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Concurrent Subspace  
Optimization for Aircraft System Design 

Ke-shi Zhang 
Northwestern Polytechnical University 

China 

1. Introduction 

Concurrent Subspace Optimization (CSSO) is one of the main decomposition approaches in 
Multidisciplinary Design Optimization (MDO). It supports a collaborative and distributed 
multidisciplinary design optimization environment among different disciplinary groups. 
Sobieski first proposed the subspace optimization method (Sobieszczanski-Sobieski, 1988), 
and Sobieski’s blueprint was further developed by Bloebaum and subsequently named the 
concurrent subspace optimization method (Bolebaum, 1991). Renaud developed a second-
order variant of the Global Sensitivity Equation (GSE) method and an alternative potential 
coordination procedure for the CSSO method (Renaud & Gabriele, 1993a, 1993b, 1994). 
Sellar proposed to replace GSE with the neutral-network based response surface method 
(Sellar et al., 1996). 
The CSSO method allows a complex couple system to be decomposed into smaller, 
temporarily decoupled subsystems, each corresponding to different disciplines (subspaces). 
Each subspace optimization minimizes the system objective function subject to its own 
constraints as well as constraints contributed from the other subspaces. Each subspace 
optimization use its own high-fidelity analysis tools as well as given surrogate models or 
low-fidelity analysis tool provided by the other subspaces for analysis. Subsequently, the 
subspace optimizations can be performed concurrently. The system-level coordination 
optimization will be implemented completely based on approximation analysis tools. The 
subspace optimizations and the coordination optimization will be alternatively performed 
until results are finally decided by the coordination optimization. Therefore, the CSSO 
method is particularly suited to applications in a design organization where tasks are 
distributed among different design groups.  
The CSSO method was developed initially for a single objective MDO problem. However, 
most MDO problems are essentially multi-objective. In recent years more work (Aute & 
Azarm, 2006; Huang & Bloebaum, 2004; McAllister et al., 2000; McAllister et al., 2004; Orr & 
Hajela, 2005; Parashar & Bloebaum, 2006; Tappeta & Renaud, 1997; Zhang et al., 2008) has 
focused on extending existing MDO method to handle such multi-objective MDO problems, 
by means of integrating a multi-objective optimization method within the MDO framework. 
This kind of method can be called a multi-objective MDO method. 
It is an effective way to integrate multi-objective optimization method within the CSSO 
framework to develop the multi-objective MDO method. CSSO was extended to solve multi-
objective MDO problems, including the Multi-objective Pareto CSSO (MOPCSSO) method, 
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the Multi-objective Range CSSO (MORCSSO) method, the Multi-objective Target CSSO 
(MOTCSSO) method, the Multi-objective Genetic Algorithm CSSO (MOGACSSO) method 
and Adaptive Weighted Sum based CSSO (AWSCSSO). In MOPCSSO the Constraint 
method is integrated within CSSO framework (Huang & Bloebaum, 2007). In MORCSSO 
and MOTCSSO the concept of designer preference is introduced (Huang & Bloebaum, 2004). 
In MOGACSSO the Genetic Algorithm is combined with CSSO and in the hope of 
improving the computational efficiency (Parashar & Bloebaum, 2006). In AWSCSSO the 
Adaptive Weighted Sum method is introduced into CSSO (Zhang et al., 2008). 

2. General description of MDO problem for aircraft system design 

Aircraft is a complex engineering system in which multiple disciplines (such as 

aerodynamics, structure, thrust, noise, electronics, cost, et al.) are included. Actually 

different disciplines are not independent of each other. For example, deformation of a wing 

structure affects the aerodynamic lift distribution on the wing and in turn a new 

deformation is caused, which is the well-known aeroelastic problem. The designers of each 

discipline cannot work without consideration of other disciplines, which makes the aircraft 

system design become complicated. Especially in the aircraft preliminary design, the 

specialists of different disciplines have to often work together and discuss with each other to 

decide many design variables so that higher performance can be achieved. Aircraft system 

design is a typical multidisciplinary design problem. 

