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Neuromodulatory Treatment of  
Medically Refractory Epilepsy 
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Wake Forest University School of Medicine, Department of Neurosurgery, 

Medical Center Blvd., Winston-Salem, 
USA 

1. Introduction 

Epilepsy is a common chronic neurologic disorder affecting 0.5 to 1 percent of the 

population. (Hauser, 1993 4131) More than one-third of all epilepsy patients have 

incompletely controlled seizures or debilitating medication side effects in spite of optimal 

medical management. (Kwan et al. 2000; Sillanpaa et al. 2006; Sander et al. 1993)  Medically 

refractory epilepsy is associated with excess injury and mortality, psychosocial dysfunction, 

and significant cognitive impairment. (Brodie et al. 1996) Treatment options for these 

patients include new anti-epileptic drugs (AEDs), which may lead to seizure freedom in 7 

percent of patients (Fisher et al. 1993) and resective surgery which is associated with long-

term seizure freedom in 60-80% of patients.(Engel et al. 2003 ;Lee et al. 2005)    Surgery for 

patients whose epilepsy has proven refractory to AEDs provides a high likelihood of 

reduction in seizure frequency, is generally safe, and is recommended for selected patients 

with refractory partial seizures. In spite of improvements in surgical technique, 

approximately 4 percent of patients will suffer death or permanent neurologic disability ( A 

global survey on epilepsy surgery, 1980-1990: a report by the Commission on Neurosurgery 

of Epilepsy, the International League Against Epilepsy 1997). Moreover, more than one-

third of patients will not be candidates for surgical resection (Kwan et al. 2000). For patients 

who are not candidates for resective surgery, there are limited options. Neuromodulatory 

treatment, which consists of administering electrical pulses to neural tissue to modulate its 

activity leading to a beneficial effect, may be an option for these patients. The interest in 

neuromodulation for neurological disorders is driven by a desire to discover less invasive 

surgical treatments, as well as new treatments for patients whose medical conditions remain 

refractory to existing modalities. Vagal nerve stimulation (VNS) is one example of 

neuromodulation that was developed in the 1980s, and which is now routinely available. 

(Ben-Menachem et al. 2002) VNS, as an adjunct to medical management, may yield up to a 

50 percent reduction in seizure frequency (A randomized controlled trial of chronic vagus 

nerve stimulation for treatment of medically intractable seizures. The Vagus Nerve 

Stimulation Study Group. 1995) although most of these patients will not be seizure-

free. Deep brain stimulation (DBS) is another example of neuromodulation. Given the 

significant experience and success of DBS for movement disorders (Krack et al. 2003) 

combined with its reversibility, programmability, and low risk of morbidity, there has been 
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a resurgence of interest in using DBS devices for treating medically refractory 

epilepsy. Responsive neurostimulation is a technology that detects seizure activity at a 

previously defined focus and applies an electrical stimulus to the site of seizure onset to 

terminate the seizure. Transcranial magnetic stimulation (TMS) is a nearly 25-year-old 

technology initially introduced as a means to noninvasively investigate corticospinal 

circuits. Currently, TMS is used primarily in clinical neurophysiology. Importantly, TMS can 

be used to evaluate and manipulate excitatory and inhibitory intracortical circuits with post-

stimulatory effect, allowing for a developing use in epileptic neuromodulation. 

In summary, resective epilepsy surgery is not an ideal option for all patients with medically 
refractory epilepsy. It is an invasive, irreversible procedure which will not lead to a cure in 
all patients.  It is associated with only modest success in patients with a normal MRI or a 
diffuse ictal onset zone. It has a significant risk of neurological or neuropsychological 
decline postoperatively. These factors in combination drive the search for alternative 
treatment options such as neuromodulation.   

2. Vagal nerve stimulation  

The vagal nerve has a complex anatomical arrangement which projects to the autonomic 

and reticular structures and well as limbic and thalamic neurons.  Stimulation of the vagus 

nerve and its bilateral multisynaptic targets has become a common technology for the 

treatment of epilepsy. To date, over 50,000 patients have been treated with the technology, 

and current reports indicate an approximate 50% efficacy in seizure reduction, rivaling the 

efficacy of antiepileptic treatment, and often decreasing dependence on them (Labar et al. 

2002).  Efficacy has also been shown to increase over time (Vonck et al. 1999).  The low side 

effect profile of vagal nerve stimulation (VNS) has also proven to be advantageous for users. 

Reported side effects mainly include hoarseness, paresthesias, shortness of breath, 

headache, and coughing (Morris et al. 1999) . These effects are typically stimulation-related 

and resolve over time. (Boon et al. 1999) The mechanism of efficacy remains unknown, 

though certain structures within the brain appear to be affected by VNS. As evidenced by 

studies using positron-emission technology (PET), the thalamus is consistently affected by 

VNS stimulation, and bloodflow to the cerebellum and cerebral structures is consistently 

altered (Ko et al. 1996; Henry et al. 1999; Henry et al. 1998; Ben-Menachem et al. 2002). 

Thalamic involvement has also been supported through SPECT (Van et al. 2000; Vonck et al. 

2000) and functional MRI.(Liu et al. 2003; Narayanan et al. 2002) analysis. 

2.1 Animal studies 

Studies of VNS have been reported from multiple vertebrate models including rodents 
(McLachlan et al. 1993), canines(Zabara et al. 1992) and lower primates. (Lockard et al. 
1990) In the rodent penicillin/pentylenetetrazol model, interictal spike frequency was 
reduced by 33%(McLachlan et al. 1993) the effect of which was later found to be greatest in 
continuous stimulation and reduced in a time-dependent fashion after stimulation. (Takaya 
et al. 1996) Later tests have shown that cortical excitability in rats can be modulated through 
VNS.(De et al. 2010)  Canine strychnine and pentylenetetrazol models show similar efficacy 
with lasting reduction in motor seizures and tremors. (Zabara et al. 1992)  In the aluminagel 
monkey model, seizures were eliminated in half of test animals during stimulation periods 
with some persistence into post-stimulation periods. (Lockard et al. 1990)   
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2.2 Clinical studies 

Clinical trials began in 1988 with the first open trial; preliminary results showed that such a 

therapy was potentially efficacious and safe with only transient side effects.(Penry et al. 

