
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



12 

Multiobjective Optimal Design of an Inverter Fed 
Axial Flux Permanent Magnet In-Wheel Motor 

for Electric Vehicles 

Christophe Versèle, Olivier Deblecker and Jacques Lobry 
Electrical Engineering Department, University of Mons 

Belgium 

1. Introduction  

Battery electric vehicles (EVs) and hybrid EVs are now at the forefront of transportation 
researches in order to reduce the emission of pollutant gasses, especially in the inner cities. 
However, the present performances of EVs are far from being competitive to those of 
traditional combustion engine vehicles, mainly in terms of autonomy. Therefore, 
power-saving and mass-saving are of the upmost importance when designing the entire 
drive system of EVs and their electric motor drives (Tseng & Chen, 1997). 
In conventional EVs, the power system consists of battery, electric motors with drives, 
transmission gears and differentials to the wheels (Yang & Chuang, 2007). The mechanical 
transmission system contributes greatly to the power loss, through the heat dissipation in 
the various components, and to the weight of the vehicle. An interesting alternative to this 
conventional power system is the concept of in-wheel motors or hub-in motors as illustrated 
in Fig.1. In this concept, the motor is directly integrated into the wheel, thus eliminating 
transmission gears and differentials with their associated power loss (Yang et al., 2004). 
Furthermore, the elimination of mechanical components in transmission chains or gears 
reduces the weight of the vehicle. Each of the in-wheel motors has its own voltage supply 
inverter (VSI) as well as its own speed or torque controller. All the in-wheel 
motors are coordinated by a digital vehicular-speed controller with differential gear.  
Due to their robustness, low cost, performances and simplicity of design, induction motors 
(IMs) are often preferred for EVs propulsion. However, in recent years, 
Neodymium-Iron-Bore (NdFeB) axial flux permanent magnet (AFPM) motors have become 
an interesting alternative to IMs due to their compactness, low weight and high torque 
density. Moreover, AFPM motors are pancake-type, fit perfectly the wheel of an automobile 
vehicle and, thus, can be easily and compactly integrated into the wheel. According to these 
properties, axial flux motors seem to be a better choice than more conventional radial flux 
motors for this kind of application. Note that this issue is discussed in (Versèle et al., 2009). 
There are many alternatives for the design of AFPM motors (Sahin & Vandenput, 1999): 
slotted or slotless stator, rotor with interior or surface-mounted permanent magnets (PMs), 
internal or external rotor, numbers of rotors and stators, etc. In this chapter, a double-sided 
motor with internal slotted stator and surface-mounted PMs is proposed as basic design 
choice essentially motivated by the presence of two air gaps doubling the torque. 
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Fig. 1. In-wheel motors drive 

Among the various researches, many authors have published papers about the optimal 
design of in-wheel motors for EVs or wheelchairs (Espanet et al., 1999; Nilssen et al., 2005; 
Tseng & Chen 1997; Yang et al., 2004) as well as about the optimization of AFPM motors 
(Azzouzi et al., 2006; Chun et al., 2007; Cvetkovski & Petkovska, 2002). 
In this chapter, the objective is to optimize simultaneously one of the four in-wheel motors 
of an EV and its own VSI in terms of weight and power loss. Note that the simultaneous 
optimization of the in-wheel motor and its own VSI, rarely discussed in literature, results in 
a system optimized towards the requirements of the EV.  
To do so, a multiobjective optimization (MO) technique based on evolutionary algorithms 
(EAs) is used. EAs are stochastic search techniques that mimic natural evolutionary 
principles to perform search and optimization procedure. Among the several approaches 
to evolutionary optimization, GAs have been chosen and the so-called Elitist 
Nondominated Sorting Genetic Algorithm (NSGA-II) (Deb, 2002) is used to perform the 
optimal design of the in-wheel motor and its own VSI. Note that GAs are chosen because 
they have already proved their efficiency to optimize every kind of electrical machines 
(Skaar & Nielssen, 2003) and power electronics converters (Helali, 2005; Malyna et al., 
2007; Versèle et al., 2010). 
The remainder of this chapter is organized as follows. First, the requirements in terms of 

power and torque of an EV are discussed in Section 2. Then, Section 3 describes the AFPM 

motor and VSI models used in the design procedure. In Section 4, the MO technique based 

on GAs as well as the proposed optimization routine are described. Finally, a design 

example is exposed in Section 5 and the advantages and limitations of the new design 

procedure are discussed in Section 6. 

