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1. Introduction  

Abnormal extracellular matrix (ECM) remodeling is a prominent biological feature of 
progressive glomerulonephritis (GN), and leads to glomerular dysfunction and sclerosis 
(Kagami et al., 2001; Prols et al., 1999). This condition is pathologically manifested in all the 
three major cells types of the glomerulus, and is characterized by the accumulation of 
fibronectin, laminin, and collagen in the diseased glomeruli (Kagami et al., 2004; Schnaper et 
al., 2003). Published genetic data (Boute et al., 2000; Kaplan et al., 2000; Patrakka et al., 2000) 
and the finding of podocyte abnormalities in transgenic mouse models of glomerulosclerosis 
(Shih et al., 1999) and patients with focal segmental glomerulosclerosis (Srivastava et al., 
2001) suggest that the visceral epithelial cell plays a significant role. This assertion is 
supported by earlier data implicating potential epithelial cell stressors, such as glomerular 
hypertension, hyperfiltration, or hypertrophy in sclerosis (Brenner, 1985). Some models 
implicate the endothelial cells in the sclerotic process (Akaoka et al., 1995; Lee et al., 1995b). 
Still others suggest a role for the mesangial cells (MC) (Habib, 1973). As seen in human GN 
and experimental rat GN models, activated MCs acquire increased mitogenicity and 

migratory activity, and exhibit de novo synthesis of -smooth muscle actin (-SMA) and 
interstitial collagen (Hugo et al., 1996; Johnson, 1994). In addition, filtered macromolecules 
may be trapped in the mesangium, initiating an inflammatory response that could play a 
role in stimulating ECM synthesis. A unifying hypothesis that includes participation of all 
the cellular elements of the glomerulus can be constructed. Glomerular capillary 
hypertension, or a genetic or acquired abnormality in podocyte adhesion or structure, 
permits hyperfiltration of macromolecules. Paracrine signals from the injured podocyte 
stimulate endothelial cell expression of leukocyte adhesion molecules and impair 
endothelial cell fibrinolytic activity. Signals from epithelial or endothelial cells to the 
mesangium, or direct delivery of proinflammatory substances through the glomerular 
filtrate, initiates a process that culminates in the accumulation of ECM (Schnaper and Kopp, 
2003). Mesangial expansion infringes on the capillary spaces, decreasing filtration surface 
area in the glomerular tuft. A major concept emerging from molecular cell biological studies 
is that pathological mesangial remodeling in progressive kidney disease is caused by 
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uncontrolled interactions between MCs, ECM, and growth factors (Rupprecht et al., 1996). 
Recent efforts have been directed towards modeling the cellular events regulating 
glomerular ECM turnover. Clarifying the molecular and cellular mechanisms responsible 
for pathological ECM remodeling may help to elucidate the pathogenesis of progressive 
glomerular sclerosis (Gruden et al., 2000; Krepinsky et al., 2003). A variety of physiological, 
pharmacological, and molecular approaches have been used to study how various 
mediators initiate or modify intracellular signaling pathways to cause mesangial cell matrix 

accumulation. These factors include transforming growth factor (TGF)- (Border and Noble, 
1997), basic fibroblast growth factor (bFGF) (Haseley et al., 1999), platelet-derived growth 
factor (PDGF) (Haseley et al., 1999), angiotensin II (Ang II) (Mezzano et al., 2001), connective 
tissue growth factor (CTGF) (Gupta et al., 2000), and various eicosanoids (Ledbetter et al., 
1990). 