1990)   This was followed by a series of clinical trials from 1988 through 1995 which included 

two double-blind, randomized, controlled studies.(Handforth et al. 1998)   Results indicated 

seizure reduction at both low and high stimulation paradigms, with significantly greater 

reduction in the high-stimulation group(Handforth et al. 1998) and overall efficacy showed 

a mean seizure reduction of approximately 35-45%.(Morris et al. 1999)   Safety of the therapy 

was also established in this series of trials, with few patients discontinued secondary to 

adverse events.(Handforth et al. 1998)   Vagal innervation of the larynx produced typical 

side effects including cough, dyspnea, and local paresthesia, though distal effects on the 

vagus were not appreciated. (Handforth, et al. 1998)  The findings of these trials led to the 

widespread use of VNS therapy for complex partial and secondary generalized seizures in 

patients over 12 years of age.(Saillet et al. 2009)   Since that time, data from pediatric studies 

have shown similar outcomes in younger patients.(Wheless et al. 2002)  

In 2005, PuLsE: an open, prospective, randomized, parallel group study directly comparing 

best medical practice with and without adjunctive VNS Therapy was initiated 

(http://clinicaltrials.gov/ct2/show/NCT01281280). Long-term data were collected on both 

health outcomes and seizure frequency to determine if a possible significant clinical benefit 

in health outcomes over time of best medical practice with or without adjunctive VNS 

Therapy in patients with drug-resistant epilepsy with partial-onset seizures. Due to lower 

than anticipated enrollment, this study was discontinued in July 2008. The study was 

inconclusive due to inability to meet the primary objective with appropriate statistical 

power. However, due to a relatively large number of participants (n=121) randomized in the 

original PuLsE study, industry decided to implement an observational long-term follow-up 

of the participants enrolled in the original PuLsE study. This post-market study is designed 

to identify clinically and statistically significant predictors of response in patients with drug-

resistant epilepsy with partial-onset seizures treated with best medical practice with or 

without adjunctive VNS Therapy. This is a 5-year study set to open in 2011 

(http://clinicaltrials.gov/ct2/show/NCT01281280). 

3. Transcranial magnetic stimulation 

Transcranial magnetic stimulation (TMS) of cortical tissues was initially reported by Barker 
and colleagues and quickly found acceptance as a research vehicle for 
neurophysiologists.(Barker et al. 1985)   TMS was first applied to the study of the motor 
system(Barker et al. 1985) and this use has since expanded to include investigations in 
psychiatric conditions(Pascual-Leone et al. 1996), migraine headache(Lipton et al. 2010) and 
other neurologic conditions. Importantly, it has also become a viable option for the 
treatment of drug resistant epilepsy. TMS exerts its effects through repetitive noninvasive 
stimulation in which a pulsed magnetic field creates current flow in the brain which can 
temporarily excite or inhibit target areas.(Hallett et al. 2000)  

3.1 Animal studies  

The basis of TMS as a therapeutic intervention in epilepsy is derived from the lasting effects 
that from the application of a train of transcranial stimuli. Theoretically, the lasting effects of 
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TMS can be used to modulate activity in focal areas of cortex.(Fregni et al. 2007) The TMS-
induced effect depends on the nature of the stimulation; that is, the frequency, the timing, 
the focus, and the intensity of the repetitive stimulation. (Kimiskidis et al. 2010)   While 
some paradigms have been studied using animal models, the numbers of basic studies 
particular to epilepsy are somewhat limited. 
Early study within the mouse hippocampal-entorhinal cortex slice model indicated that 

repetitive direct (i.e., non-transcranial) stimulation at 1 Hz can depress the generation of 

ictal activity in a 4-aminopyridine model(Barbarosie et al. 1997), which later was shown to 

have a frequency-dependent effect.(D'Arcangelo, et al. 2005)   This frequency dependence 

has been replicated in TMS. Low-frequency TMS stimulation shows the tendency to lower 

seizure activity. One study found that in rats, 1000 pulses of low-frequency TMS (0.5 Hz) 

reduced susceptibility to the induction of status epilepticus and also to increase the latency 

to onset of pentylenetetrazol-induced seizures.(Akamatsu et al. 2005)  A later study 

indicated that in rats genetically modified as models of absence seizures, TMS could be used 

at 0.5 Hz to reduce spike wave discharge for a short, albeit statistically insignificant manner 

with maximal effect at 30 minutes.(Godlevsky et al. 2006)  A more recent study suggests that 

TMS can suppress kainate-induced seizures in rats at frequencies of 0.5 and 0.75Hz  though 

not at 0.25 Hz, demonstrating a frequency dependence on seizure control.(Rotenberg et al. 

2008)   

On the other hand, higher frequency stimulation has been shown to have confounding 

effects. Using male Wistar rats, it was shown that in the pentylenetrazole model of clonic 

seizures, chronic high-frequency stimulation (50Hz) may induce kindling of seizure activity, 

though this effect was not appreciated with acute-only stimulation.(Jennum et al. 1996)   

Later work indicated that an acute high-frequency (20 Hz) TMS train significantly increased 

the threshold for induction of epileptic after-discharges in amygdala-kindled rats, with 

effects lasting at least 2 weeks, though it was not directly compared with chronic 

stimulation.(Ebert et al. 1999)   High frequency stimulation has been shown therefore to 

potentially have both protective and inductive effects dependent on the chronicity of 

treatment and potentially other, unexplored, factors.  

3.2 Clinical studies 

Similar results have been identified in human studies. High frequency TMS (>5 Hz) has 
been shown to enhance cortical excitability at high intensities.(Berardelli et al. 1998) 
Alternatively, low-frequency TMS (i.e. ≤1 Hz), has been shown to reduce cortical 
excitability, potentially secondary to an increase in the refractory neuronal period(Cincotta 
et al. 2003)  as well as decreased strength of neuronal signaling.(Muellbacher et al. 2000)  
As detailed by Kimiskidis (Kimiskidis 2010), the clinical effects are theoretically similar to 
long term potentiation (LTP) and long-term depression (LTD) elicited by high- and low-
frequency electrical stimulation, respectively. It is therefore possible that TMS at lower 
frequencies may exert its effect through the initiation of LTD, while at higher frequencies, 
the proconvulsant effect may be initiated through the induction of an LTP-type 
effect.(Ziemann U. et al.  2005)  
Multiple investigations into the effect of low-frequency TMS on multiple seizure types have 
been reported utilizing variable targeting, frequency, intensities, and train parameters.  One 
of the first open-label pilot trials of this technology demonstrated at least a six-week 
reduction in the frequency of epileptic events using a frequency of 0.33 Hz (Tergau et al. 
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1999) Theodore et al. reported a statistically insignificant and short-lived trend towards 
seizure reduction in a randomized trial of 12 focal epilepsy patients at a frequency of 1 
Hz.(Theodore et al. 2002) A later trial involving 17 patients utilizing both frequencies 
demonstrated seizure reduction at the lower frequency of 0.33 Hz only.(Tergau et al. 2003) 
TMS applied at a frequency of 0.5 Hz in a single session was associated with an approximate 
42% reduction of epileptiform discharges lasting at least 30 days in a population of cortical 
dysplasia patients in an open-label study.(Fregni et al.  2005)   A larger, randomized follow-
up trial using a frequency of 1 Hz showed a reduction of seizure activity when compared 
with the sham group, with effects lasting at least 60 days.(Fregni et al. 2006)   In another 
extratemporal focal epilepsy series, TMS applied at a frequency of 0.9 Hz, demonstrated a 
favorable though statistically insignificant trend towards seizure reduction.(Kinoshita et al. 
2005) Larger randomized trials have indicated encouraging though statistically insignificant 
decreases in epileptic activity. In a series of 35 patients with focal, nonfocal and multifocal 
epilepsy, stimulation at vertex and temporal targets at a frequency of 0.5 Hz reduced 
interictal spikes by greater than 50%, though seizure reduction was non-significant. It 
should be noted that the trend was toward reduction, and target of TMS was non-influential 
on the outcome.(Joo et al. 2007)   Cantello et al.(Cantello et al. 2007) similarly found an 
appreciable decrease in interictal epileptiform abnormalities in approximately one-third of a 
series of 43 patients with mostly focal epilepsy in a randomized double-blind study, though 
the clinical antiepileptic activity was insignificant    
As can be appreciated from these findings, the antiepileptic effects of TMS show somewhat 
ambiguous results even when accounting for different stimulation paradigms and locations. 
The efficacy of this technology will therefore need careful scrutiny from the perspective of 
larger randomized trials and carefully conducted meta-analyses accounting for differences 
in localization of epilepsy, stimulation paradigms, frequency, target and repetition and 
potential placebo effects.(Bae et al. 2011)   The safety of this therapy may also be of concern, 
as there have been reports of seizures related to therapy.(Tergau et al. 1999; Bae et al. 2007; 
Rotenberg et al. 2009) Generally, however, the therapy is considered safe, with common 
adverse effects including headache (<10%) and mild discomfort.(Bae et al. 2007)  