2. Requirements of an EV 

In order to determine the requirements, in terms of power and torque, of one of the four            

in-wheel motors (considering an EV driven by four in-wheel motors), a computer model of 

an EV traction system is presented in this section. 

The road load on the vehicle consists of three forces (Yang & Chuang, 2007): (1) the rolling 

resistance Fr, (2) the aerodynamic drag force Fa and (3) the climbing force Fc which are 

expressed as (Ehsani et al., 2005): 
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 r r vF f M g  (1) 

  2
0.5a f D wF A C v v   (2) 

  sinc vF M g   (3) 

where fr is the rolling resistance coefficient (which is an empirical coefficient depending on 

the road-tire friction), Mv is the mass of the vehicle, g is the earth gravity acceleration, ρ is 

the air density, Af is the frontal area of the vehicle, CD is the coefficient of aerodynamic 

resistance (that characterizes the shape of the vehicle), v is the vehicle speed, vw is the 

component of the wind speed on the vehicle’s moving direction and α is the road angle 

(deduced from the road slope). According to Newton’s second law, the total tractive effort Ft 

required to reach the desired acceleration a and to overcome the road load is: 

 t v r a cF M a F F F    . (4) 

Once the total tractive effort is computed, the total torque Tt and power Pt required to be 
produced by the four in-wheel motors can be expressed as: 

 t t wheelT F r  (5) 

 t t wheelP T   (6) 

where rwheel is the drive wheels radius and Ωwheel is the rotational wheels speed. 
Based on the specifications of an urban EV (Ehsani et al., 2005), summarized in Table 1, 
and on the above-described EV traction system, the requirements of one in-wheel motor 
can be easily computed. All the results are presented in Table 2. Note that, in addition to 
provide its requirements, the in-wheel motor must also respect some constraints. The 
main constraints are the total weight of each of the four in-wheel motors Mmotor (imposed 
by the maximal authorized “unsprung” wheel weight) and the imposed outer radius Rout 
of the motor (imposed by the rim of the wheel). Those are also specified in Table I and 
Table 2.  
 

Weight Mv 1150 kg 

Max. speed vmax 13.9 m/s (50 km/h) 

Acceleration a 1 m/s² 

Frontal area Af 2.5 m² 

Coefficient of aerodynamic resistance CD 0.32 

Rolling resistance coefficient fr 0.015 

Max. road angle α 5.7° (10%) 

Rim diameter 14’’ 

Number of in-wheel motors 4 

Table 1. Specifications of an EV 

www.intechopen.com



  
Electric Vehicles – Modelling and Simulations 

 

290 

Torque Tt > 107 Nm 

Power Pt > 8.7 kW 

Weight of the motor Mmotor < 43.125 kg 

Table 2. Requirements of one in-wheel motor 

3. Modeling of the AFPM motor and VSI 

In order to evaluate the two objective functions, viz. the weight and the losses of the motor 

and the VSI, and to verify if the constraints are not violated during the design procedure, 

two models are necessary: one for the motor and one for the VSI. It should be noticed that 

analytical models have been chosen in this paper with the aim of reducing the 

computational time. These models permit to evaluate the weight and the losses of the motor 

and the VSI as well as to estimate the torque and power developed by the motor.  

3.1 AFPM motor model 
Analytical design of AFPM motors is usually performed on the average radius Rave of the 

machine (Parviainen et al., 2003) defined by: 

   2ave in outR R R   (7) 

where Rin and Rout are respectively the inner and outer radius of the machine (see Fig. 
2(a)). 
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Fig. 2. (a) Stator and rotor of an AFPM machine and (b) doubled-sided AFPM machine with 

internal slotted stator 

The use of the average radius as a design parameter allows evaluating motor parameters 

and performances based on analytical design methods (Gieras et al., 2004).  