In recent years, industry has paid more attention to improving efficiency in the design of 

complex systems, such as aircraft. MDO has emerged as an engineering discipline that 

focuses on the development of new design and optimization strategies for the complex 

systems. MDO researchers strive to reduce the time and cost associated with the coupling 

interaction among several disciplines. “Decomposition approaches provide many 

advantages for the solution of complex MDO problems, as they enable a partitioning of a 

large coupled problem into smaller, more manageable sub-problems. The resulting 

computational benefits, besides the obvious one associated with the solution of smaller 

problems, include creating a potential distributed processing environment. The primary 

benefit, however, pertains to the savings in personal hours, because groups are no longer 

required to wait around for other groups in the process to complete their design 

tasks.”(Huang & Bloebaum, 2007)  

Mathematically for minimization problems the general form for MDO can be represented as 
follows: 
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1 N

1 1 1 N

1 2 NV

Min , , ,
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
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 




F X Y Y

G X,Y Y 0

Y X,Y Y Y Y  (1) 

Where F  is the objective function vector that is composed of one or more objectives, iG is 

the constraint vector provided by subsystem i , iY is the coupling vector of subsystem i , and 

X is the design vector. The objective function and the constraints can be expressed by the 
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function of X and iY . In this chapter the MDO problem expressed in Eq. (1) will be taken as 

the example to discuss the CSSO methods. 

3. Different frameworks for concurrent subspace optimization 

Global Sensitivity Equation based CSSO and Response Surface based CSSO will be 
discussed in this chapter as the typical CSSO methods. 

3.1 Global Sensitivity Equation based CSSO (GSECSSO) 

GSECSSO is a bi-level optimization method. As an example, the GSECSSO method for a 
problem with subsystem 1 and 2 (Eq. (1): one objective and two coupled subsystems) is 
stated in following paragraphs.  
The mathematical models of subspace optimizations of GSECSSO can be written as 

 
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f
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 (2) 

Where Xi, Yi and Ci are design variable vector, state variable vector and cumulative 

constraint of subspace i, respectively. 0
iC  is the value of Ci at the starting point X0. The value 

with symbol ‘^’ above is a linearly approximated one. p
kr , p

kt  and ps are responsibility, 

trade-off and switch coefficients, respectively. In the first iteration, the responsibility 

coefficients are initialized using the sensitivities of cumulative constraints with respect to 

design variables (Bolebaum, 1991) and the switch coefficients are set to one. In the following 

iterations the coordination coefficients are decided by the coordination optimizations. 
By means of Kresselmeier-Steinhauser (KS) function (Kreisselmeier & Steinhauser, 1979), the 
cumulative constraint, Ci, which represents the constraints of subsystem i, is expressed as 

    
m

max max
1

1
ln expi i ik i

k

C g g g
 

 
    

 
 X  (3) 

Where  1 2 m, , ,i i i ig g g  G  and   is a positive user-prescribed value.  
Global Sensitivity Equation (GSE) (Sobieszczanski-Sobieski, 1990) is a method for 
computing sensitivity derivatives of state (output) variables with respect to independent 
(input) variables for complex, internally coupled systems, while avoiding the cost and 
inaccuracy of finite differencing performed on the entire system analysis. By using GSE 
expressed below, the global sensitivities are calculated, by 
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 (4) 
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The responsibility coefficients divide the responsibility of satisfying constraints among all 

participating subspaces. p
kr  represents the responsibility allocated to the k-th subspace for 

satisfying the p-th cumulative constraint. In the first iteration, they are initialized with the 

sensitivities of cumulative constraints with respect to design variables (Bolebaum, 1991). The 

trade-off coefficients allow for the violation of a constraint in one subspace optimization in 

order to gain a large reduction of the objective function. The switch coefficients enable or 

disable the responsibility coefficients and the trade-off coefficients decided by whether the 

cumulative constraints are satisfied. 
The mathematical model of coordination optimization of GSECSSO can be written as 
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2 2 2 2
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2 2

1 1
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Where *F is the objective value at *X  ( *X  is the value of design variable vector after 

subspace optimizations). 
*

p
k

dF

dr
X X

 and 
*

p
k

dF

dt
X X

 are the optimum sensitivity of F  with 

respect to responsibility and trade-off coefficients. 
 