4. Deep brain stimulation (open-loop) 

DBS lead implantation within the anterior nucleus of the thalamus (ANT), as well as other 
central nervous system (CNS) targets - including the caudate nucleus, centromedian nucleus 
of the thalamus, cerebellum, hippocampus, and subthalamic nucleus - results in seizure 
reduction in selected patients.(Vercueil et al. 1998; Shandra et al. 1990; Mirski et al. 1986; 
Bragin et al. 2002)   In all of these studies, the stimulation was delivered in an open-loop 
fashion, that is, in a pre-defined manner, independent of the momentary physiological 
activity of the brain. The exact mechanism of action of DBS in reducing seizure activity is 
unknown.  It is known that stereotactic lesions of the ANT in humans can result in reduction 
in seizure frequency. (Mullan et al. 1967)  Some evidence suggests that DBS may interfere 
with synchronized oscillations by neurotransmitter release.(Lee et al. 2005)  Other evidence 
suggests that the most likely mechanism may involve stimulation-induced modulation of 
pathologic neural networks.(McIntyre et al. 2004)    High-frequency DBS appears to 
reproduce the clinical effect of ablative procedures.(Benabid et al. 1987)  Moreover, at high 
frequencies, DBS may abolish cortical epileptiform activity.(Lado et al. 2003)  A 
microthalamotomy effect has been postulated based on the observation that some patients 
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obtain reduction in seizure frequency prior to activation of the pulse generator.(Lim et al. 
2007 ; Andrade et al. 2006)   
Although the precise mechanism by which DBS reduces seizure activity is unclear, 
inhibition of neurons immediately adjacent to the area of applied current is likely involved.   
A "reversible functional lesion" may be generated in structures integral to initiating or 
sustaining epileptic activity.(Boon et al. 2007)   The applied current may inhibit neurons 
with a pathologically lowered threshold of activation.  Alternatively, DBS may act on 
neuronal network projections to nearby or remote CNS structures originating from the area 
of stimulation.  This might take place through either activation of inhibitory projections or 
through the inhibition of excitatory projections. 
DBS for movement disorders has met with widespread success (Nguyen et al. 2000; Pollak et 

al. 2002; Volkmann et al. 2004) and is increasingly being investigated for new indications 

such as chronic pain, obsessive-compulsive disorders, and even headache. (Gybels et al. 

1993; Leone et al. 2005; Leone et al. 2003)  While DBS of targets such as the thalamus, 

cerebellum, and locus ceruleus was performed in the past in patients with psychiatric 

disorders or spasticity who also had seizures, technical limitations prevented it from 

becoming an appropriate treatment option for patients with epilepsy alone. (Cooper et al. 

1976; Wright et al. 1984; Upton et al. 1985; Feinstein et al. 1989)  A renewed interest in DBS 

for epilepsy has arisen from success with the technique in movement disorders, along with 

technological improvements in the equipment.  Multiple epilepsy centers throughout the 

world have performed trials over the years using DBS for epilepsy, targeting a variety of 

CNS structures. (Fisher et al. 1992; Velasco et al. 1995; Chkhenkeli et al. 1997; Chabardes et 

al. 2002; Hodaie et al. 2002; Velasco et al. 2005)  These trials can be summarized based on 

two different strategies. 

One strategy is to target CNS structures believed to have a "gating" role in the epileptogenic 

network, such as the subthalamic nucleus or thalamus.(Iadarola et al. 1982)  The other 

strategy is to target the ictal onset zone with the theory that stimulation may lead to 

interference with seizure initiation.  The latter strategy might ideally be used in patients 

with mesial temporal lobe (MTL) epilepsy given the success in reducing seizures in patients 

after anterior temporal lobectomy. (Engel et al. 2003)  MTL epilepsy is the most common 

form of medically refractory partial epilepsy.  These patients have a long-term freedom from 

seizure rate of 60 to 75 percent after undergoing temporal lobectomy.  In spite of undergoing 

satisfactory preoperative Wada testing, however, many of these patients will demonstrate a 

verbal memory deficit on postoperative neuropsychological evaluation. (Helmstaedter et al. 

2003; Gleissner et al. 2004)  Given that some of these patients must undergo implantation of 

electrodes prior to considering resection, they may be ideal candidates for using DBS with 

the same electrodes used for diagnostic purposes.        

