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1. Introduction 

Legged locomotion systems are a class of biological robots by supporting on the ground with 
discrete points, and can traverse nature terrain in large range. This kind of robots is a class of 
important research objects in robotics community in a long time. In the early time, most of the 
legged robot systems are static balance locomotion systems, which show a slow moving speed 
and high requirement in energy dissipation. During the past twenty years, many scholars were 
interested in dynamic legged robots for improving the performance of the systems.  
The one-legged hopping robots are a typical and the simplest systems of the dynamic legged 
robots, and can be found in many literatures, such as (Raibert,1986; Francois & 

Samson，1998; Gregorio et al，1997; Ahmadi & Buehler，1997,2006; Ahmadi et al, 2007; 
Vakasi et al, 1991; Lapshin, 1992; Papadopoulos & Cherouvim, 2004; Hyon & Emura,2002; 
Zeglin,1999; Guang-Ping H. & Zhi-Yong G, 2008 etc.). As it pointed out that in 
(Papadopoulos & Cherouvim, 2004), most of researches about the one-legged hopping 
robots were limited to the systems with Spring Loaded Inverted Pendulum (SLIP) model, 
which is composed of a point mass attached on a telescopic spring that is free to rotate 
around its point of contact with the ground. The SLIP model hopping systems can be 
stabilized without much effort in control design since the simple decoupling dynamics 

(Raibert et al, 1984; Raibert,1986; Francois & Samson，1998; Gregorio et al，1997; Ahmadi & 
Buehler, 1997, 2006; Ahmadi et al, 2007; Vakasi et al, 1991; Lapshin, 1992; Papadopoulos & 
Cherouvim, 2004; Hyon & Emura,2002, 2004; Zeglin,1999; Hodgins & Raibert, 1990; Hyon et 
al, 2004 ). It was shown that this class of hopping robots not only could stably hop but also 
realize some acrobatic motion such as somersaults (Raibert et al, 1984; Hodgins & Raibert, 
1990). Nevertheless, the main limitations of the SLIP model systems are that the mechanical 
systems lose the biological characteristics and the leg of the robot commonly has 
translational telescopic joint. The translational telescopic legs are generally actuated by 
pneumatic or hydraulic actuators, and show small motion range. The pumping station of the 
hydraulic systems is not easy to be embedded into the robots such that the robots could not 