 

 

Fig. 1. Flowchart of GSECSSO method 
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The flowchart of GSECSSO is shown in Fig. 1. The original problem is decomposed and the 
mathematical models of subspace optimizations and coordination optimization are 
established as Eq. (2) and Eq. (5). Based on the initial design X0, the system analysis is 
performed and the GSE is used to find the system derivatives. At the first iteration, the design 
variables are allocated to the appropriate subspaces, as well as the responsibility, trade-off and 
switch coefficients, r, t, s, are initialized. Subsequently, each subspace optimization minimizes 
the system objective function subject to its own constraints as well as constraints contributed 
from the other subspaces. The subspace optimizations are performed concurrently with 
respect to a disjoint subset of design variables. The updated design vector is the simple 
combination of local optimal design sub-vectors. After that the global sensitivities and 
optimum sensitivities are updated. Then the system-level coordination optimization is 
implemented to optimize coordination parameters.  
In GSECSSO, the subspace optimizations are implemented concurrently with respect to a 
disjoint subset of design variables, which substantially reduces the complexity of the 
optimization problem within each disciplinary group. The updated design vector is the 
simple combination of local optimal design sub-vectors. This provides designers with a 
significant potential benefit in terms of computational effort. However, sometimes the 
convergence of GSECSSO is oscillatory and premature. It is due to that the trade-off 
coefficients and the KS parameter   with inappropriate value may lead to bad convergence 

(Huang & Bloebaum, 2004) as main reasons. 

3.2 A variant of GSECSSO 
The variant of GSECSSO (Huang & Bloebaum, 2004) is much more efficient than the original 
GSECSSO. It is adopted in multiple multi-objective CSSO methods (Huang & Bloebaum, 
2004; Parashar & Bloebaum, 2006; Zhang et al., 2008).  
In the variant of GSECSSO, several modifications are made: (1) the trade-off coefficients are 
abandoned since all trade-offs will occur directly with minimization of the objective 
functions within each subspace; (2) The KS parameter,  , is set to be increased from a small 

value; (3) an infeasibility minimization is appended to move the point into the feasible 
region; (4) the coordination optimization are abandoned and the responsibility coefficients 
are directly calculated via their initialization strategy. 
Taking the MDO problem in Eq. (1) (one objective, two coupled subsystems, i.e. N=2) as an 
example, the mathematical models of subspace optimizations for the modified CSSO can be 
written as 
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 (6) 

Where Xi, Yi and Ci are design variable vector, state variable vector and cumulative 

constraint of subspace i, respectively. 0
iC  is the value of Ci at the starting point X0. The value 

with symbol ‘^’ above is a linearly approximated one. p
kr  is responsibility coefficients. 
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the flowchart of modified CSSO method is shown in Fig. 2. In the first stage, based on the 
initial design variables the system analysis is implemented. If the initial scenario does not 
satisfy the constraints, a minimization will be required to reduce initial infeasibility of the 
constraints as much as possible. In the subsequent stage, all the sensitivities are computed 
by using GSE. Based on the sensitivity information, the impacts of design variables upon 
each subspace can be analyzed and the design variables will be allocated to the subspace 
of the greatest impact. In the third stage, the subspace optimizations are performed 
concurrently. There is no system optimization in this method. The updated design vector 
is the simple combination of the local optimal design sub-vectors. 
 

Reduce the initial infeasibility of constraints

System Analysis
Constraints

Minimization

No

Prepare for sub-optimization

Analyze sentivity

using GSE

Yes

Update  if needed Allocate XUpdate r

Subspace Optimization

Update X, F, C

Yes

No

Feasible Solution?

Converge?

Exit

Initialize X

 

Fig. 2. Flowchart of the modified CSSO method 

The variant of GSECSSO behaves better than GSECSSO on convergence performance. 
Nevertheless, how to set the start value and increase step of the KS parameter is still hard to 
say. These two values will affect convergence to some extent and need to be further 
investigated. The constraint minimization will bring extra computation cost. Furthermore, 
the linear approximation may sometimes cause oscillatory and premature convergence. 

3.3 Response Surface based CSSO (RSCSSO) 

The RSCSSO method performs optimization in bi-level framework. Taking the MDO 
problem in Eq. (1) (one objective, two coupled subsystems, i.e. N=2) as an example, the 
mathematical models of subspace optimizations for RSCSSO can be written as 
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 (7) 

Where Xi and Yi are design variable vector and state variable vector of subspace i, 
respectively. In subspace i, Yi is calculated using the high-fidelity analysis tool while the 
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other state variables with a symbol ‘^’ above are approximated by a quadratic response 
surface. Actually, other surrogate modeling techniques, such as kriging model or radial 
basis functions, can be used for approximation as well. 
The mathematical model of the coordination optimization of RSCSSO can be written as 

 

 
 
 