4.1 Animal studies at various anatomic sites 

Numerous animal models have been used to elucidate DBS mechanism of action and its 
potential usefulness in the treatment of epilepsy.(Ziai et al. 2005; Wyckhuys et al. 2007; Usui 
et al. 2005; Shi et al. 2006; Nishida et al. 2007; Lian et al. 2003; Jensen et al. 2007)  Animal 
epilepsy models have utilized pentylenetetrazol (PTZ), kainic acid (KA), bicuculline (BIC), 
picrotoxin, and kindling to induce seizures.(Ziai et al. 2005; Usui et al. 2005; Shi et al. 2006; 
Nishida et al. 2007; Lian et al. 2003; Jensen et al. 2007; Mirski et al. 1986)  Sinusoidal 
alternating current (AC) versus direct current (DC) stimulation protocols, synaptic versus 
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non-synaptic inhibition, regional alterations in neurochemistry, and differing anatomic 
targets are among many variables investigated in these models.(Ziai et al.  2005; Nishida et 
al. 2007; Lian et al.  2003; Jensen et al. 2007)   

4.1.1 Cerebellum 

Cooke and Snider(Cooke et al. 1955)  demonstrated that cerebellar stimulation (CS) can 
modify or abruptly terminate seizure activity in various cerebral areas. Iwata and Snider 
(IWATA et al. 1959) observed that CS could terminate hippocampal seizures and prolonged 
afterdischarges (AD)  that had been induced by electrical stimulation.  In 1962, Dow et 
al.(Dow et al. 1962) showed that CS could alter electroencephalogram (EEG) activity and 
reduce frontal lobe seizures in a model of chronic epilepsy in awake unanesthetized rats.  
Fanardjian and Donhoffer (Fanardjian & Donhoffer 1964)  found CS induced slow waves in 
the normal hippocampus while activation-like patterns appeared simultaneously in the 
cerebrum.  In 1980, Laxer et al.(Laxer et al. 1980) found inconsistent results when reviewing 
studies from 22 groups using CS with a wide range of stimulation parameters. They were 
nonetheless able to draw two conclusions: (a) stimulation of the vermis and superomedial 
surface is more effective than stimulation of the lateral hemisphere, and (b) CS is most 
effective in epilepsy of the limbic system, and least effective in models of focal epilepsy of 
the sensorimotor cortex.   

4.1.2 Hippocampus 

Lian et al. (Lian et al. 2003) tested the effects of DC stimulation and low-duty cycle AC 
stimulation (which more closely approximates that used clinically) in a hippocampal slice 
epilepsy model.   They demonstrated that continuous sinusoidal, 50% duty-cycle sinusoidal, 
and 1.68% duty-cycle pulsed stimulation (120μsec, 140Hz) all suppressed low-Ca2+ 
epileptiform activity.   Continuous sinusoidal stimulation was also found to completely 
suppress picrotoxin-induced epileptiform activity.  AC stimulation resulted in an increase in 
extracellular potassium concentration and neuronal depolarization blockade, and was not 
found to be slice orientation-selective.  DC stimulation by contrast, suppressed epileptiform 
activity only in the region surrounding the electrode, and did so by membrane 
hyperpolarization.   
Jensen and Durand (Jensen & Durand 2007) recently demonstrated that in vitro sinusoidal 
high frequency stimulation of rat hippocampal slices suppresses axonal conduction.   
Stimulation was found to suppress the alvear compound action potential as well as the 
antidromic evoked potential.   The stimulation frequency at which maximal suppression 
occurred was between 50 and 200 Hz, similar to that observed in most clinical DBS studies. 
The degree of suppression of axonal conduction correlated with a rise in extracellular 
potassium demonstrating that stimulation may block axonal activity through non-synaptic 
mechanisms.  

4.1.3 STN and SNr 

DBS of the substantia nigra pars reticulata (SNr) completely blocked amygdala-kindled 
seizures in 10 of 23 (43.5%) rats studied by Shi (Shi 2006).  Microwire electrodes were 
implanted into the SNr and amygdala of adult male rats.  Seizures were produced by daily 
amygdala kindling, and DBS was delivered to the SNr bilaterally 1 sec after kindling 
stopped.  When the same amygdala kindling procedure was performed 24h later without 
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DBS, the kindling failed to elicit any seizures in 6 of the 10 rats. In 3 animals, only mild 
seizures appeared following amygdala kindling. Only 1 of the 10 responders exhibited stage 
5-kindled seizures 24h after DBS was discontinued.  In 9 of the 10 responders, the period of 
seizure suppression or reduction lasted for up to 4 days.  The authors concluded that highly 
plastic neural networks may be involved in amygdala-kindled seizures and that DBS may 
exert long lasting effects on these networks.   
In contrast, when Usui et al. (Usui et al. 2005) tested SNr DBS in rats with KA induced 

seizures they found no treatment effect.  They compared one group of rats with a unilateral 

SNr electrode to a second group with a unilateral subthalamic nucleus (STN) electrode.  A 

control group received no electrodes.  KA was systemically administered to all three groups 

to induce limbic seizures, and DBS of the STN or SNr was begun immediately afterward.  

EEG changes and the magnitude of clinical seizures were then evaluated.  They 

demonstrated that unilateral STN stimulation significantly reduced the duration of 

generalized seizures on EEG. Interestingly, the duration of focal seizures on EEG was 

prolonged by STN DBS, a result felt possibly due to the suppression of secondary 

generalization. In addition, STN DBS reduced the severity of clinical seizures. The group 

receiving SNr DBS demonstrated no significant effect when compared to the controls. They 

concluded that unilateral STN DBS suppresses secondary generalization of limbic seizures. 

The failure of SNr DBS to reduce secondary generalization was felt to imply that, while 

nigral influence on seizure propagation may be important, other antiepileptic mechanisms 

such as antidromic stimulation of the corticosubthalamic pathway may also be involved. 

4.1.4 Anterior nucleus of the thalamus 

The hypothesis that the ANT participates in the propagation of some forms of seizures is 
supported by experimental animal studies.  Low frequency (8Hz) stimulation of the ANT 
has been found to be epileptogenic (Lado et al. 2003).  Seizures can be induced in guinea 
pigs by microinjection of KA, BIC, or PTZ into the ANT. (Mirski et al. 1986)  Hamani et 
al.(Hamani et al. 2004) discovered that bilateral, high frequency ANT DBS delays the onset 
of status epilepticus (SE) after exposure to pilocarpine.  In their study, adult Wistar rats 
underwent unilateral or bilateral ANT lesioning, or unilateral or bilateral ANT DBS 
electrode placement. The control group received bilateral ANT electrodes but no 
stimulation.   Seven days later, the animals were given pilocarpine, after which EEG 
recordings and ictal behavior were evaluated.  In the control group, 67% of the animals 
developed SE with a latency of 15.3 +/- 8.8 minutes after pilocarpine administration. 
Neither unilateral ANT lesions nor unilateral ANT DBS significantly reduced the likelihood 
or latency of SE.  Bilateral ANT DBS did not prevent SE (observed in 56% of the animals), 
but did significantly prolong the latency to 48.4 +/- 17.7 min (p = 0.02). Interestingly, no 
animals with bilateral ANT lesions developed SE with pilocarpine.  