2. The renin-angiotensin system (RAS) in GN 

The RAS plays an important role in fluid and electrolyte homeostasis, the development of 
hypertension, and the progression of renal disease (Anderson et al., 1986; Navar et al., 1999). 
Recently, the focus of interest on the RAS has shifted towards the role of the local RAS in 
specific tissues (Dzau and Re, 1994). The local RAS in the kidney has several 
pathophysiological functions not only in regulating blood pressure, but also in renal cell 
growth and production of glomerulosclerosis, which is induced during the development of 
renal fibrosis (Kagami et al., 1994; Ruiz-Ortega and Egido, 1997). Indeed, previous studies 
have shown that RAS blockades have beneficial effects in rats and humans with various 
renal diseases, and these effects are often considerably more significant than their 
suppressive effects on blood pressure (Horita et al., 2004; Ravid et al., 1998). Chronic GN, 
which results in substantial renal damage, is frequently characterized by relentless 
progression to end-stage renal disease.  Renal Ang II, whose production is enhanced in 
chronic GN, can elevate the intraglomerular pressure, increase glomerular cell hypertrophy, 
and augment ECM accumulation (Brunner, 1992; Kohan, 1998). Ang II antagonists or 
synthesis inhibitors markedly decelerate, and can even prevent, renal deterioration in renal 
disease (Anderson et al., 1986; Brunner, 1992; Giatras et al., 1997; Lafayette et al., 1992). This 
may be a reflection of the relatively short-term nature and small sample size of these studies, 
but may also be an indication that factors other than Ang II play an important role in the 
progression of GN. 

3. Mitogen-activated protein kinase (MAPK) 

The MAPK signaling pathway is a highly conserved module involved in various cellular 
functions, including cell proliferation, survival, differentiation, and migration (Fig. 1). 
Extracellular stimuli, such as growth factors and environmental stress, induce sequential 
activation of the MAPK cascade. At least four members of the MAPK family have been 
identified: extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase 
(JNK), and ERK5 (Nishimoto and Nishida, 2006). The cascade allows for signal 
amplification, modulation, and specificity in response to different stimuli (Ferrell, 1996; Rose 
et al., 2010). As with many signaling pathways, complex regulatory mechanisms are utilized 
to direct the functional outcome mediated by MAPKs. The prototypic ERK1/2 pathway is 
found to be mainly responsive to stimulation by growth factors (Ramos, 2008), while p38 
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and JNK are collectively called stress-activated MAPKs (SAPKs) due to their induction by 
physical, chemical, and physiological stressors (Kyriakis and Avruch, 2001). In addition, the 
ERK5 pathway is implicated in both growth and stress signaling (Hayashi et al., 2004). The 
specificity and efficiency of MAPK signaling pathways are often dictated by specific 
docking and bindings partners (Jacobs et al., 1999; Raman et al., 2007; Remenyi et al., 2005). 
These include positive and negative modulators and scaffolding proteins that help to bring 
upstream and downstream signaling components together (Dhanasekaran et al., 2007; 
Morrison and Davis, 2003; Pearson et al., 2001). Thus, MAPKs form complex signaling 
networks that can be induced by a large array of external stimuli, and can achieve highly 
specific cellular effects through multitudes of regulatory mechanisms (Rose et al., 2010).  
 

 

Fig. 1. Mitogen-activated protein kinase (MAPK) signaling. GPCR, G protein-coupled 
receptor; MLK, Mixed lineage kinase; TAK, TGF-β activated kinase; ASK, Apoptosis signal-
regulating kinase. 

3.1 ERK1/2 

ERK1 and ERK2 are isoforms of the classical MAPK. Both ERK1 and ERK2 are activated by 
MAP/ERK kinase 1 (MEK1) and MEK2, which are members of the MAPKK family 
(Nishimoto and Nishida, 2006). After stimulation by a variety of mitogens, including 
peptide growth factors, MEK1/2 is activated by MAPKKK-mediated phosphorylation. 
These MAPKKKs include Raf and Mos. MEK1/2 then phosphorylates threonine and 
tyrosine residues in the Thr-Glu-Tyr (TEY) sequence of ERK1/2, thereby activating it. 
Activated ERK1/2 phosphorylates many substrates, including transcription factors, such as 
Elk1 and c-Myc, and protein kinases, such as ribosomal S6 kinase (RSK). Subsequently, 
immediate early genes, such as c-Fos, are induced. At the cellular level, ERK1/2 regulates 
cell cycle progression, proliferation, cytokinesis, transcription, differentiation, senescence, 
cell death, migration, GAP junction formation, actin and microtubule networks, and cell 
adhesion (Ramos, 2008). Owing to its role in cellular biology, ERK1/2 is a prominent player 
in physiological settings, influencing the immune system and heart development and 
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participating in the cellular response to many hormones, growth factors, and insulin. The 
ERK1/2 pathway is activated not only by growth factors, serum, and phorbol esters, but 
also by G protein-coupled receptors (GPCR), cytokines, microtubule disorganization, and 
other stimuli (Goldsmith and Dhanasekaran, 2007; McKay and Morrison, 2007; Raman et al., 
2007). Prototypically, binding of growth factors (such as FGF) to their respective receptor 
tyrosine kinases (RTK) activates Ras, which recruits and activates Raf (MAP3K) at the 
plasma membrane. Once activated, Raf phosphorylates and activates MEK1/2. MEK1/2, in 
turn, activates ERK1/2 by phosphorylation of the Thr and Tyr residues in the conserved 
TEY motif within its regulatory loop. Activated ERK1/2 can phosphorylate downstream 
proteins, including many transcription factors, in the cytoplasm or nucleus.  