1 2

1 1 2

2 1 2

ˆ ˆMin , ,

ˆ ˆs.t. , ,

ˆ ˆ, ,

F





X Y Y

G X Y Y 0

G X Y Y 0

 (8) 

In the system-level optimization, all the state variables are approximately calculated and the 
design variables of all subspaces are optimized. 
The flowchart of RSCSSO is shown in Fig. 3. Firstly, the original problem is decomposed 
into subspace optimizations in Eq. (7) and coordination optimization in Eq. (8). Then 
couples of sample points of the design variable vector are generated via Design of 
Experiment (DOE) method, such as the orthogonal experiment design. The system analysis 
will be performed based on these data and the results will be stored in the database.  
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System decomposition and Initialization

Subspace 2

Initialize sample points

Database of sample points

{X}

(Data flow)

Subspace 1

{Y}

Surrogate modeling

Subspace optimization

Subspace 1 Subspace 2

(1)

Coordination optimization
(2)

 *
subX

*
sysX

First iteration?

yes

no
Converge? Exit

yes

 *
subY(1)

(2) *
sysY

no

 

Fig. 3. Flowchart of RSCSSO method 

Subsequently these data will be used to generate the response surface models for the state 
variables. After that the subspace optimizations are performed simultaneously, the results of 
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which will be analyzed and augmented into the database for updating the response surface 
models, as flow (1) in Fig. 3. Then all of the design variables will be optimized in the 
coordination optimization and the result will be used to update response surface models as 
well, as flow (2) in Fig. 3. The subspace optimizations and the coordination optimization are 
alternately performed until stable convergence is achieved. 
In the RSCSSO method, the subspace optimizations are to generate sufficient design 
information for approximation. After the concurrent subspace optimizations, a global 
approximation problem is formulated about the current design vector using information 
stored in the design database. It is the coordination procedure of the global approximation 
that drives constraint satisfaction and the overall system optimization. A fast and robust 
convergence appears in the RSCSSO method. However, with an increase in design variables 
the sample points needed for creating response surface models will be greatly increased. 
Furthermore, augmenting optimal points is not so reasonable for improving response 
surface models. As the final result is completely decided by the coordination optimization, 
the subspace optimizations have little impact on the results and can be abandoned. 

3.4 Examples 
3.4.1 Example 1: An analytical example with coupling relationship 

The mathematical model for an analytical MDO example considering two coupling 
disciplines is of the form 
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22
2 3 1

1 1

2 2

2
1 1 2 3 2

2 1 1 3
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M in
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y y x x
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  
  

   

  

  

 (9) 

Where 1y  and 2y  are state variables belonging to subspace 1 and subspace 2, respectively; 

1g  and 2g  are constrains provided by discipline 1 and discipline 2, respectively. The 

coupling relationship between discipline 1 and discipline 2 is depicted in Fig. 4. 
 

discipline 1 discipline 2
1y

2y  

Fig. 4. Coupling relationship between discipline 1 and discipline 2 for a numerical 
example 

The comparison of the results obtained by different methods is listed in Table 1. 
Sequential Quadratic Programming (SQP) method is taken as a reference for the 
convenience of this comparative study. From Table 1, several conclusions can be drawn as 
follows: (1) the system-level analysis can be remarkably reduced when using different 
CSSO methods, which shows that the CSSO methods are well suited for MDO problems; 
(2) the variant of GSECSSO method outperforms the RSCSSO method, in view of the 
optimization results as well as the required number of system- and disciplinary-level 
analysis.  
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variables SQP 
Variant of 
GSECSSO 

RSCSSO 

f  8.002860 8.002943 8.031944 

1x  3.028427 3.028442 2.993963 

2x  0.000000 0.000000 0.192359 

3x  0.000000 0.000000 0.000000 

Number of system analysis 122 7 38 

Number of discipline 1 
analysis 

0 72 179 

Number of discipline 2 
analysis 

0 64 144 

Table 1. Comparison of different CSSO methods with direct SQP for an analytical 
optimization problem 

3.4.2 Example 2: Gear reducer optimization 
This example is taken from the reference (Azarm & Li, 1989). The object is to minimize the 
overall weight, subject to the constraints for bending and torque stresses. The mathematical 
model for the optimization problem is as following:  
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 (10) 

The optimization problem is classified into two disciplines: bearing discipline and shaft 

discipline, without any coupling relationship.  
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The optimization problem is solved by SQP and different CSSO methods. The results are 
depicted in Table 2. The convergence histories are shown in Fig. 5. From this comparative 
study, some conclusions can be drawn as follows: 1) Both GSECSSO and the variant of 
GSECSSO enable the reduction of system analysis, which in turn improve the efficiency; 2) 
No reduction of the system analysis is achieved by using RSCSSO. Nevertheless, the 
optimization procedure as well as the data-flow interface is much simpler, and the 
optimization can be potentially improved by implementing parallel system analysis for 
sample points and parallel subspace optimization; 3) The variant of GSECSSO method 
outperforms the GSECSSO method. 
 