move in large range. Though (Gregorio et al，1997; Ahmadi & Buehler, 1997, 2006; Ahmadi 
et al, 2007) realized the hopping control on an electrically actuated experimental robot, the 
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theory analysis and experimental methods have little help for a legged hopping system with 
fully articulated joints. 
For overcoming the limitations of the hopping systems with SLIP model, several scholars 
studied the hopping systems with non-SLIP model (Zeglin, 1991; Hyon & Mita, 2002; 
Takahashi et al, 2006; Guang-Ping H. & Zhi-Yong G, 2008, 2009a, 2009b, 2010), such as 
Uniroo (Zeglin, 1991) and Kenken (Hyon & Mita, 2002). The hopping systems with non-SLIP 
model generally have more biological characteristics. Thus the mechanism is more complex, 
and control design for this class system is more intractable since the highly nonlinear and 
strong coupling in dynamics. For instance, the Uniroo and Kenken are experimental robots, 
whereas the Uniroo employed the control method for SLIP systems and the best 
experimental results is 40 times jumps before falling down (Zeglin, 1991), the Kenken was 
controlled based on accurate simulations of the dynamics, and both of the two robots are 
actuated by hydraulic systems.  
For the sake of reducing the energy dissipation caused by impact, the one-legged hopping 
systems commonly has small foot such that the robot only contacts with ground on a point. 
On the assumption that the foot of the robot has no slip, the point contacting with the 
ground can be regarded as a passive rotational joint. Thus the one-legged hopping robots 
are generally underactuated mechanical systems. In the field of nonlinear control, the 
underactuated mechanical systems are a class of interesting nonlinear systems that has been 
given many attentions in recent years. The benchmark systems of them include the Cart-
pole (Graichen, 2007), Acrobot (Lai, 2008), Pendubot (Spong & Block, 1995), Plate-Ball 
(Oriolo & Vendittelli, 2005), underactuated planar manipulators (Arai et al, 1998), and 
underactuated surface vessel (Reyhanoglu, 1997) etc. It had been proved that the 
underactuated mechanical systems are second-order nonholonomic systems in gravitational 
circumstance if the passive generalized coordinates are not cyclic (Oriolo & Nakamura, 
1991), and the nonholonomic systems cannot be stabilized by smooth time-invariant state 
feedback (Kolmanivsky & McClamroch, 1995). Thus the control methods presented in the 
literatures introduced non-continuous feedback, time-varying feedback, or the combination 
of the two classes method, and the control plants are mainly limited to the nonholonomic 
systems with special differential geometric or differential algebraic properties, such as 
differentially flat (Nieuwstadt & Murray, 1995; Guang-Ping H. & Zhi-Yong G, 2008, 2009a) 
or nilpotent (Murray, 1994; Guang-Ping H. & Zhi-Yong G, 2009b) systems. By nonlinear 
coordinates and inputs (control) changes, the differentially flat nonholonomic systems can 
be transformed into high order linear systems, the nilpotent systems can be transformed into 
chained form system under certain conditions (Murray et al, 1993). For the second-order 
nonholonomic underactuated mechanical systems without these properties, the control 
problem was not discussed adequately in the nonlinear control field.  
The hopping robots with SLIP model are generally second-order nonholonomic 
underactuated systems because of the small foot, whereas they can be stablized to the 
periodical hopping orbits by smooth time-invariant state feedback (Raibert,1986; Gregorio et 
al，1997; Ahmadi & Buehler, 1997, 2006; Ahmadi et al, 2007; Hodgins & Raibert, 1990). The 

reason is that the special mechanical structure satisfies some conditions: 遖 the mass as well 
as the inertia of the leg are far less than them of the total system, swing the leg does not 
cause large orientation errors of the body; 遘 the position of the mass center(MC) of the 
robot is coincident to the hip join, then most of the nonlinear force of the dynamics 
disappears; 遞 the robot has linearly telescopic leg, the telescopic motion of the leg is 
approximately decoupled from the rotational motion of the systems. These dynamic 
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properties ensure that the SLIP model robot can be stabilized by controlling partial variables 
without considering the nonholonomic constraints. Nevertheless, a one-legged hopping 
system with non-SLIP model shows complex nonlinear dynamics, the nonholonomic 
constraints of the system cannot be ignored. So far there does not have systemic method for 
designing the control for this class of hopping robots. 
Since the obstacle for controlling a general underactuated mechanical system, it is important 

to investigate the dynamic synthesis problem such that the dynamics of the underactuated 

systems can be effectively simplified while the underactuated systems holds the 

controllability, high energy-efficiency, and dexterous mobility. This is helpful for inventing 

a new underactuated mechanical system with feasible control method, investigating the new 

applications of underactuated mechanical systems, or simplifying the control problem of the 

existing underactuated mechanical systems. For instance, Franch investigated the design 

method of differentially flat planar space robots (Franch et al, 2003), Agrawal & Fattch 

studied the dynamics synthesis for planar biped robots (Agrawal & Fattch, 2006). In this 

paper, we propose a novel biological mechanism for the one-legged planar hopping robots 

on the basis of the dynamics synthesizing. The mechanism is similar to the skeleton of 

kangaroos, and the dynamics of the mechanism possesses kinetic symmetry with respect to 

the passive joint variable, then the nonlinear dynamics of the novel mechanism can be 

transformed into the so-called strict feedback normal form, which can be potentially stabilized 

by backstepping technique. Thus the novel mechanism can be used to compare with the 

SLIP model robot for more adequately understanding the dynamic balance principle, high 

energy-efficiency, and dexterous mobility of kangaroos.  