3.2 ERK5 

ERK5, also known as big MAP kinase 1 (BMK1), is twice the size of the other MAPKs (Lee et 
al., 1995a; Zhou et al., 1995). Since it is activated by oxidative stress and hyperosmolarity, 
ERK5 was initially documented as a MAPK family member activated by stress stimuli (Abe 
et al., 1996). Subsequently, ERK5 was also shown to be activated in response to serum, one 
of the well-known activators of ERK1/2 (Kato et al., 1997). Once activated, ERK5 exerts its 
kinase activity on a number of other protein kinases and transcription factors in both the 
cytosol and the nucleus. Furthermore, unlike other MAPKs, ERK5 has been shown to 
function directly as a transcriptional activator (Akaike et al., 2004; Kasler et al., 2000). 
Diverse biological roles of ERK5, including cell survival, differentiation, proliferation, and 
growth, have also been identified. ERK5 is reported to play a physiological role in neuronal 
survival, endothelial cell response to sheer stress, prostate and breast cancer, cardiac 
hypertrophy, and atherosclerosis (Hayashi and Lee, 2004; Nishimoto and Nishida, 2006; 
Wang and Tournier, 2006). Nerve growth factor, Ang II, high glucose, and other stimulators 
of ERK1/2 can also increase ERK5 activity (Kamakura et al., 1999). Similar to the ERK1/2 
pathway, the MEK-ERK5 pathway is blocked by MEK inhibitors (Kamakura et al., 1999). 
Thus, there are similarities between the activation modes and functions of the ERK5 and 
ERK1/2 pathways. However, recent studies have also identified some distinctive features of 
the ERK5 and ERK1/2 pathway (Mulloy et al., 2003; Squires et al., 2002). 

4. MAPKs in GN 

A number of former studies have reported that the MAPK pathway plays a crucial role in 
the development of renal diseases. Bokemeyer et al. reported that ERK1/2 activation occurs 
in the rat Thy-1 model of mesangioproliferative nephritis, and that inhibition of the ERK1/2 
pathway results in a significant reduction in mesangial cell proliferation in this model 
(Bokemeyer et al., 2000; Bokemeyer et al., 2002). The glomerular ERK1/2 was maximally 
activated on day 6 and represents a putative mediator of the proliferative response in 
mesangioproliferative GN. In addition, ERK1/2 activation in human glomerulopathies is 
associated with cell proliferation, histological lesions, and renal dysfunction (Masaki et al., 
2004). Thus, these studies showing ERK activation in damaged glomeruli raise the 
possibility that ERK1/2 is an important signal molecule for acute inflammation-induced 
cellular proliferation in GN. 
ERK5 was originally shown to be activated by stress stimuli or serum (Kamakura et al., 
1999; Kato et al., 1997). Other stimuli, such as oxidative stress, Ang II, and high glucose, can 
also activate ERK5 in various cell types (Kato et al., 2000). Previous reports have 
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demonstrated that ERK5 is activated in the glomeruli of diabetic nephropathy rat models, 
but not in normal control rats. High glucose also induces ERK5 activation in cultured MCs 
in vitro (Suzaki et al., 2004). It was suggested that ERK5 might be involved in glomerular 
injury during the pathogenesis of diabetic nephropathy. 