Variables SQP GSECSSO 
Variant of 
GSECSSO 

RSCSSO 

f  2994.341316 2995.606759 2995.607422 2994.193811 

1x  3.5 3.500000 3.500000 3.500021 

2x  0.7 0.7 0.7 0.700000 

3x  17 17 17 17.000000 

4x  7.3 7.300000 7.3 7.300000 

5x  7.715320 7.733301 7.733330 7.715316 

6x  3.350215 3.352131 3.352156 3.349631 

7x  5.286654 5.287256 5.287246 5.286643 

Number of system analysis 40 15 11 51 

Number of bearing-discipline 
analysis 

0 326 188 280 

Number of shaft-discipline 
analysis 

0 2986 1818 288 

Table 2. Comparison of different CSSO methods with direct SQP for gear-box optimization 

 

0 2 4 6 8 10 12 14 16

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

O
b

je
ct

iv
e 

fu
n

ct
io

n

Iteration

 GSECSSO

 Variant of GSECSSO

 RSCSSO

 

Fig. 5. Convergence history of CSSO optimization for gear reducer 
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4. Different frameworks for multi-objective concurrent subspace optimization 

The MOPCSSO, MORCSSO and AWSCSSO methods will be discussed in this chapter as the 
typical multi-objective CSSO methods. 

4.1 Multi-objective Pareto (MOPCSSO) 
The constraint method is an effective multi-objective optimization method which 
optimizes preferred objective with others treated as constraints. MOPCSSO is developed 
by introducing the constraint method into the variant of GSECSSO. 
Taking the MDO problem in Eq. (1) (two objectives, two coupled subsystems, i.e. N=2) as an 
example, the mathematical models of subspace optimizations of MOPCSSO can be written 
as 
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   

 
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X Y Y X Y Y

X Y Y X

X X Y Y

Y X Y Y X Y

 (11) 

The variant of GSECSSO method described in Sub-section 3.2 is adopted in the single 

objective optimization for each objective function. The flowchart of MOPCSSO is same as 

that in Fig. 2. During the system optimization, all objective functions are improved 

simultaneously or individual objective function are improved without worsening the others. 

The optimization continues until no further improvement can be made so that the Pareto 

optimum can be obtained finally. 

4.2 Multi-objective Range CSSO (MORCSSO) 

The goal programming method is one of the most popular multi-objective optimization 
techniques that consider designer’s preference. MORCSSO and Multi-objective Target CSSO 
(MOTCSSO) are both developed by combining idea of the goal programming method with 
MOPCSSO. 

The min max
2 2,F F 

   is supposed to be the preferred range of objective function 2F . The 

MDO problem in Eq. (1) (two objectives, two coupled subsystems, i.e. N=2) is taken as an 

example. The framework of MORCSSO is shown in Fig. 6. The variant of GSECSSO 

method described in Sub-section 3.2 is adopted for sub-optimizations and system-level 

coordination. The optimization is performed in two stages to obtain a preferred Pareto 

point. 
1. If the design point does not meet the preference at beginning, the first-stage 

optimizations are implemented to obtain a design in the preferred range from the 
starting point. 

The mathematical models of subspace optimizations of MORCSSO can be written as 

If 0 min
2 2F F ,  
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If 0 max
2 2F F ,  
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 (13) 

2. In the second stage the design point is optimized closer to the Pareto frontier gradually 
within the preferred range. 

After the optimization in the first stage, the design is in the designer’s preferred objective 
range. Then the mathematical models of subspace optimizations of MORCSSO is same as 
those of MOPCSSO in Eq. (11). 
In the course of optimization in the second stage, the design point maybe flees out of the 
preferred objective range again. In such a case, the optimization below should be 
performed. 