In this chapter, section 2 introduces the novel mechanism, and the dynamics of it is 

presented in section 3. In section 4, the proposition that confirms the nonlinear dynamics 

can be transformed into the strict feedback normal form is proved. Then a sliding mode 

backstepping control is introduced in section 5 and the exponential stability is also proved. 

The motion planning method for the hopping system in stance phase is presented in section 

6. The feasibility of the mechanism and the stability of the control are verified by some 

numerical simulations in section 7. 

2. The new mechanism for one-legged planar hopping robots 

Fig.1 shows the new mechanism for designing a biological one-legged hopping robot. The 

robot mechanism has four rigid bodies, of which the shank, thigh, body and tail have length, 

mass and inertia with respect to their MC are il , im  and iI , 1,2,3,4i  respectively. 

Suppose the MC of every link deviates from the joint that nears to the ground, and the 

distance deviating from the joint is cil , 1,2,3,4i  . The angle of shank is denoted as 1 , the 

keen joint, hip joint, and tail joint are 2 , 3 , and 4 respectively. To simplify the dynamics 

of the system, let 3 0cl  , and the mechanism is designed to joint the body, the thigh, and the 

tail at the same axis. The turning of the tail joint and the keen joint is synchronous (by 

parallel four bars mechanism or synchronous belt) with constant phase angle 0 . For 

improving the energy efficiency, a torsional linear spring with stiffness k  is paralleled in the 

keen joint. The generalized coordinates of the mechanism in stance phase can be defined 

as  T0 0 1 2 3, , , ,x y   q , of which 2 3,  are actuated joints, 1  is a passive joint, and 

0 0( , )x y are constants in stance phase.  
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Fig. 1. A novel mechanism for one-legged hopping robot 

The characteristics of the hopping robot mechanism can be summarized as follows: 

a. The mechanism is underactuated because of the passive joint 1 . In the following 

section, it is shown that the single passive generalized coordinate 1  does not appear in 

the kinetic energy but appears in the potential energy of the robot system. Thus the 

robot system is similar to an Acrobot system (Lai et al, 2008; Spong, 1995) in dynamics. 

This property in dynamics makes the nonlinear dynamics of the hopping robot can be 

transformed into the strict feedback normal form, which belongs to a special class of 

nonlinear system that can be stabilized by backstepping control. 

b. The turning of the keen joint and the tail joint is synchronous, so the actuator of the 

keen joint can be installed on the tail. This special design can reduce the mass as well as 

the inertia of the leg. As proved by (Ahmadi & Buehler, 2006), a leg with less mass and 

inertia is helpful for improving the energy-efficiency of the hopping robot systems. 

c. The MC of the body is coincident with the hip joint, i.e. 3 0cl  , such that the Coriolis 

and centrifugal forces about 3cl  disappear, then the dynamics of the robot system is 

considerably simplified. In section 4, it will be shown that this property in dynamics 

makes the novel hopping system has the analytical coordinate transformations, which is 

necessary for designing the nonlinear controller.  
d. The robot mechanism has articulate keen joint, so the leg can provide a larger clearance 

from the ground than it provided by a linearly telescopic leg in continuous hopping. 
This is beneficial for leaping over different size obstacles with the same energy cost. 

3. The dynamics of the mechanism 

In stance phase, the foot of the robot is contacting with the ground, thus the coordinates 

0 0( , )x y are constants, and then the generalized coordinates of the hopping system shown in 

Fig.1 is reduced to  T1 1 2 3  q . If L T U   denotes the Lagrangian of the hopping 

system, where T  is kinetic energy, U is potential energy of the system, then they can be 

given as form 
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4
2 2 2 2 2 2

1 1 2 1 2 3 1 2 3 4 1
1

1 1
( ) ( ) ( )

2 2

i

i ci ci
i

T m x y I I I I      




                   , 

 
4

2
2 20

1

1
( )