4.2 DBS clinical studies at various anatomic sites 
4.2.1 Cerebellum 

Cooper et al. (Cooper et al. 1976) were the first to report on CS for epilepsy, and observed 
that 10 of the 15 patients in the trial experienced a reduction in seizure frequency of ≥50% 
when followed up to 3 years. Stimulation of the anterior lobe appeared to be more effective 
than that of the posterior lobe.  Cerebellar biopsies, obtained in five patients at the time of 
lead placement, revealed a reduction in the molecular layer, decreased or absent Purkinje 
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cells, and decreased stellate cells. One patient, who failed to respond to stimulation, died as 
a result of a seizure 17 months after implantation. Davis and Emmonds(Davis, 1992 4120 ) 
subsequently discovered that 23 of 27 evaluable patients who underwent long-term (average 
follow-up 14.3 years) CS had an overall reduction in seizure frequency. Interestingly, 12 of 
the patients had a non-functioning stimulator at the time of the report and yet 5 were found 
to be seizure-free, while 7 had experienced a reduction in seizure frequency.   
Wright et al. (Wright et al. 1984) examined twelve patients with severe, intractable epilepsy 

who underwent CS under double-blind conditions for six months.  The trial was divided 

into three phases, each lasting two months.  Patients received two months of continuous 

stimulation (alternating from one cerebellar hemisphere to the other every minute), two 

months of contingent stimulation (during which both hemispheres were stimulated only 

while a button was depressed by the patient or family member), and two months of no 

stimulation.  The sequence of phases was randomly assigned and the patients, family 

members, and evaluators were blinded to each epoch.  No reduction in seizure frequency 

occurred that could be attributed to stimulation. However, most patients reported a 

reduction in the duration and severity of seizures although these were not measured during 

the study. Eleven of the patients considered that the trial had helped them and wished to 

continue “stimulation” at the conclusion of the trial. 

Velasco et al. (Velasco et al. 2005), in a more recent double-blind trial with two years of 

follow-up in five patients undergoing CS, demonstrated improvement in seizure 

control. Beginning one month after implantation and for a period of 3 months, 3 patients 

were assigned randomly to receive stimulation while 2 others had their stimulators left 

OFF. After the fourth month, all patients were then ON stimulation for the next 6 months.  

During the 3-month double-blind phase, the two patients with stimulation OFF 

demonstrated no difference in mean seizure rate compared to baseline.  During the same 

phase, the 3 patients with stimulation ON demonstrated a reduction in seizure rate to 33% 

of baseline.  At the end of the subsequent 6 months, all five patients had a mean seizure rate 

of 41%(range 14-75%) of baseline. The improvement in generalized tonic-clonic seizures 

occurred earlier and to a greater degree than that for tonic seizures.   

It is likely that CS results in the activation of Purkinje cells which exert inhibitory output on 

the deep cerebellar nuclei.  CS likely reduces excitatory cerebellar output from these nuclei 

to the thalamus, leading to a reduction in output from excitatory thalamocortical 

projections, and thus inhibition of cortical activity. (Molnar et al. 2004)   

4.2.2 Hippocampus 

Evidence strongly suggests that the hippocampus is involved in the initiation and 
propagation of temporal lobe seizures. (Swanson et al. 1995; Sperling et al. 1992)  Velasco et 
al. (Velasco et al. 2000) demonstrated that hippocampal stimulation using electrode grids or 
depth electrodes significantly reduced interictal spikes and abolished complex partial and 
secondarily generalized tonic-clonic seizures in 7 of 10 patients with intractable temporal 
lobe epilepsy.  The same group, in a subsequent study, observed that chronic hippocampal 
stimulation in three patients reduced seizure activity without affecting short-term memory. 
(Velasco et al. 2001)   
Vonck et al. (Vonck et al. 2002) conducted an open label trial involving three patients with 
complex partial seizures who underwent DBS of the amygdalohippocampal region.  Two 
DBS electrodes were implanted in each hemisphere through two occipital burr holes. This 
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procedure was performed on the same day as placement of subdural grids and strips.  The 
most anterior electrode on each side was placed in the amygdala. The second electrode was 
placed more posteriorly in the anterior part of the hippocampus on each side.  AEDs were 
gradually tapered until seizures were observed.  During a trial phase, stimulation was 
applied to both the amygdalar and hippocampal electrodes.  The frequency was set to 
130Hz and pulse width to 450μsec.  Seizure frequency during the chronic stimulation 
condition was then compared with the mean monthly seizure frequency recorded 6 months 
before DBS placement.  At a mean follow-up of 5 months (range, 3-6 months), all three 
patients had a greater than 50% reduction in seizure frequency. In two of the patients, AEDs 
were tapered. No side effects of stimulation were noted by the patients.       

4.2.3 Centromedian nucleus of the thalamus (CMT) 

The CMT arises from the diencephalon and brain stem, projecting diffusely to the cerebral 
cortex as part of the ascending subcortical system.  The CMT may play a role in the 
pathophysiology and propagation of seizures. (Velasco et al. 2000)  DBS of the CMT may 
result in hyperpolarization and desynchronization of the ascending reticular and cortical 
neurons. (Velasco et al.  2000)   
Fisher et al. (Fisher et al. 1992)   implanted programmable stimulators into CMT bilaterally 

in 7 patients with intractable epilepsy to test feasibility and safety. Stimulation was ON or 

OFF in 3-month blocks, with a 3-month washout period in a double-blind, cross-over 

protocol. The stimulation was delivered as 90 μsec pulses at 65 pulses/sec, 1 min. of each 5 

min. for 2 hours/day.  They noted a mean reduction of tonic-clonic seizure frequency of 30% 

with respect to baseline when the stimulator was ON compared to a decrease of 8% when 

the stimulator was OFF.  Stimulation at low intensity produced no changes in the EEG, but 

high-intensity stimulation induced slow waves or 2-3 Hz spike-waves with ipsilateral 

frontal maximum. When the stimulator trains were continued for 24 hours/day, 3 of 6 

patients reported at least a 50% decrease in seizure frequency. There were no side effects 

reported.  

A recent trial of CMT DBS in 13 patients with Lennox-Gastaut Syndrome (LGS) revealed an 

overall seizure reduction rate of 80 percent, and significant gains in quality of life. (Velasco 

et al. 2006)  LGS is one of the most severe forms of childhood epilepsy characterized by 

drug-resistant generalized seizures in conjunction with mental deterioration.   The overall 

prognosis is very poor with 90% of patients being mentally retarded and 80% continuing 

seizures into adulthood.  The 13 patients implanted in this study tolerated the procedure 

well, although two had to be explanted due to multiple repeated erosions through the 

skin.  Three patients experienced no improvement in their ability scale score due to 

persistent seizures.   Two patients became seizure-free during the 18 month follow-up, while 

8 experienced progressive improvement (5 of the 8 became completely independent). 