4.1 Animal experiments 

We have established a progressive model of mesangioproliferative GN, as previously 

described (Nakamura et al., 1999). Briefly, rats (n = 36) were uninephrectomized, and, 1 

week later, administered with a single intravenous injection of 2 mg of nephritogenic anti-

Thy-1 monoclonal antibody 1-22-3. This monoclonal antibody recognizes a critical epitope of 

the Thy-1.1 molecule on the mesangial cell surface. Upon binding to its epitope, the 

antibody induces severe complement-dependent mesangial cell injury. The injection of 

monoclonal antibody 1-22-3 into uninephrectomized rats induced chronic progressive 

glomerulosclerosis with marked proteinuria. Control rats (n = 6) only received a vehicle. Six 

rats were sacrificed at each time point (days 3, 7, 14, 28, and 56 after the monoclonal 

antibody injection). In addition, 6 rats were sacrificed as baseline controls (0 h) prior to the 

injection of monoclonal antibody 1-22-3, and 5 rats (Nx group) were injected with PBS one 

week post-uninephrectomy and sacrificed on day 56 after the injection. 
The right kidney of each rat was removed, immediately fixed in 10% buffered-formalin, 

embedded in paraffin, cut into 4-m sections, and stained with periodic acid-Schiff (PAS) 
reagent. The mean glomerular cell number, which was based on the total glomerular cell 
count per glomerular cross section after PAS staining, was calculated for 30 
glomeruli/kidney. A pathologist, who was blinded to the other findings, semi-
quantitatively analyzed the glomerulosclerosis score. The percentage of each glomerulus 
occupied by the mesangial matrix was estimated and assigned a code, according to the 
following system: 0, 0%; 0.5, 1-5%; 1, 5-25%; 2, 25-50%; 3, 50-75%; and 4, >75%. Frozen 

sections (3 m) were fixed in acetone, incubated with a rabbit anti-phospho-ERK5 antibody 
at 4ºC overnight, and then incubated with a FITC-conjugated donkey anti-rabbit IgG 
antibody. To evaluate the level of glomerular staining with each antibody, we performed a 
semi-quantitative analysis, according to the following scoring system: 0, diffuse, very weak 
or no mesangial staining; 1+, 1-25% of glomerular tufts exhibit focal increases in mesangial 
staining; 2+, 25-50% of glomerular tufts exhibit strong mesangial staining; 3+, 50-75% of 
glomerular tufts exhibit strong mesangial staining; and 4+, >75% of glomerular tufts exhibit 
strong mesangial staining. For each kidney section, 30 glomeruli were selected at random 
and evaluated in a blinded fashion by the same pathologist. The mean value per section was 

then calculated. Formalin-fixed tissue sections (3 m) were deparaffinized with xylene and 
rehydrated through a graded series of ethanol. Endogenous peroxidase was blocked by 
incubation with hydrogen peroxide, and the samples were heated at 121ºC for 15 minutes in 
0.01 mol/L citrate buffer (pH 6.0) for antigen retrieval. Next, the sections were incubated at 
4ºC for 24 hours with an anti-phospho-ERK1/2 antibody diluted in PBS containing 1% BSA. 
After washing with PBS, the sections were incubated with a biotinylated secondary 
antibody and avidin-biotin-peroxidase complex (ABC Elite; Vector Laboratories, 
Burlingame, CA), and developed with 3,3’-diaminobenzidine. Each section was 
counterstained with Mayer’s hematoxylin, dehydrated, and coverslipped. The phospho-
ERK1/2-positive cells in 30 full-size glomeruli were counted, and the mean value was 
calculated. 
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Fig. 2. Time course studies in glomerular histology and expression of phospho-ERK1/2 (p-
ERK1/2) and phospho-ERK5 (p-ERK5) in normal and glomerulonephritis (GN) rats. A: 
analysis of glomerular histology on periodic acid-Schiff (PAS)-stained sections and sections 
immunostained with anti-p-ERK1/2 or anti-p-ERK5 antibody. Magnification, ×200. B: semi-
quantitative assessment of glomerular ECM accumulation in normal and GN rats. C: semi-
quantitative assessment of glomerular p-ERK1/2 expression. D: semi-quantitative assessment 
of glomerular p-ERK5 expression. Values are mean +/- SD. *P < 0.05 vs rats at day 0. 