2
i ci

i

U g m y k  


   , 

where ( , ), 1,2,3,4ci cix y i  is the position of MC of every bodies of the mechanism, and can 

be written as 

1 0 1 1cosc cx x l   ,  

1 0 1 1sinc cy y l   , 

2 0 1 1 2 1 2cos cos( )c cx x l l      ,  

2 0 1 1 2 1 2sin sin( )c cy y l l      , 

3 0 1 1 2 1 2cos cos( )cx x l l      , 

3 0 1 1 2 1 2sin sin( )cy y l l      , 

4 0 1 1 2 1 2 4 1 0cos cos( ) cos( )c cx x l l l          , 

4 0 1 1 2 1 2 4 1 0sin sin( ) sin( )c cy y l l l          . 

g is the gravitational acceleration, k  is the stiffness of the spring in keen joint, 20  is the 

position of keen joint with spring free.  
The Euler-Lagrange dynamics of the hopping system in stance phase can be written as 

 , 1,2,3
t

i
i i

d L L
i

d q q


  
   

  
 (1) 

For more clearly, the dynamics (1) has form 

 

1 1

2
2 2 2

3
3

0
t

t

t

d T U

d

d T T U

d

d T

d

 


  




  
  

  
   

   
   

 
 

 







 (2) 

where 1 0  , 1 0T    and 3 0L     are considered. In other words, the kinetic energy 

is not depended on the generalized coordinates 1  and 3 , and potential energy is not 

depended on 3 . Olfati-Saber (Olfati-Saber, 2002) defines a coordinate to be kinetic symmetry 

if the coordinate does not appear in the kinetic energy of a mechanical system. The kinetic 
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symmetry is different from the well-known Lagrangian symmetry in classical mechanics. 

The existence of kinetic symmetries does not lead to the existence of conserved quantities 

in potential field. This is important to preserve the controllability of an underactuated 

mechanism (2). Since the relationship 1 0U     is satisfied outside the unstable balance 

point, the first equation of (2) cannot be integrated to a first-order differential equation, 

then it can be regarded as a second-order differential constraints (or second–order 

nonholonomic constraints (Oriolo & Nakamura, 1991)) of the actuated subsystem given by 

the last two equations of (2).  
Further more, the dynamics (2) can be written as matrix form 

 1 1 1 1 1 1 1 1 1( ) ( , ) ( )  M q q C q q H q Q   (3) 

where  T1 2 30  Q is the generalized force vector, 1M  is the inertia matrix of the robot 

in stance phase and can be given by 

11 12 13

1 21 22 23

31 32 33

m m m

m m m

m m m

 
   
  

M  

where 

 
 

4
2 2 2

11 2 3 4 1 3 4 2 2 1 2 2 3 1 2 2
1

4 1 2 2 1 4 0 2 4 2 0

( ) ( ) 2 cos 2 cos

2 cos cos( ) cos( )

i ci i c
i

c c

m m m m l m m l m l I m l l m l l

m l l l l l l

 

   


        

   


, 

 

4
2 2

12 2 2 3 4 2 2 1 2 2 3 1 2 2
2

4 1 2 2 1 4 0 2 4 2 0

( ) cos cos

cos cos( ) cos( )

c i c
i

c c

m m l m m l I m l l m l l

m l l l l l l

 

   


     

   


, 

13 3m I , 

21 12m m ,  

4
2 2

22 2 2 3 4 2
2

( )c i
i

m m l m m l I


    ,  

23 3m I , 

31 13m m , 32 23m m , and 33 3m I . 

1 1 1( , )C q q  denotes the Coriolis and centrifugal forces, and has form 

 T1 1 1 1 2 3( , ) c c cC q q  

where 
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1 11 1 12 2 13 3c m m m         ,  

T
2 21 1 1 1 1

2

1

2
c m M


 

   
 

q q   and  

3 0c  . 

1 1( )H q  is the potential forces including both gravity and elastic force of the coil spring in 

keen joint, and can be written as 

 T1 1 1 2 3( ) h h hH q  

where 

     1 1 1 1 2 3 4 1 1 2 2 3 2 4 2 1 2

4 4 1 0

cos cos cos

cos( )

c c

c

h m gl m m m gl m l m l m l g

m l g

   
 

       

 
, 

2 2 2 3 2 4 2 1 2 4 4 1 0 2 20( ) cos( ) cos( ) ( )c ch m l m l m l g m l g k             ,  

and 3 0h  . 