4.2.4 Subthalamic nucleus 

The abundant experience of STN DBS for treating patients with Parkinson's disease makes 
STN a familiar and attractive target (Halpern et al. 2007). The substantia nigra pars reticulata 
(SNr) appears to be involved in propagation of seizures through GABAergic projections to 
the superior colliculus (Gale et al. 1986) .   It is recognized that STN outputs produce 
excitatory influence over the SNr system, and that electrical or pharmacologic inhibition of 
the STN in rats can result in seizure suppression. (Vercueil et al. 1998) 
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High frequency bilateral STN DBS in a child with cortical dysplasia and inoperable epilepsy 
resulted in an 83 percent improvement in seizure frequency at 30 months, reduction in 
seizure severity, and a recovery of motor function. (Benabid et al. 2001)  In the same report, 
Benabid noted a 50% reduction in seizures in one patient with severe myoclonic epilepsy 
undergoing bilateral STN DBS.  
Loddenkemper et al. (Loddenkemper et al. 2001) reported on five patients undergoing STN 

DBS implantation for pharmacologically intractable seizures. The patients underwent 

constant stimulation at a frequency of 100Hz, and stimulus duration of 60 μsec.   In 2 of the 5 

patients, an 80% reduction of seizures was noted after 10 months and 60% reduction at 16 

months.  They hypothesized that the dorsal midbrain anticonvulsant zone in the superior 

colliculus is under inhibitory control of efferents from the SNr.  In this model, inhibition of 

the STN is believed to reduce the inhibitory effect of the SNr on the dorsal midbrain 

anticonvulsant zone, thereby raising the seizure threshold.  

Chabardes et al. (Chabardes et al.  2002), in an open label study of STN DBS,  implanted 5 

patients with medically intractable seizures who were considered unsuitable for resective 

surgery.   A 67-80% reduction in seizure frequency was noted in 3 of the 5 patients. A fourth 

patient with severe myclonic epilepsy (Dravet syndrome) had a less impressive reduction.  

The fifth patient, who showed no improvement with the treatment, suffered from an 

autosomal dominant form of frontal lobe epilepsy.  

More recently, Handforth et al. (Handforth et al. 2006) reported their results in two patients 

with refractory partial onset seizures who were treated with bilateral STN DBS.  In one 

patient, seizure frequency was reduced by one-third, and the patient's quality of life was 

improved as a result of milder, less harmful seizures.  The other patient continued to have 

seizure-related injuries in spite of a 50% reduction in seizure frequency.  To better 

understand the potential of STN DBS as a treatment for medically refractory epilepsy, more 

trials will be necessary. 

4.2.5 Caudate nucleus 

The caudate loop is a functional unit made up of the neocortex, thalamus, and head of the 
caudate nucleus (HCN) (Heuser et al. 1961).  Chkhenkeli et al. (Chkhenkeli et al 2004) 
examined 57 patients with test stimulation of the HCN, 17 of whom went on to have 
implantation of a neurostimulator for therapeutic purposes.  They discovered that short 
duration, high frequency (2-5s, 30-100Hz) stimulation of the dorsal and ventral HCN 
produced enhancement of epilieptiform spike and/or sharp wave activity. By contrast, low 
frequency (4 to 8Hz) stimulation of similar duration reduced the frequency of sharp 
transients in the interictal epileptic activity and truncated epileptic discharges from the 
temporal neocortex.  Overall, 14 of 17 patients experienced a reduction in seizure frequency. 
They postulated that activation of the head of the CN results in hyperpolarization of cortical 
neurons, and that stimulation-induced inhibition can theoretically suppress seizure activity. 

4.2.6 Anterior nucleus of the thalamus (ANT) 

Low frequency (8Hz) stimulation of the ANT has been found to be epileptogenic.(Lado et al. 
2003)  Seizures can be induced in guinea pigs by microinjection of the excitatory agents KA, 
BIC, or PTZ into the ANT. (Mirski et al. 1986)  Placement of DBS electrodes bilaterally into 
ANT delays the onset of status epilepticus after exposure to pilocarpine. (Hamani et al. 
2004)  Given the absence of anticonvulsant effect noted in numerous studies, as well as the 
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proconvulsant effects noted in others, the efficacy of chronic ANT DBS for epilepsy in 
animal studies remains incompletely defined. (Hamani et al.  2004; Lado et al. 2006) 
Upton et al. (Upton et al. 1987) treated six patients (five male, one female, mean age 23.7 
years) with debilitating, medically refractory seizures by pulsed electrical stimulation of the 
ANT.  In four of the six patients, statistically significant reduction in seizure frequency was 
obtained.  In two of the six patients, they observed changes in regional cerebral glucose 
metabolism, serum levels of AEDs, and serum cortisol levels ON and OFF stimulation.  
They concluded that stimulation of the ANT produces not only clinical and 
electroencephalographic changes, but also changes in cerebral metabolic, endocrinologic 
and pharmacokinetic responses. 
Recently, Osorio et al. (Osorio et al. 2007) reported on the safety and efficacy of high 
frequency ANT stimulation in patients with inoperable MTL epilepsy.  Four patients 
underwent bilateral implantation of DBS leads in the ANT, followed six weeks later by 
generator implantation.  The mean stimulation parameters were: 175 Hz, 4.1V, pulse width 
of 90μsec.  The stimulation was intermittent with one minute ON and five minutes OFF.  The 
efficacy of stimulation was evaluated by comparing seizure frequency during a 36-month 
treatment period to a 6-month baseline obtained prior to implantation.  They noted a mean 
reduction in seizure frequency of 75.6% (range 53-92%).  Quality of life indices improved in 
all four subjects, and there were no serious adverse events reported.  They concluded that 
high frequency intermittent thalamic stimulation is safe and efficacious for inoperable MTL.   
Lee et al. (Lee et al. 2006) reported on six patients with medically refractory, surgically 
inoperable epilepsy who were implanted with DBS electrodes (three in ATN, three in STN).  
Seizure frequency and severity were observed and compared to baseline.  The stimulators 
were turned ON one week after insertion of the electrodes. The patients undergoing 
implantation within ANT experienced a 75.4% reduction in seizure frequency, while those 
with STN electrodes had their seizure frequency reduced by 49.1%.   
Long-term follow-up was reported by Lim et al. (Lim et al. 2007) in four patients who 
underwent bilateral DBS implantation within the ANT.  Initial stimulation parameters were 
90-110Hz, 4-5V, and 60-90μsec.  For each patient, seizure frequency at baseline and after 
implantation was analyzed.  An average reduction in seizure frequency of 67% (range 44-
94%), was noted during the sham interval.  Once the stimulators were turned ON, a 49% 
(range 35-76%) reduction in seizure frequency was noted over the subsequent follow-up 
period (mean 43.8 months, range 33-48 months).  One patient inadvertently had the 
stimulator turned OFF from months 7-12, during which the seizure frequency increased 
compared to baseline.  No significant difference in seizure frequency was noted between the 
cycling and continuous stimulation intervals.  One patient was seizure-free on medication 
for 15 months after implantation.  No permanent neurological morbidity was observed.  
While a reduction in seizure frequency was noted during this study, the authors could not 
demonstrate whether a lesioning effect, subsequent stimulation, or changes in AEDs had the 
greatest impact. 
Hodaie et al. (Hodaie et al. 2002) implanted bilateral DBS electrodes in the ANT of five 
patients with medically refractory epilepsy who were not eligible for resective surgery.  The 
stimulators were then turned ON 4 weeks after implantation.  Stimulation parameters were: 
100Hz, 10V, 90μsec pulse width, cycling one minute ON and five minutes OFF, alternating 
left and right sides.   AEDs were unchanged for the duration of the study.   For each of the 
patients, pre- and post-operative seizure rates were evaluated using a one-way analysis of 
variance (ANOVA; F test).  The average follow-up time was 14.9 months (range 10.6-20.7 
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months).  The seizure reduction rate ranged between 24 and 89% (mean 53.8%, p<0.05).  
Two of the patients had >75% reduction in seizure frequency.  They noted that merely 
inserting the electrodes resulted in reduced seizure frequency, and that turning the 
stimulator ON at 4 weeks yielded no additional reduction. After an interval of continuous 
stimulation ranging from 7-17 months, each of the patients had their stimulators turned OFF 
in a blinded fashion for 2 months.  Seizure rates were then compared between these ON and 
OFF intervals.  No significant difference in the rate of seizure reduction was observed 
between the two intervals.  The only adverse surgical event was erosion of the skin over the 
DBS site, requiring wound revision in one patient.   
Kerrigan et al. (Kerrigan et al. 2004) conducted an open-label pilot study in 5 patients to 
investigate the safety and tolerability of bilateral stimulation of the ANT and to investigate the 
range of appropriate stimulation parameters.   Patients enrolled in the study had medically 
intractable partial seizures and were not candidates for surgical resection.  Four of the five 
patients also had secondarily generalized seizures.  After completing implantation, long-term 
ANT stimulation was then performed intermittently, with the stimulator on each side 
programmed to produce 1 min of stimulation every 10 min.  Stimulation on each side was 
offset by 5 min. Stimulation parameters were: frequency of 100 Hz, pulse width of 90μsec and 
intensity of 1-10V.   The voltage was incrementally increased over a period of 12-30 weeks, 
depending on the clinical response of each patient.  Seizure counts were monitored through 
the use of daily diaries and were compared to baseline.  AEDs were unchanged during the first 
3 months of stimulation, but were adjusted thereafter.    The baseline average monthly seizure 
frequency across all five patients was 46.8 +/- 26.4 (mean +/- SD).  During the 12-month 
treatment period of high-frequency stimulation, the average monthly seizure frequency for the 
group dropped to 25.0 +/- 11.5 (mean +/- SD), although this was not a statistically significant 
difference.  Only one subject had a statistically significant (p < 0.05) reduction in overall 
seizure frequency.   However, 4 of the 5 patients demonstrated reduction in the incidence of 
injurious seizures to <50% of their baseline incidence.  
Andrade et al. (Andrade et al. 2006) reported the long-term follow-up of 6 patients who 
underwent bilateral ANT DBS for epilepsy.  Three patients had generalized epilepsy with 
tonic-clonic seizures while the other three had multi-focal/partial epilepsy with secondarily 
generalized seizures.  Programming was initiated 1 month after insertion of electrodes.  
AEDs were not changed for the two years of follow-up.  Stimulation parameters were: 
frequency of 100-185Hz, intensity of 1-10V, and pulse duration of 90-120μsec.  The first five 
patients implanted underwent a 2-month, single-blind period of sham stimulation, during 
which the generator was OFF.  Implantation of the DBS electrodes resulted in statistically 
significant reduction in seizure frequency in all six patients.  Five of the patients had a 50% 
or greater reduction, although two of the patients received no benefit until years 5 and 6, 
and only after changes in AEDs.   Changes made to stimulation parameters could not be 
correlated with success in seizure control.  Moreover, during the single-blind, 2-month 
period of stimulation OFF, there was no difference in seizure rates.   The only adverse event 
was a 4-day period of lethargy in one of the patients.  Otherwise, even at maximum voltage, 
the patients were not able to tell if their stimulators were ON or OFF. 