4.2 ERK1/2 and ERK5 expression in rat models of progressive GN 

Early induction of ERK1/2 phosphorylation was detected on days 3 and 7 of GN. A 
significant increase in phosphorylated ERK1/2 was not seen in the late phase of GN. In 
contrast to the time course of glomerular ERK1/2 phosphorylation, glomerular phospho-
ERK5 expression was very weak on day 3. However, the level of this expression increased in 
the expanded mesangial area by day 7, and dramatically increased in a typical mesangial 
pattern by days 28 and 56 (Fig. 2). The level of glomerular phospho-ERK5 expression closely 
paralleled the glomerulosclerosis score during the course of chronic anti-Thy-1-induced GN 
(P < 0.05). Treatment of GN rats with an Ang II type 1 receptor blocker (ARB) resulted in a 
significant decrease in phospho-ERK5 expression, accompanied by remarkable histological 
improvement. We have also previously reported that increased ERK5 phosphorylation is 
associated with MC proliferation and ECM accumulation in the glomeruli of 52-week-old 
OLETE rats, a model of type 2 diabetic mellitus (DM) (Suzaki et al., 2004). Bokemeyer et al. 
demonstrated that glomerular ERK1/2 is maximally activated on day 6 and that blocking 
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the ERK1/2 pathway using a specific inhibitor results in a significant reduction in mesangial 
cell proliferation in mesangioproliferative GN (Bokemeyer et al., 2000; Bokemeyer et al., 
2002). Thus, these studies demonstrating ERK activation in damaged glomeruli suggest the 
possibility that ERK1/2 is an important signal molecule for acute inflammation-induced 
cellular proliferation, and that ERK5 may participate in the development of chronic 
glomerular lesions in GN. 

5. MAPK in glomerular cells 

Ang II stimulates ERK1/2 activation via NADPH oxidase-dependent reactive oxygen species 
(ROS) production in cultured rat MCs (Gorin et al., 2004). Therefore, we examined whether 
oxidative stress mediates the effects of Ang II on ERK5 phosphorylation in MCs. Cultured rat 
MCs were established from intact glomeruli of Sprague-Dawley rats. MCs were pretreated 
with ARB or diphenylene iodonium (DPI) before stimulation with Ang II or H2O2.  MCs were 
serum-starved for 48 hours in serum-free RPMI 1640 medium, prior to stimulation with H2O2 
and/or Ang II in the presence or absence of reagents. Ang II-induced ERK5 phosphorylation 
in MCs was blocked by the pretreatment with ARB but not DPI, indicating that Ang II-induced 
ERK5 phosphorylation was mediated by the Ang II type 1 receptor and not by the Ang II-
induced NAD(P)H oxidase-dependent ROS production (Urushihara et al., 2010). Furthermore, 
the costimulation of MCs with Ang II and H2O2 resulted in a synergistic increase in ERK5 
phosphorylation, compared to the stimulation of MCs with either Ang II or H2O2 (Urushihara 
et al., 2010). These findings suggest that Ang II directly induces ERK5 phosphorylation via 
NADPH in an oxidase-independent manner, and that ROS and Ang II could each induce 
ERK5 phosphorylation in MCs through different signaling pathways. 

5.1 ERK5-specific knockdown in cultured rat mesangial cells (MC) 
To examine the endogenous function of ERK5 in MCs, we used the small interfering (si) 
RNA technique for ERK5 gene silencing. MCs were transiently transfected with a mixture of 
three ERK5-specific siRNAs, using the lipofection method. After incubation in a low-serum-
containing medium (5% FBS) for 18 hours, the serum concentration was adjusted to that of 
complete medium and the cells were cultured further. A non-silencing siRNA that did not 
target any known mammalian genes was used as a negative control. The transfection 
efficiency, determined under the same experimental conditions by counting the number of 
fluorescently labeled siRNA-transfected cells using a fluorescence microscope, was ~80%. 
Inhibition of ERK5 expression was verified by quantitative real-time PCR and western blot 
analysis. Further, we evaluated the viability of siRNA-transfected cells cultured for 24 hours 
in serum-free medium using the WST-1 assay for determining cell survival rate. The WST-1 
assay was performed using a cell counting kit, according to the manufacturer’s protocol. 