The dynamics (3) can also be partitioned as following form according to the passive and 

actuated coordinates 

 
pp 2 p pa 2 a p p 1 2

T
pa 2 p aa 2 a a a 1 2

( ) ( ) ( , ) 0

( ) ( ) ( , )

   

   

   

   

M q M q C H

M q M q C H Ǖ

 

 
 (4) 

where p 1q  ,  Ta 2 3 q , and the subscript p  and a  denote “passive” and “actuated” 

respectively. Define au q to be a new input, and by a control change 

   T 1 T 1
aa pa pp pa a a pa pp p p

         Ǖ M M M M u C H M M C H  

the dynamics Eq.(4) can be transformed into the partial feedback linearization form that is due 

to (Spong, 1995). 

 
 1 1

p pp p p pp pa

a

    



q M C H M M u

q u




 (5) 

The main property of the underactuated system in (5) is the new control u  appears in both 

the subsystems pq  and aq  of dynamics (5). This leads the control design for the system (5) 

is very difficult. In following section, we prove that the dynamics (5) can be further 

transformed into a special cascade nonlinear system, which simplifies the problem of 

designing a feasible control for the underactuated mechanical system (5) under certain 

additional conditions. 
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4. The strict feedback normal form of the dynamics 

Olfati-Saber had been studied the normal form of underactuated mechanical systems in his 

excellent paper (Olfati-Saber, 2002). He presented three classes of cascade nonlinear systems 

in strict feedback form, feedforward form, and nontriangular quadratic form. As to the robot 

system considered in this paper, the following proposition ensures that the dynamics (5) can 

be transformed into the strict feedback normal form. 

Proposition 1: (strict feedback form of (5)) The following global change of coordinates: 

 
r p a

r p

( )

T

 

  

q q ψ q

p q
 (6) 

transforms the dynamics of (5) into a cascade nonlinear system in strict feedback form 

 

1
r pp a r

r p r a a

a a

a

( )

( ( ), )



  




q M q p

p H q ψ q q

q p

p u






 (7) 

where 
a 1

a pp pa0
( ) ( ) ( )d 

q
ψ q M ǔ M ǔ ǔ . 

Proof: Considering the second equation of (6), it follows that  

r p pp a p pa a a( ) ( )T    p q M q q M q q    

thus  

1 1
pp 2 r p pp 2 pa 2 a( ) ( ) ( )    M p q M M q  . 

With considering the first equation of (6), then it can be obtained 1
r pp 2 r( )q M p . The first 

equation of (7) is proved.  
Once more, by the second equation of (6), we have 

 r
p p p

d

dt

T T U   
       

p
q q q




 (8) 

since p 1q  and p 0T  q , then 

r p p a
p

( , )
U

   


p H q q
q

  

and  

r p r a a( ( ), )  p H q ψ q q  

is following, with considering the first equation of (6). The second equation of (7) is 
proved. 
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Let a ap q , then the last two equation of (7) follows. This completes the proof. 

Remark 1: An obstacle of using the Proposition 1 is that the integral 
a 1

a pp pa0
( ) ( ) ( )d 

q
ψ q M ǔ M ǔ ǔ  should be given in an explicit form. This is not always 

available for general underactuated mechanical system with satisfying the 

condition 0pT  q . As to the robot system shown by Fig.1, thanks to the special 

design 3 0cl  , the integral can be explicitly obtained with slight errors. If let 

4
2 2 2

1 2 3 4 1 3 4 2 4 1 4 0
1

( ) ( ) ( ) 2 cosi ci i c
i

A m m m l m m l m l I m l l 


        , 

4
2 2

2 2 2 3 4 2 4 1 4 0
2

( ) cosc i c
i

A m l m m l I m l l 


     , 

2 2 1 2 3 4 1 2 4 2 4 0( ) cosc cB m l l m m l l m l l     , 

2 4 2 4 0sincC m l l  , 

1 22a A B  , 

24b C , and 

1 22c A B  , 

then the integral has form 

a

2 3

1
a pp pa0

1312 1
1 20 0

11 1 11 2

132 2 2 2 2
2 3

1 2 2 2 2 11 20

( ) ( ) ( )d

( )
d

( ) ( )

cos sin

2 cos 2 sin ( )

mm σ
dσ σ

m σ m

mA B C
d

A B C m

 


   
  



 

 
 

 



 



q
ψ q M ǔ M ǔ ǔ

. 