The air gap flux density Bg is calculated using the remanence flux density Br (in the order of 

1.2 T for a NdFeB type PM) and the relative permeability μra of the PM as well as the 

geometrical dimensions of the air gap and the PM (thickness and area) according to: 
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where g and lPM are respectively the air gap thickness and PM thickness (see Fig. 2(b)); Sg 
and SPM are respectively the air gap area and PM area. Finally, in (8), kσPM (<1) is a factor that 
takes into account the leakage flux and kC (>1) is the well-known Carter coefficient.  
On the one hand, in order to obtain an accurate estimation of the air gap flux density and 
torque developed by the motor, the factor kσPM is one of the most essential quantities that 
must be computed. Indeed, the leakage flux has a substantial effect on the flux density 
within the air gap and PMs (Qu & Lipo, 2002) and, therefore, on the torque developed by 
the motor (see (11)). In addition to air gap leakage flux, zigzag leakage flux is another main 
part of the leakage flux. The zigzag leakage flux is the sum of three portions (Qu & Lipo, 
2002): the first part of the zigzag leakage flux is short-circuited by one stator tooth, the 
second part links only part of the windings of a phase and the third part travelling from 
tooth to tooth does not link any coil. Note that, in this paper, an analytical model developed 
by Qu and Lipo (Qu & Lipo, 2002) for the purpose of the design of surface-mounted PM 
machines is used to compute the factor kσPM. This model permits to express this factor in 
terms of the magnetic material properties and dimensions of the machine. It is thus very 
useful during the design stage. 
On the other hand, the main magnetic flux density in the air gap decreases under each slot 
opening due to the increase in reluctance. The Carter coefficient permits to take into account 
this change in magnetic flux density caused by slot openings defining a fictitious air gap 
greater than the physical one. It can be computed as follows (Gieras et al., 2004): 

 C

t
k

t g



 (9) 

where t is the average slot pitch (see Fig. 2(b)) and γ is defined by: 

 

2
4

arctan ln 1
2 2 2

b b b

g g g




                

 (10) 

where b is the width of slot opening (see Fig. 2(b)). 
Assuming sinusoidal waveform for the air gap flux density and the phase current, the 
average electromagnetic torque T of a double-sided AFPM motor can be calculated by: 

 3 32 ( )g in out d dT B A R k k   (11) 

where Ain is the linear current density on the inner radius of the machine and kd is the ratio 
between inner and outer radii of the rotor disk. It should be noticed that, for a given outer 
radius and magnetic and electric loading, the factor kd is very important to determine the 
maximum torque developed by the motor. So, this factor will be one of the optimization 
variables. Figure 3 reports the per-unit (p.u.) electromagnetic torque with respect to this 
factor kd. One can remark that the maximum value of the torque is reached for kd ≈ 0.58. 
The electromagnetic power P can easily be calculated by the product of torque and 
rotational speed Ωr of the motor according to: 
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 rP T  . (12) 

The double-sided AFPM motor losses are the sum of the stator winding losses, the stator 
and rotor cores losses, the PMs losses and the mechanical losses, whereas its weight is the 
sum of the stator and the two rotors weights, the stator winding weight and the PMs weight. 
Note that the computation of those different parts of the two objective functions can easily 
be found elsewhere (Gieras et al., 2004) and, so, it is not described in this chapter.  
Finally, it should also be pointed out that some electrical parameters of the AFPM motor, 
such as the stator resistance (Rs) and the direct (Ld) and quadrature (Lq) axes inductances,  
can be calculated once the motor has been design using the above-described fundamental 
design equations. 
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Fig. 3. Per-unit electromagnetic toque Tp.u as a function of the factor kd 

3.2 AFPM motor model validation 
In order to validate the analytical AFPM motor model presented in this chapter, analytical 
and experimental results are compared. To do so, the proposed model is applied to a                  
5.5 kW, 4000 rpm AFPM motor. The calculated motor parameters are then compared with 
parameters obtained by classical tests (test at dc level, no-load test, etc.) performed on an 
existing AFPM pump motor. All the results are reported in Table 3. As can be seen, very 
small differences are obtained between the analytical and experimental results, whatever the 
parameters. According to this validation method, one can conclude that the proposed 
analytical design process gives reasonable results in this particular case and can be used in 
the optimization procedure of the in-wheel motor of an EV. 
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Parameters Analytical results Experimental results 

