.4552 22.4737 45.1214 28.7443 26.0270
10 51.3872 51.3872 32.2178 42.4343 34.2850 42.9328 51.8863 40.0332

Table 8. Relative error for the normal velocity reconstruction using the single source matrix
system with different regularization methods and Morozov’s Discrepancy Principle (MDP),
Generalized Cross-Validation (GCV) and L-curve (LC) regularization parameter choice rule.

ESM in Equations 70-71. For each system we use the conventional LS solution Equation 77
and 4 regularization methods: Tikhonov (TK), Tikhonov with Highpass (TKH), Truncated
SVD (TSVD) and CGLS. In each regularization method we utilize the optimal regularization
parameter. Notice that we get similar results than the previous section.

Modified BEM Single Source ESM Single Source
SNR LS TK TKH TSVD CGLS LS TK TKH TSVD CGLS

∞ 0.06 0.24 0.18 0.06 0.32 1.28 1.20 1.27 1.28 1.27
40 28.32 4.85 4.65 5.03 4.87 31.86 4.60 4.37 4.91 4.59
30 92.41 9.59 9.36 10.51 9.92 > 100 8.81 8.32 9.57 8.97
20 > 100 20.06 19.29 21.31 20.24 > 100 18.67 17.33 18.89 17.84
10 > 100 36.65 36.15 39.10 38.07 > 100 33.88 32.84 35.71 34.46

Table 9. Relative error for the normal velocity reconstruction using the modified BEM single
source system and ESM single source matrix systems with different SNR levels. The
reconstruction system is solved using LS inversion and different regularization methods like
Tikhonov (TK), Tikhonov with High-pass filter (TKH), Truncated SVD (TSVD) and CGLS.

SNR Tikhonov Tikhonov with Highpass TSVD
MDP GCV LC MDP GCV LC MDP GCV

∞ 1.2698 1.2698 1.2698 1.2756 1.2739 1.2754 1.2756 1.2791
40 5.2121 5.2121 6.4921 6.4214 4.4152 8.4317 7.0922 5.0159
30 10.3119 10.3119 10.4154 16.6583 8.9566 12.4129 17.5379 9.6286
20 18.9262 18.9262 18.1611 33.9335 17.2431 18.0954 35.3276 19.7559
10 33.2015 33.2015 38.4855 51.4125 31.7035 33.0507 54.2738 35.1825

Table 10. Relative error for the normal velocity reconstruction using ESM single source matrix
system with different regularization methods and Morozov’s Discrepancy Principle (MDP),
Generalized Cross-Validation (GCV) and L-curve (LC) regularization parameter choice rule.

In Table 10 the reconstruction error is given for the ESM single source matrix system as in
Table 9 using the regularization parameter choice methods discussed in section 5.3: Morozov’s
discrepancy principle (MDP), Generalized Cross Validation (GCV) and L-curve (LC). Finally
Fig. 9 shows the semi-convergence phenomena discussed in section 5.2, by plotting the normal
velocity reconstruction relative error vs iteration of the CGLS method for the modified BEM
single source system. Notice that we plot the optimal iteration and the iteration found by the
Hanke-Raus method for different SNR.
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Fig. 9. Normal velocity reconstruction error vs CGLS iteration. a) 40 dB SNR, b) 30 dB SNR,
and c) 10 dB SNR.
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