Since 2 4b ac , 13 3m I  is constant, and 11 2 11 20( ) ( ) 0m m   , then the integral can be 

written as 

2

2
a 2 1

2 2

13
2 1 3

2 2
11 20

2a tan2 2( ) (2 ) arctan
24 4ac-b

2
(2 ) arctan

( )4 4ac-b

b
A A

ac b

mb
A A

mac b







   
   

   
 
 

      

ψ q

. 

Remark 2: Since p 0U  q  is satisfied outside the unstable balance point, then 

p p p( , )aU  q H q q  can be regarded as the control input of the subsystem  r r,q p  of (7). 

Otherwise, the subsystem  r r,q p  is not controllable. 
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5. Design the control for the robot in stance phase 

As analyzed in the introduction, there are feasible controls for underactuated mechanical 

systems to date only concentrated on a few classes of systems with special mathematical 

property in dynamics, such as the differentially flat or nilpotent. Whereas, there is still no 

a sufficient and necessary condition that makes certain a nonlinear systems to be 

differentially flat ( Sira-Ramirez & Agrawal, 2004, Ch.8), and a general nilpotent nonlinear 

system is also difficult in control, with the major exception of the systems that can be 

transformed into the chained form (Kolmanovsky & McClamroch, 1995; Murray & Sastry, 

1993; Murray, 1994). Despite that a systemic control method was proposed by (De Luca et 

al, 2001), for the general nilpotent systems, the convergent speed of control is slow and is 

hard to be applied to multi-inputs systems. The three classes of cascade nonlinear systems 

presented by Olfati-Saber (Olfati-Saber, 2002) are additional underactuated systems that 

exist feasible nonlinear control approaches. Olfati-Saber also proposed a globally stable 

control for two degrees of freedom (DOF) underactuated mechanical systems in (Olfati-

Saber, 2000), nevertheless the suggested control is only applicable for stabilizing the 

system to it’s origin but a trajectory tracking task is not. (Qaiser et al, 2007) also 

investigated the control problem for a class of underactuated mechanical systems with 

two DOF based on the result of (Olfati-Saber, 2000), and realized the globally exponential 

stabilization by Dynamic Surface Control, whereas he also didn’t consider the trajectory 

tracking. For a nonholonomic nonlinear system, it is well known that the stabilization of 

the origin is not equal to it of a trajectory, since the former is a control problem for 

driftless nonlinear system under certain conditions, while the later is always a control 

problem with drift term for a nonlinear system.  

To design a control for strict feedback form system (7), we define d
1 r r z q q , d

2 r r z p p , 
d

1 a a ξ q q , and d
2 a a ξ p p , where the superscript “d” denotes the desired or planned 

trajectory. Then the error system of (7) can be written as 

 

1 1 1 2

2 2 2 1

1 3 3 2

2 4 4


 
  

 

 

z f g z

z f g ξ
ξ f g ξ
ξ f g u






 (9) 

where d 1 d
1 r pp r

  f q M p , 1
1 pp

g M , 

1

d
2 r p 1 1 1 0

( ( ), ) 0
 

      f p H z ψ ξ ξ , 

1

2 1 1 p 1 1 1
1 0

( , ) ( ( ), )


 
   

 ξ
g z ξ H z ψ ξ ξ

ξ
, 

d d
3 a a 0   f q p , 3 g I , 

d
4 a f p , 4 g I ,  
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 d
a 1 1

1 pp 2 pa 20
( ) ( ) ( )d

q
 

  
ξ

ψ ξ M M ǔ ,  

2
1~  is the errors item because of the affine approximation, and I  is the identity matrix. 