Rs (dc-resistance) 0.45 Ω 0.423 Ω 

Ld 0,129 H 0,117 H 

Lq 0,127 H 0,117 H 

T 13.97 Nm 15.04 Nm 

P 5.85 kW 5.5 kW 

Table 3. Analytical and experimental results for the 5.5 kW, 4000 rpm AFPM pump motor 

3.3 VSI model 
The total loss of the semiconductor devices (IGBTs and diodes) of the VSI (employing 
sinusoidal pulse-width-modulation) consists of two parts: the on-state losses and the 
switching losses. The on-state losses of the devices are calculated from their average Iave and 
rms Irms currents by the well-known expression (Semikron, 2010): 

 2
on th ave rmsP V I r I     (13) 

where Vth represents the threshold voltage and r the on-state resistance, both taken from the 
manufacturer’s data sheets. 
The switching losses are, as for them, calculated by the following formula (Semikron, 
2010): 

  
, ,j C CE

sw s turn on turn off
T I V

P f E E     (14) 

where Eturn-on and Eturn-off  are the energies dissipated during the transitions, both taken from 
the manufacturer’s data sheets, at given junction temperature Tj, on-state collector current IC 
and blocking voltage VCE. Note that the average and rms values of the current used in (13) 
can easily be computed. 
Based on the total loss of the semiconductor devices, the heatsink can be designed in order 
to limit the junction temperature to a predefined temperature (typically in the order of 
125 °C). This temperature can be estimated from the ambient temperature Ta, the thermal 
resistances (junction-case: Rth,jc, case-heatsink: Rth,ch and heatsink-ambient: Rth,ha) and the total 
loss Psc of all the semiconductor devices by: 

  , , ,j a th jc th ch th ha scT T R R R P     . (15) 

From (15), the thermal resistance of the heatsink Rth,ha needed to limit the junction 
temperature to the predefined value can be computed and, then, the heatsink can be 
selected from the manufacturer’s data sheets. 
The total weight of the VSI is the sum of the weight of all the semiconductor devices and the 
weight of the heatsink. 

4. Optimization routine based on the NSGA-II 

As mentioned previously, in this contribution, a MO technique based on EAs is used. Those 
are stochastic search techniques that mimic natural evolutionary principles to perform the 
search and optimization procedures (Deb, 2002). 

www.intechopen.com



  
Electric Vehicles – Modelling and Simulations 

 

294 

GAs have been chosen because they overcome the traditional search and optimization 
methods (such as gradient-based methods) in solving engineering design optimization 
problems (Deb & Goyal, 1997). Indeed, there are, at least, two difficulties in using traditional 
optimization algorithms to solve such problems. Firstly, each traditional optimization 
algorithm is specialized to solve a particular type of problems and, therefore, may not be 
suited to a different type. As this is not the case with the GAs, no particular difficulties have 
been met to adapt the considered GA (viz. the NSGA-II, see below) to the multiobjective 
optimal design of the AFPM motor and its VSI. Only the models of these converters had to 
be used in combination with the GA in order to evaluate the values of the considered 
objectives. Secondly, most of the traditional methods are designed to work only on 
continuous variables. However in engineering designs, some variables are restricted to take 
discrete values only. In this chapter, this requirement arises, e.g., for the choice of the 
number of poles pairs. 
Mixed-variable optimization problems are difficult to tackle because they pose the problems 
of the combinatorial and continuous optimization problems (Socha, 2008). For this reason, 
there are not many dedicated algorithms in literature and most of the approaches used in 
these algorithms relax the constraints of the problem. The most popular approach consists in 
relaxing the requirements for the discrete variables which are assumed to be continuous 
during the optimization process (Deb & Goyal, 1997). This type of approach is, often, 
referred as continuous relaxation approach.  
Apart from the relaxation-based approach, there are methods proposed in literature that are 
able to natively handle mixed-variable optimization problems. However, only a few such 
methods have been proposed. Among them, the Genetic Adaptive Search is based on the 
fact that there are versions of the GAs dedicated to discrete variables and other versions 
dedicated to continuous variables. So, the GAs can be easily extended to natively handling 
both continuous and discrete variables. Such an approach has been proposed in (Deb & 
Goyal, 1997) and will be used in this chapter as it has already proved to be efficient to solve 
engineering problems (see, e.g. (Deb & Goyal, 1997)). Pattern Search Method (Audet & 
Dennis, 2001), Mixed Bayesian Optimization Algorithms (Ocenasek & Schwarz, 2002) and 
Ant Colony optimization (Socha, 2008) are other methods which permit to tackle 
mixed-variable problems. 
Among the several MO techniques using GAs (see, e.g., (Deb, 2007)), the so-called NSGA-II 
(Deb et al., 2002), described in the next Section, will be used to perform the optimal design. 