5. Responsive neurostimulation (closed-loop) 

In contrast to open-loop stimulation, contingent or closed-loop stimulation is designed to 
suppress epileptiform activity by stimulating a target directly in response to abnormal EEG 
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activity.   This form of closed-loop, responsive brain stimulation, is currently available in a 
clinical setting in the form of the RNS system by Neuropace (Mountain View, CA).  It is 
currently being evaluated in a multi-center, double-blinded, randomized trial to assess the 
safety and efficacy. 

5.1 Animal studies 

In 1983, Psatta first examined the effects of low-frequency (5 hz) feedback caudate nucleus 

stimulation on the interictal spiking activity of epileptic foci detected in adult cats.(Psatta et 

al. 1983)  Spike depression was found to occur immediately after the onset of feedback 

stimulation and became stable after 3-4 days.  Similar effects were not observed when the 

caudate nucleus was stimulated randomly, nor as a result of contingent stimulation of other 

subcortical structures.  He hypothesized the existence of a recurrent inhibitor caudate-

cortical loop as the anatomic mechanism for the normalization of cortical excitability.  

In 1991 Nakagawa and Durand presented the effects of applied current on spontaneous 

epileptiform activity in the CA1 region of the rat hippocampus.(Nakagawa & Durand 1991)  

A computer-controlled system was used to detect spontaneous, abnormal EEG activity in a 

slice model using elevated potassium artificial CSF.   The system, in response to the 

abnormal EEG activity, delivered electrical currents (average 12.5 microA) to the stratum 

pyramidale which suppressed interictal bursts in 90% of the slices.   Using intracellular 

recordings, they determined that the currents induced hyperpolarization of the somatic 

membrane, thereby inhibiting neuronal firing.  

In 1998, Kayyali and Durand reported their results from recordings of the CA1 region in a 

rat hippocampal slice model in which low-Ca2+ artificial CSF was used to induce 

spontaneous epileptiform events.(Kayyali, & Durand 1991)   Activity was recorded with a 

glass pipette electrode and voltage threshold detector, after which current (average 3.8 

microA) was injected in the stratum pyramidale via a tungsten electrode placed 150 microns 

from the recording site.    They observed a complete suppression of epileptiform events by 

subthreshold anodic current pulses that in some cases were shorter in duration than the 

event itself.  