Briefly, siRNA-transfected cells grown in 96-well plates were washed with PBS, and 10 L of 

the WST-1 reagent was added to 100 L of cell culture medium in each well. After 
incubation for 8 hours, the absorbance of the samples was measured at 450 nm (test) and 690 
nm (reference) with a microplate reader. Additionally, we measured the soluble collagen 
levels in culture supernatants after 24 hours of incubation in serum-free medium using a 
Sircol collagen assay. This assay measures the total collagen secreted from cultured cells. 
Briefly, cells were cultured for 24 hours with or without treatment, and supernatants were 
collected. One milliliter of Sirius red, an anionic dye that specifically reacts with basic side 

chain groups of collagens, was added to 200 L of the supernatant and incubated with 
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gentle rotation for 30 minutes at room temperature. After centrifugation, the collagen-bound 
dye was resolublized in 1 mL of 0.5 M NaOH, and the absorbance at 540 nm was measured. 
 

 

Fig. 3. Effects of Angiotensin II (Ang II) or H2O2 on cell viability and collagen secretion in 
ERK5 siRNA-transfected MCs. MCs were transfected with non-silencing siRNA (control 
siRNA) or ERK5-specific siRNA (ERK5 siRNA) and stimulated with Ang II (100 nM) or 

H2O2 (50 M) after incubation in serum-free medium for 24 hours. Cell viability was 
evaluated using the WST-1 assay (8 hours; top), and collagen secretion in culture 
supernatants was evaluated by the Sircol assay (24 hours; bottom). Values are mean +/- SD. 
*P < 0.05 between groups as indicated. 

5.2 Cell viability and collagen secretion 

Using the WST-1 and Sircol assays, significant concentration-dependent decreases in both 
cell viability and soluble collagen secretion were observed in ERK5 siRNA-transfected, but 
not control siRNA-transfected MCs. Next, the effect of oxidative stress and Ang II on ECM 
accumulation and cell viability, and the involvement of ERK5 in these processes were 
examined. As seen in Fig. 3, Ang II and H2O2 significantly increased both cell viability and 
soluble collagen secretion in control siRNA-transfected MCs (P < 0.05). Transfection of ERK5 
siRNA significantly reduced Ang II- or H2O2-induced increases in MC viability and collagen 
secretion compared to control siRNA transfection (P < 0.05). 
Many studies have demonstrated that the ERK5 pathway controls cellular processes, such as 
proliferation, survival, differentiation, and ECM metabolism in pathophysiological 
conditions (Chang and Karin, 2001; Kyriakis and Avruch, 2001; Nishimoto and Nishida, 
2006). We investigated the involvement of MC ERK5 expression in chronic progressive GN 
using in vitro and in vivo studies. We found that both cell viability and soluble collagen 
secretion were induced by Ang II or H2O2 in control MCs. These changes were significantly 
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inhibited in ERK5 siRNA-transfected MCs, suggesting a possible role for ERK5 expression in 
the sustained MC proliferation and pathological ECM accumulation observed in progressive 
GN. Furthermore, the data obtained from the treatment of GN rats with ARB indicate that 
Ang II is an inducer of MC ERK5 phosphorylation in vivo, and support the involvement of 
Ang II-induced ERK5 phosphorylation in progressive glomerular lesions. In general, the 
repair of proliferative GN-induced damage requires the regression of the proliferated 
glomerular cells by apoptosis and the appropriate removal of the accumulated pathological 
ECM (Shimizu et al., 1995). Based on our results, the activation of an ERK5 signal may not 
only induce prolonged MC survival, but also enhance the secretion of pathological collagen 
I within damaged glomeruli, thereby contributing to the development of progressive GN. 

6. Conclusion 

The present study has revealed that phospho-ERK1/2 and phospho-ERK5 expression in the 
glomeruli are markedly increased in an experimental model of progressive GN. Glomerular 
ERK1/2 activation seems to play an important role in acute inflammation-induced cellular 
proliferation in the development of GN. Furthermore, the enhancement of ERK5 
phosphorylation by Ang II appears to be linked to the increased MC viability and 
pathological ECM accumulation in the chronic glomerular lesions in GN (Fig. 4). We, 
therefore, propose that the controlled regulation of glomerular ERK1/2 and ERK5 activation 
could provide the basis for an effective therapeutic strategy for preventing the progression 
of GN. 
 

Glomerular scarring 

Angiotensin II 

Oxidative Stress 

ERK1/2 

Mesangial cell  
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ERK5 
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Fig. 4. ERK1/2 and ERK5 signaling during the course of progressive GN. 
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