If 0 min
2 2F F , 
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If 0 max
2 2F F ,  
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Stage 1: Design point is moved into the preferred objective range.

If             , Eq.(12); If             , Eq.(13).
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Stage 2: Design point is optimized closer to the Pareto frontier

gradually within the preferred range.

If                     , Eq.(11); If             , Eq.(14); If            , Eq.(15).
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Fig. 6. Framework of MORCSSO method 

For the MORCSSO method, in the case of 0 max
2 2F F  in the second-stage optimizations, the 

optimizations may converge to the Pareto frontier above the preferred objective range, i.e. 

the Pareto point that max
2 2F F  is obtained.  

Why does the optimization fail in this case? It can be analyzed from Eq. (15) in the 

objective space shown in Fig. 7. For Eq. (15), (1) 0X  should be closer to the line max
2 2F F  

according to max
2 2Min F F , (2)  2 0F X  should be no more than 0

2F  according to 
0

2 2F̂ F , (3) 0X  should optimized to decrease 0
1F  according to 0

1 1F̂ F  and 1Min F , (4) 

0X  should be in the feasible region. As shown in Fig. 7, (2) and (3) forces 0X  to move 

along a direction of 1n


 in the lower-left shadowed region, in which direction the design 

point will impossibly move into the preferred objective range. Only along a direction of 

2n


 in the lower-right shadowed region the preferred range can be achieved. In such a case 

0X  may move down straightly along the direction of n


 to arrive at the Pareto front. The 

semi-infinite region between 1 max1F F  and the Pareto front is named as Blind Region in 

this chapter, which means the point falling into this region will not converge to the Pareto 

front in the preferred region any more. This error will happen in the case of three and 

more objectives as well, as shown in Fig. 8. 
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Fig. 7. The analysis of Eq. (15) in bi-objective space 
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Fig. 8. The analysis of Eq. (15) in three-objective space 

How to solve this problem? From Fig. 7, we only need to move the line 0
1 1F F  right a little 

bit, then the two shadowed region will be crossed each other. In the mathematical meaning 
0

1 1F F  is relaxed to 0 0
1 1 1F F F   in Eq. (15). This strategy is proven to be effective. 

4.3 Adaptive Weighted Sum based CSSO (AWSCSSO) 

The procedure of solving the Pareto front by AWSCSSO is similar to Adaptive Weighted Sum 
(AWS) method (Kim & de Weck, 2004, 2005). As an example, the AWSCSSO method for a 
generic bi-objective problem, with subsystem 1 and 2, is stated in the following paragraphs 
(Eq. (1): two objectives and two coupled subsystems). In the same way AWSCSSO can be also 
applied for the multi-objective problem with three or more subsystems. 
1. In the first stage a rough profile of the Pareto front is determined. 
The variant of CSSO method described in Sub-section 3.2 is adopted in the single objective 
optimization for each objective function and objective function is normalized as following: 

 
Nadir

Utopia Nadir
i

i
J J

J
J J





 (16) 
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When Xi* is the optimal solution vector for the single objective optimization of the ith 
objective function Ji, the utopia point and pseudo nadir point are defined as 

      Utopia 1* 2* m*
1 2 m, , ,J J J J 

 
X X X  (17) 

 Nadir Nadir Nadir Nadir
1 2 m, , ,J J J J     (18) 

Where      Nadir 1* 2* m*maxi i i iJ J J J 
 

X X X  and m is the number of objective 

functions. 
Then with a large step size of the weighting factor the usual weighted sum method is used 
in the variant of GSECSSO to approximate the Pareto front quickly. The subspace 
optimization for AWSCSSO can be expressed as 
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 (19) 

Where the value with symbol ‘^’ above is a linearly approximated one, C1 and C2 are 

cumulative constraints of G1 and G2, respectively, and p
kr  represents responsibility assigned 

to the k-th subsystem for reducing the violation of Cp. The value with superscript ‘0’ is 

corresponding to the starting point X0. W1 and W2 are weighting factors for objective 

function vector F1 and F2, respectively.  
By estimating the size of each Pareto patch, the refined regions in the objective space are 
determined. An example of the mesh refinement in AWSCSSO is shown in Fig. 9. Where 
hollow points represent the newly refined node PE (expected solution) while solid points 
represent initial four nodes that define the patch. As shown in Fig. 9, the quadrilateral patch 
is taken as an example. If the line segment that connects two neighboring nodes of the patch 
is too long, it is divided into only two equal line segments. The central point becomes the  
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P3