4.1 NSGA-II 
NSGA-II is a recent and efficient multiobjective EA using an elitist approach (Deb, 2002). It 
relies on two main notions: nondominated ranking and crowding distance. Nondominated 
ranking is a way to sort individuals in nondominated fronts whereas crowding distance is a 
parameter that permits to preserve diversity among solutions of the same nondominated front. 
The procedure of the NSGA-II is shown in Fig. 4 and is as follows (Deb, 2002). First, a 
combined population Rt (of size 2·N) of the parent Pt and offsprings Qt populations (each of 
size N) is formed. Then, the population Rt is sorted in nondominated fronts. Now, the 
solutions belonging to the best nondominated set, i.e. F1, are of best solutions in the 
combined population and must be emphasized more than any other solution. If the size of 
F1 is smaller than N, all members of F1 are inserted in the new population Pt+1. Then, the 
remaining population of Pt+1 is chosen from subsequent nondominated fronts in order of 
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their ranking. Thus, the solutions of F2 are chosen next, followed by solutions from F3. 
However, as shown in Fig. 4, not all the solutions from F3 can be inserted in population Pt+1. 
Indeed, the number of empty slots of Pt+1 is smaller than the number of solutions belonging 
to F3. In order to choose which ones will be selected, these solutions are sorted according to 
their crowding distance (in descending order) and, then, the number of best of them needed 
to fill the empty slots of Pt+1 are inserted in this new population. The created population Pt+1 
is then used for selection, crossover and mutation (see below) to create a new population 
Qt+1, and so on for the next generations. 
 

 

Fig. 4. NSGA-II procedure (Deb, 2002) 

NSGA-II has been implemented in Matlab with real and binary coding schemes. So, a 

discrete variable is coded in a binary string whereas a continuous variable is coded directly. 

Such coding schemes are used in this paper because the considered optimization variables 

(see Table 4 in Section 5) belong to the two categories.  

These coding schemes allow a natural way to code different optimization variables, which is 

not possible with traditional optimization methods. Moreover, the real coded scheme for the 

continuous variables eliminates the difficulties (Hamming cliff problem and difficulty to 

achieve arbitrary precision) of coding such variables with a binary scheme. 

So, e.g., with the coding scheme used in this paper, the structure of the chromosome 

(composed by the seven considered optimization variables) of the solution #3 (see Table 5 in 

Section 5) is as follows: 
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There are three fundamental operations used in GAs: selection, crossover and mutation. The 
primary objective of the selection operator is to make duplicate of good solutions and 
eliminate bad solutions in a population, in keeping the population size constant. To do so, a 
tournament selection (Deb, 2002) based on nondominated rank and crowding distance of 
each individual is used. Then, the selected individuals generate offsprings from crossover 
and mutation operators. To cross and to mutate the real coded variables the Simulated 
Binary Crossover and Polynomial Mutation operators (Deb & Goyal, 1997) are used in this 
chapter. The single-point crossover (Deb, 2002) is, as for it, used to cross the discrete 
optimization variables. Note that to mutate this type of variables, a random bit of their 
string is simply changed from ‘1’ to ‘0’ or vice versa. 
Finally, the constraints must be taken into account. Several ways exist to handle constraints 
in EAs. The easiest way to take them into account in NSGA-II is to replace the 
non-dominated ranking procedure by a constrained non-dominated ranking procedure as 
suggested by its authors elsewhere (see, e.g., (Deb, 2002)). The effect of using this 
constrained-domination principle is that any feasible solution has a better nondominated 
rank than any infeasible solution.  
It is important to emphasize that the GA must be properly configured. The size of the 
population is one of the important parameters of the GA as well as the termination criterion. 
In this contribution, the size of the population N is taken equal to 100. It is important to note 
that, on the one hand, N should be large enough to find out small details of the Pareto front 
whereas, on the other hand, N should not be too large to avoid long time optimization. The 
termination criterion consists in a pre-defined number of generations which is here also 
fixed to 400. Finally, the crossover probability and the mutation probability are respectively 
chosen to be 0.85 and 0.015 as typically suggested in literature (Deb, 2002).  