5.2 Clinical studies 

The first clinical experiments demonstrating the application of responsive stimulation were 
trials conducted on patients undergoing invasive monitoring and stimulation mapping to 
localize seizure onset prior to a planned epilepsy surgery.  In stimulation mapping, electrical 
pulses are applied at increasing amplitudes until a clinical alteration or after-discharge is 
evoked.   Lesser et al. reported that short duration (0.3-2 s) pulses were more effective than 
longer duration (4-5 s for typical stimulation mapping) pulses in reducing after-
discharges.(Lesser et al. 1999)  Specifically, they noted that for a every 1-s increase in 
stimulation duration, there was a 40% reduction in eliminating after-discharges.   In a 
related report, Motamedi et al. (Motamedi et al. 2002) demonstrated  that stimulation pulses 
were more effective in eliminating after-discharges if applied early. 
Although after-discharges are similar in morphology to spontaneous discharges and can 
evolve into seizures, they are not the same as spontaneous epileptiform activity.  Delivering 
a stimulation in response to spontaneous epileptiform activity requires an integrated system 
that analyzes the EEG in real-time and automatically produces pulses in response to a 
detected event.   Peters et al. described such a system in 2001 consisting of a combination of 
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custom-written software and commercially available hardware  and software.(Peters et al. 
2001)   The custom-written software included a unique detection algorithm to detect events 
early and nearly in real time.(Osorio et al. 1998)  Using this system, the authors were able to 
detect electrographic seizure onset with a latency of approximately 4-12 seconds, noting that 
in most of their patients the clinical onset was multiple tens of seconds later. (Osorio et al. 
2002; Osorio et al. 2005)  This system was evaluated in a trial of eight patients.  In four of 
these patients, the stimulation was automatically delivered to the ANT, while the other four 
had responsive stimulation administered into the epileptogenic zone.   The authors 
observed three of four responders (>50% seizure reduction) in the group with direct 
stimulation of the epileptogenic zone, and two of four responders in the patients receiving 
stimulation to the ANT.  
Kossoff et al. reported on four patients treated with responsive stimulation while implanted 

with electrodes for purposes of localization.(Kossoff et al. 2004)  This open trial evaluated 

clinical and EEG responses to stimulation from an external device that detected 

electrographic seizures and delivered preprogrammed stimulation.   In all four patients 

responsive stimulation appeared to be safe and well tolerated, although two patients 

experienced sensations in the face and tongue.   While the study was designed to evaluate 

efficacy, stimulation appeared to reduce the number of clinical and electrographic seizures.   

5.3 The neuropace RNS system 

Success with external responsive neurostimulators in the prior animal and clinical studies 

led to the development of the first implantable system for epilepsy, the RNS system by 

Neuropace.   This device is capable of performing real-time seizure detection and applying 

responsive electrical stimulation to abort seizures.    The device is made up of intracranial 

depth and strip leads and an implanted neurostimulator.  The system is controlled by a 

microprocessor, powered by a battery, and continuously monitors electrographic activity 

from the leads, applying preprogrammed stimulation in response to detected events. 

Because the system has two leads (each with four electrode contacts) , it can monitor and 

deliver responsive neurostimulation to two different epileptogenic regions simultaneously.  

In addition to the implantable hardware, the system includes a patient data transmitter, a 

physician programming device, and a telemetry wand.   The transmitter allows the patient 

to upload  data between visits to allow remote monitoring.  The programmer is utilized by 

the physician to retrieve stored information from the neurostimulator, and to program 

detection and stimulation settings.   The telemetry wand provides wireless communication 

between the neurostimulator and the programmer.  The system and patient data can be 

uploaded to a central patient data management system via the web allowing the physician 

to monitor the patient remotely. 

The stimulator delivers constant-current, biphasic, charge-balanced pulses upon detection of 
an seizure.   The detection tools can be adjusted by the physician to optimize the trade-off 
between sensitivity and specificity for a given patient.  Two detectors can be independently 
programmed for either of the two sensing channels.  The device can be programmed by the 
physician to deliver stimulation frequencies ranging from 1-333 Hz, pulse widths from 40 to 
1000 mic sec, and current amplitudes from 1-12 mA.  Stimulation can be configured to apply 
current between any combination of electrodes and the device case.   Parameters for 
stimulation are empirically determined, although the system is designed to limit current 
density to less than 25 micC/cm2 per phase.   In addition, programming options include 
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bipolar stimulation across electrode pairs or stimulating across all eight electrodes to the 
case.  
Experience with the RNS system includes a feasibility study of 65 patients which revealed 
excellent safety and tolerability and preliminary evidence of efficacy.(Sun et al. 2008)  An 
interim analysis of 39 of the subjects revealed no serious device-related unanticipated 
adverse events.  In the first 24 patients who had complete data, the responder rate (>50% 
reduction in seizures) was 43% for complex partial seizures and 35% for simple partial, 
complex partial or secondarily generalized tonic-clonic seizures. At the time of this writing, 
a double-blinded, randomized, multicenter clinical trial is underway to determine whether 
the RNS System is safe and effective as an adjunctive treatment for medically refractory 
partial-onset seizures.   

6. Conclusion 

In spite of optimal medical management, many patients with epilepsy remain medically 
refractory and suffer from debilitating seizures.  Many of the medically refractory patients 
are not candidates for surgery because of the inability to localize a resectable focus.  Some of 
these patients may benefit from neuromodulatory treatment.   A variety of targets may be 
suitable for implantation and no current studies exist to favor one target over another, or 
even one modality over another.  Additional studies are needed to identify the appropriate 
patient population for neuromodulation, the optimal target, the best stimulation modality, 
and the best stimulation parameters within that modality.  It may be that a complex 
pathologic entity as heterogeneous as epilepsy cannot be addressed via a single target or 
even technology.  Differences in stimulation parameters within the same anatomic target 
make it difficult to compare the available animal and clinical studies, perhaps raising more 
questions than have been answered.  Is unilateral DBS sufficient or is bilateral stimulation 
necessary to prevent seizures?  What is the ideal voltage, current, and frequency of 
stimulation that results in suppression of seizures while minimizing damage to the 
underlying tissue?  What is the ideal waveform?   Is the most effective stimulation paradigm 
continuous or intermittent?  If intermittent, should the stimulus be at regular intervals or 
closed-loop, contingent upon detection of a seizure?  If the stimulus needs to be bilateral and 
intermittent at regular intervals, should it alternate from side to side?  If so, how often?  
Further studies are needed to determine whether open-loop or closed loop stimulation 
paradigms are more effective.  Ultimately, the two methods may be found to be 
complementary and used in differing populations of patients.  It is conceivable that they 
may even be combined within the same patient: open-loop stimulation for seizure 
prophylaxis and closed-loop stimulation for acute seizure interruption.  The appearance of a 
lesioning effect arising in some studies but not others is problematic, making it difficult to 
compare ON and OFF intervals. This must be resolved before DBS can be embraced as a 
treatment option for epilepsy.   
Advanced diagnostics, including magnetoencephalography and modern functional 
imaging, are likely to play an increasing role in determining appropriate treatment targets.  
Although it has already met with some success in the clinical arena, the successful future of 
DBS for the treatment of refractory epilepsy is contingent on the continued collaboration of 
clinician and scientist.  Our technical capabilities have grown at a rate that may well have 
surpassed our understanding of the complex neurobiology that we aim to modulate.  A 
greater knowledge of what local electrical and neurochemical alterations have led to success 
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in current stimulation models will help ensure reproducibility in those to come.   
Understanding these relationships may enable future technologies, perhaps even 
nanotechnologies, to flourish in the developing field of therapeutic neuromodulation.  
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