P4

PE

P5 P6

 

Fig. 9. Refine patches of AWSCSSO method 
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new refined node. These refined nodes are connected to form a refined mesh. Then the 
sub-optimizations in Eq. (19) are performed using different additional constraints for 
different refined nodes and the new Pareto points are obtained. In next step, according to 
the prescribed density of Pareto points, the Pareto-front patch that is too large will be 
refined again in the same way. In subsequent steps, the refinement and sub-optimizations 
are repeated until the number of Pareto points does not increase anymore.  
2. In the subsequent stage only these regions are specified as feasible domains for sub-

optimization problem with additional constraints. Each Pareto front patch is then 
refined by imposing additional equality constraints that connect the pseudo nadir point 
(PN) and the expected Pareto optimal solutions (PE) on a piecewise planar surface in the 
objective space (as shown in Fig. 10).  
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                             a) 2-D representation                    b) 3-D representation 

Fig. 10. AWSCSSO method for multidimensional problems 

Sub-optimizations are defined by imposing additional constraint H to Eq. (19) as 
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The additional inequality constraint is 

 
    

 
E N N

E N N

L 0H
  

   
 

F F F X F

F F F X F
 (21) 

Where L is the adaptive relax factor that is less than 1. EF , NF  and  F X  are the 

normalized position vector of node PE, PN and the current design point X respectively. In 
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AWSCSSO, L is set to be increased with the rise of the distribution density of Pareto 

points.  
Fig. 11 shows the framework of AWSCSSO. In Fig. 11, W1i and W2i are weighting factors in 
stage 1 and stage 2, respectively; H is the additional constraint. The optimization problem is 
performed in two stages in the AWSCSSO method. In the first stage the Pareto front is 
approximated quickly with large step size of weight factors. The optimization problems of 
this stage are defined in Eq. (19). In the subsequent stage, by calculating the distances 
between neighboring solutions on the front in objective space, the refined regions are 
identified and the refined mesh is formulated. Only these regions then become the feasible 
regions for optimization by imposing additional constraints in the objective space. The 
optimization problems of this stage are defined in Eq. (20). The different locations of new 
Pareto points are defined by the different additional constraints. Optimization is performed 
in each of the regions and the new solution set is acquired. Being a MDO problem, the 
optimization is performed by the variant of GSECSSO method. 
 

Stage 1: Acquire several control point to define a rough profile of the

Pareto front.
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Stage 2: Regions defined by refine nodes are specified as feasible
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Fig. 11. Framework of AWSCSSO method 

4.4 Examples 
4.4.1 Example 1: Convex Pareto front 

This problem is taken from a test problem (Huang, 2003). This is a test problem available 

in the NASA Langley Research Center MDO Test Suite. It has two objectives, F1 and F2, to 

be minimized. It consists of ten inequality constraints, four coupled state variables and ten 

design variables in two coupled subsystems. The mathematical model is not listed here 

for concision. We refer the readers to the test problem 1 in the corresponding references. 

The comparison of the solution obtained by MOPCSSO and AWSCSSO is shown in Fig. 12. 
It can be concluded that for the problem with convex Pareto front a uniformly-spaced wide-
distributed and smooth Pareto front can be obtained by AWSCSS method. When using 
MOPCSSO I have not captured the whole range. 
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Fig. 12. Comparison of Pareto front obtained by using AWSCSSO and MOPCSSO 

4.4.2 Example 2: Non-convex Pareto front 

This problem consists of two objective functions, six design variables and six constraints. 
Two objectives, F1 and F2 need to be minimized. The model problem is defined as 
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Fig. 13. Comparison of Pareto fronts obtained by using AWSCSSO and MOPCSSO methods 
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The comparison of Pareto front obtained by AWSCSSO and MOPCSSO is shown in Fig. 13. It 
is concluded that, for the problem with non-convex Pareto front, the more uniformly-spaced, 
more widely-distributed and smoother Pareto front is also obtained by the AWSCSSO method. 