4.2 Design procedure 
The overall design procedure, presented in Fig. 5, has been implemented in the Matlab 
environment. First, a random initial population is generated. Then, the objective functions, 
i.e. the total weight and the total losses of the VSI-fed AFPM in-wheel motor, are evaluated 
based on the initial population and on the above-described models (see Section 3). A 
convergence test is then performed to check for a termination criterion. If this criterion is not 
satisfied, the reproduction process using genetic operations starts. A new population is 
generated and the previous steps are repeated until the termination criterion is satisfied. 
Otherwise, the Pareto front, i.e. the nondominated solutions within the entire search space, 
is plotted and the optimization procedure ends.  

5. Design example 

In order to illustrate the design procedure, a VSI-fed AFPM in-wheel motor with the 
specifications given in Tables 1 and 2 is designed in this Section. 
The lower and upper bounds of the seven considered optimization variables, viz. the factor kd, 
the current density in the conductors J, the air gap thickness g, the PMs thickness lPM, the 
number of poles pairs p, the number of slots q and the switching frequency fs, are specified in 
Table 4. Note that the variables p and q are discrete ones whereas the others are continuous. 
It should also be recalled that the in-wheel motor must provide the requirements of the EV 
as well as respect some constraints. The main constraints are the total weight Mmotor of each 
of the four in-wheel motor and the imposed outer radius of the motor Rout. Note that these 
constraints have already been specified in Tables 1 and 2. 
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Fig. 5. Flowchart of the design procedure using GAs 

 

Variables Bounds Type 

kd [0.5 ; 0.9] Continuous 

J [1 ; 6] A/mm² Continuous 

lPM [1 ; 20] mm Continuous 

g [1 ; 5] mm Continuous 

fs [1 ; 10] kHz Continuous 

p [1 ; 15] Discrete 

q [50 ; 255] Discrete 

Table 4. Optimization variables 

The results, i.e. the Pareto front, are presented in Fig. 6. Each point of this Pareto front 
represents an optimal VSI-fed AFPM in-wheel motor that respects all the constraints. 
Moreover, the values of the optimization variables corresponding to three particular 
solutions of the front are detailed in Table 5. 
For a practical design, one particular solution of the Pareto front should be chosen. On the 
one hand, the choice of this particular solution can be let to the designer who can choose a 
posteriori which solution best fits the under consideration application or which objective 
function to promote. Moreover, in industrial framework, this set of solutions can be 
confronted with additional criteria or engineer’s know-how not included in models. 
On the other hand, the designer can also use some dedicated techniques to choose a 
particular solution of the Pareto front. These can be categorized into two types (Deb, 2002): 
post-optimal techniques and optimization-level techniques. 
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Fig. 6. Pareto front 

 