4.4.3 Example 3: Conceptual design of a subsonic passenger aircraft 

The mathematical model of this problem is defined as 
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 (23) 

The objective functions in Eq. (23) are to maximize useful load fraction (U) and lift-to-drag 
ratio for the cruising condition (L/DC). The constraints in Eq.(23) are as follows. (1) The drag 
coefficient for the take-off condition and landing condition (Cd0L) is no more than 0.2 and 
that for the cruising condition (Cd0C) is no more than 0.02. (2) The overall fuel balance 
coefficient (Rf) is no less than 1. (3) The achievable climb gradient for the take-off condition 
(qTo) is greater than 0.027 and that for the landing condition (qL) is greater than 0.024. (4) The 
take-off field length (DTo) is less than 1981m and the landing field length (DL) is less than 
1371m. The overall fuel balance coefficient is defined as the ratio of the fuel weight required 
for mission to that available for mission. The design variables are listed in Table 3. 
 

Design Variable ⁄ unit Symbol Lower limit Upper limit 

Wing area ⁄ m2 S 111.48 232.26 

Aspect ratio AR 9.5 10.5 

Design gross weight ⁄ 103kg Wdg 63.504 113.400 

Installed thrust ⁄ 103kg Ti 12.587 24.948 

Table 3. List of design variables 

Two disciplines, aerodynamics and weight, are considered in this problem. The dataflow 
between and in subsystems is analyzed in Fig. 14, where L/DTo, L/DL, L/DC are the lift-to-
drag ratios for the take-off, landing and cruising conditions respectively, Vbr is the cruise 
velocity with the longest range, Rfr is the fuel weight fraction required for mission, and Cd0C 
is the zero-lift drag coefficient for the cruising condition.  
Two disciplines, aerodynamics and weight, are coupled. When the state variables in 
aerodynamics such as cruise velocity with the longest range, lift coefficients, zero-lift drag 
coefficients, skin-friction drag coefficients, lift-to-drag ratio are computed, some state 
variables in Weight such as Rfr should be known. Similarly, when the state variables in 
Weight such as useful load fraction, overall fuel balance coefficient, achievable climb 
gradient on take-off and landing, take-off field length and landing field length are 
computed, some state variables in Aerodynamics such as L/DTo, L/DL, L/DC and Vbr should 
also be provided. In the Aerodynamics discipline, Vbr is coupled with Cd0C. The dataflow 
between state variables and design variables can be seen in Fig. 15. Many details of 
equations in the aerodynamic discipline model and weight discipline model can refer to the 
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reference (Zhang et al., 2008). The full description of them can be found in the references 
(Lewis & Mistree, 1995; Lewis, 1997). 
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Fig. 15. Dataflow between state variables and design variables 
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The Pareto front obtained using AWSCSSO is shown in Fig. 16. Each solution on Pareto 
front is obtained using CSSO with iterative subspace optimizations. Taking one of the 
optimal designs as example, the values of the design variables are: S=232.3m2, AR=10.5, 
Wdg=113.4×103kg, Ti=16.75×103kg. The performance parameters of the aircraft in optimal 
design are as follows: Cd0C=0.01777, L/DC=21.05, Vbr=183.43m/s, qTo=0.03303, qL=0.08804, 
DTo=1823m and DL=1086m. Several conclusions can be made from these results. 1) The 
AWSCSSO method is primarily proved to be applicable for aircraft conceptual design. 2) 
The distribution of Pareto points is not so uniform as expected. These results are still very 
encouraging in general. The non-uniformity may be due to the additional constraint that 
changes the location to expected solution. Further study is still needed on how to achieve 
the balance between uniformity and convergence.  

5. Conclusion 

The CSSO method is one of the main bi-level MDO methods. Couples of CSSO methods for 
single- and multi-objective MDO problems are discussed in this chapter. It can be concluded 
that, (1) number of the system analysis can be greatly reduced by using the CSSO methods, 
which in turn improve the efficiency; (2) the CSSO methods enable concurrent design and 
optimization of different design groups, which can greatly improve efficiency; (3) the CSSO 
methods are effective and applicable in solving not only single-objective but also multi-
objective MDO problems.  
For the CSSO methods, although the RSCSSO method behaves more robust, it will actually 
reduce to a single-level surrogate modeling based MDO method since the subspace 
optimizations have little impact on the results. So the GSECSSO method is more promising 
as a bi-level method and worth further studying. The future study on the GSECSSO method 
will focus on improving its robustness and efficiency. For the multi-objective CSSO 
methods, the AWSCSSO method behaves better on obtaining widely-distributed Pareto 
points. The future work on the multi-objective CSSO methods will focus on improving the 
solution quality and also on testing it for more realistic engineering design problems. 
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