 #1 #2 #3 

kd 0.89 0.89 0.88 

J [A/mm²] 4.9 5.5 4.9 

lPM [mm] 5 5 5 

g [mm] 1.9 3.2 1 

fs [Hz] 1972 2110 1410 

p 14 15 10 

q 222 255 158 

Tt [Nm] 207 208 207 

Pt [kW] 8.72 8.77 8.72 

MMotor [kg] 17.2 15.1 26 

Table 5. Details of three particular solutions 

In the first approach, the solutions obtained from the optimization technique are analyzed to 
choose a particular solution whereas, in the second approach, the optimization technique is 
directed towards a preferred region of the Pareto front. Therefore, only the techniques 
belonging to the first category are helpful in this chapter. Among these techniques, the 
Compromise Programming Approach (CPA) (Yu, 1973) is often used in multiobjective 
problems. The CPA picks a solution which is minimally located from a given reference point 
(e.g. the ideal point which is a nonexistent solution composed with the minimum value of 
the two objectives). Note that other techniques, such as the Marginal Rate of Substitution 
Approach (Miettinen, 1999), the Pseudo-Weight Vector Approach (Deb, 2002) or a method 
based on a sensitivity analysis (Avila et al., 2006), can also be used. 
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For instance, using the CPA, the solution #3 of the Pareto front is minimally located from 
the ideal point. This solution can therefore be considered for a practical design and 
corresponds, moreover, to a good trade-off between the two objectives. 
The evolution of the percentage of individuals belonging to the first nondominated front 
during the optimization procedure is shown in Fig. 7. From this figure, one can easily 
conclude that all the individuals are located in the first front at the end of this procedure. 
Moreover, it can also be observed that new nondominated solutions have been found after 
approximately 150 generations. 
From Fig. 8, it can be conclude that all the individuals respect all the constraints since the 
fourth generation. 
In order to study more in details the evolution of the optimization variables, their values 
have been plotted along the Pareto front (as a function of the weight) in Fig. 9 to Fig. 15. 
From these figures, it can be concluded that some of them have converged to an optimal 
value.  
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Fig. 7. Evolution of the percentage of individuals belonging to the first nondominated front 
during the optimization procedure 
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Fig. 8. Evolution of the percentage of individuals violating the constraints during the 
optimization procedure 
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Fig. 9. Evolution of kd along the Pareto front 
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Fig. 10. Evolution of J along the Pareto front 
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Fig. 11. Evolution of lPM along the Pareto front 
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Fig. 12. Evolution of g along the Pareto front 
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Fig. 13. Evolution of fs along the Pareto front 
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Fig. 14. Evolution of p along the Pareto front 
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Fig. 15. Evolution of q along the Pareto front 

First, the optimal value of the factor kd is around 0.90 (see Fig. 9). Based on the Fig. 3, one can 

expect that this value would have converged to 0.58. However, this result is not surprising. 

Indeed, it has been show elsewhere (Azzouzi et al., 2006) that the maximum value of the 

torque to weight ratio is obtained for values of kd around 0.85 and, in this chapter, the 

weight must be minimized.  

Second, the optimal value of J is around 5 A/mm2 as shown in Fig. 10 and, third, lPM has 

converged to the optimal value of 5 mm (see Fig. 11). 

In order to further analyze the optimization results, a study of the correlation level between 

the optimization variables and the objective functions is performed. The results are 

graphically represented in Fig. 16 and discussed below. Note that a positive value of the 

correlation factor indicates that the objective function grows when the optimization variable 

grows whereas a negative value indicates that the objective function reduces when the 

optimization variable grows. 

From Fig. 16, it can be concluded that the optimization variables which have not converged 

to an optimal value, viz. g, fs, p and q, have a significant influence on the two objective 

functions. Indeed, the correlation coefficient between each variable and each objective are, in 

absolute value, equal or greater than 0.8. The correlations are therefore strong. The fact that 

the correlation factors between kd or J and the objective value are smaller is due to the fact 

that these variables have converged around an optimal value. Moreover, the fact that lPM has 

converged to an optimal value leads to a correlation coefficient close to zero.  

One can easily conclude that the variables p and fs have the bigger influence on the weight 

(correlation coefficients equal to -0.94) whereas the variable g has the greater influence on 

the power loss (correlation coefficient equal to 0.98). Figure 16 also justifies the use of a MO 

technique. Indeed, the two objective functions are conflicting with respect to the 

optimization variables (except for lPM) since the correlation levels are of opposite signs. 

Finally, the distribution of the weight and the power loss among the AFPM motor and the 

VSI for the three particular solutions presented in Table 5 are respectively shown in Fig. 17 

and Fig. 18 respectively. Figures 19 and 20 present, as for them, the distribution of these two 

objectives among the several parts of the motor (stator, rotor, PMs and windings).  
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Fig. 16. Correlation between the optimization variables and the objective functions 
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Fig. 17. Distribution of the weight among the AFPM motor and the VSI 
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Figure 17 shows that the major contributor in weight is the AFPM motor. Indeed, it 
represents at least 75% of the total weight. Instead, the power loss is, as for it, more equally 
distributed among the two parts. In fact, approximately 60% of the loss is due to the 
motor (see Fig. 18). 
Figure 19 shows that the PMs are the minor contributor in terms of weight and represent 
more or less 5% to 10% of the total weight whatever the solution. One can also conclude that 
the rotor is the heavy part of the AFPM motor.  
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Fig. 18. Distribution of the power loss among the AFPM motor and the VSI 
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Fig. 19. Distribution of the weight among the several parts of the AFPM motor 
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Fig. 20. Distribution of the power loss among the several parts of the AFPM motor 

In solution #2, the stator and rotor weights largely dominate the winding and PMs weights 

compared with the other solutions. This can be explained regarding the value of the flux 

density in the air gap. Indeed, this value is the greatest among the three solutions (in the 

order of 0.90 T). So, the stator and rotor must be thick enough to avoid saturation of steel. As 

these thicknesses are computed using the air gap flux density, the stator and rotor of the 

solution #2 are thicker and, therefore, heavier. Moreover, the windings of the solution #2 are 

lighter than the windings of the two other solutions since the frequency is greater. Indeed, 

according to Faraday’s law (Mohan et al., 2003), the windings turns necessary to obtain a 

same electromotive force is less than in the other solutions which, therefore, yields lighter 

windings realization. 

As can be easily seen from Fig. 20, the mechanical and, more especially, the winding losses 

are the major contributors in terms of power loss. The fact that the winding losses are so 

high can be explained by the medium frequency effects (skin and proximity effects). 

6. Advantages and limitations of the design procedure 

The design procedure proposed in this paper presents several advantages but also some 

limitations.  

A first advantage of this design procedure is that it is multiobjective. So, several conflicting 

objectives, often present in engineering design problems, can be optimized simultaneously. 

A second advantage is the number of solutions considered in a small time. Indeed, the 

optimization procedure compares a large number of solutions (in the order of several 

thousands) to retain only the best in a time of approximately 120 s (for 400 generations of 

100 individuals with a Pentium (R) D CPU 3.40 GHz, 3 Go RAM). 

A third advantage is the simultaneous optimization of the in-wheel motor and its own VSI. 

Indeed, it results in a system optimized towards the requirements of the EV.  
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At last, the design procedure has the major advantage that a set of optimal 
solutions – instead of a single one – is proposed to the designer who can choose a posteriori 
which objective function to promote and, then, select a particular VSI-fed in-wheel motor. 
So, a degree of freedom is still available at the end of the optimization procedure. Moreover, 
in industrial framework, this set of solutions can be confronted with additional criteria or 
engineer’s know-how not included in models. 
The main limitation of the design procedure is related to the analytical modeling of the 
AFPM motor. Indeed, an analytical modeling of such motor can lead to a lack of accuracy in 
some cases, e.g. with a PM shape of higher complexity when the magnet occupation ratio 
varies along the radius of the rotor (Parviaien et al., 2003). This lack of accuracy arises from 
the reduction of the 3D design problem to a 2D design problem performed on the average 
radius of the machine.  
It should also be noticed that the most accurate method to predict the performances of an 
AFPM motor is a 3D finite element analysis (FEA) but it is often too much time consuming 
to be included in an optimal design procedure in which a large numbers of solutions have to 
be evaluated. Therefore, the optimal design procedure presented in this contribution is very 
useful during the first stages of the design, although more sophisticated methods, such as 
2D or 3D FEA, are required in more advanced phases of the design. 
Note that, in this chapter, the magnet occupation ratio has been considered as constant 
along the radius of the rotor and, therefore, this limitation is not taken into account in the 
design of the AFPM motor. 

7. Conclusion 

This chapter has addressed the problem of MO design of a VSI-fed AFPM synchronous 
motor using GAs and a new design procedure has been proposed. The weight and the losses 
of both the motor and the VSI have been chosen as objective functions whereas the factor kd, 
the current density in the conductors, the air gap thickness, the PMs thickness, the number 
of poles pairs, the number of slots and the switching frequency have been chosen as 
optimization variables. Finally, the design procedure has been illustrated by the design of a 
VSI-fed AFPM in-wheel motor for an urban EV and some conclusions have been drawn.  
Finally, recall that, although many authors have published papers about the optimal design 
of in-wheel motors for EVs, the simultaneous optimization of the in-wheel motor and its 
own VSI has, to the authors’ knowledge, rarely been discussed in literature. 
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