To design a control for the affine nonlinear system (9) with strict feedback normal form, the 

following proposition can be proved. 

Proposition 2: (Sliding mode backstepping control)  

Consider the system (9), given    , 0  is a constant, and 0  , then there exist a set 

of positive real numbers 0, 1,2, ,5ik i   , and control  

 

 1
4 4 2 3 5 2 3

1 T 3 3 3
4 3 1 2 4 3 3 2 2 2 1 1 1 2

1 2 1

( ) sign( )

( ) ( ) ( ) ( )

k k



    

   
            

u g ξ α ξ α

α α α
g g ξ α f f g ξ f g ξ f g z

ξ z z

 (10) 

where 

1 T 2 2
3 1 2 1 3 3 1 2 2 2 1 3 2 2 1 1 1 2

2 1

( , , ) ( ) ( ) ( ) ( )k   
            

α αα z z ξ g ξ α g z α f f g ξ f g z
z z

, 

2 T 1
2 1 2 2 2 2 1 2 1 1 2 1 1 2

1

( , ) ( )( ) ( )k    
          

αα z z g z α g g z f f g z
z

, 

1
1 1 1 1 1 1( ) ( )k  α z g f z , and 

1 0

sign( ) 0 0

1 0

x

x x

x


 
 

, 

renders the system (9) exponentially stabilize to the origin ( , ) (0,0)z ξ . 

Proof: Consider the subsystem 1z , and select T
1 1 1 1

1
( )

2
V z z z  to be the candidate Lyapunov 

function, then one has 

T
1 1 1 1 1 2( ) ( )V  z z f g z . 

Let 1
2 1 1 1 1 1 1( ) ( )k   z α z g f z , then it follows that 

T
1 1 1 1 1( )V k z z z . 

Further consider the subsystem 1 2( , )z z , select T
2 1 2 1 1 2 1 2 1

1
( , ) ( ) ( ) ( )

2
V V   z z z z α z α  

to be a new candidate Lyapunov function, and let 
2 2 1z  e z α , 0  . By the Young’s 

inequality 2 22ab a b   and Cauchy-Schwarz inequality T  x y x y , we have 
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 

2

2 2

2 2

T
2 1 2 1 1 2 1

T T 1
1 1 1 1 2 2 1 1 1 2

1

T
1 1 1 1

2 2T T T1
1 1 2 2 1 1 1 2

1

( , ) ( ) ( )

( ) ( )

1
( )

4

z

z z

z z

V V






  

             
 

 
        

z z z e z α

α
z f g e α e f g ξ f g z

z

z f g α

α
e g z f g ξ f g z e ε

z

  

 

2 2

T
1 1 1

T T 21
1 1 2 2 2 2 1 2 1 1 2

1

1
( ) ( )

4
z z

k




 

 
           

z z

α
e g z f g α g ξ α f g z e

z

 

Let 
2

2 T 1
2 1 2 2 2 2 1 1 2 1 1 2

1

( , ) ( ) ( )k    
         

z

αα z z g e g g z f f g z
z

, then the last inequality 

can be written as 

2 2 2

T T T
2 1 2 1 1 1 2 2 1 2

1
( , ) ( )

4
z z zV k k


     z z z z e e e g ξ α . 

 

For the subsystem 1 2 1( , , )z z ξ , select T
3 1 2 1 2 1 2 1 2 1 2

1
( , , ) ( , ) ( ) ( )

2
V V   z z ξ z z ξ α ξ α  as the 

candidate Lyapunov function, and let 
1 1 2  e ξ α , then 

2 2 2 1

1

T
3 1 2 1 2 1 2 1 2 1 2

T T T
1 1 1 2 2

T 2 2
3 3 3 3 2 3 2 2 1 1 1 2

2 1

( , , ) ( , ) ( ) ( )

1
( ) ( ) ( )

4

z z z

V V

k k 

 

   

   

  
           

z z ξ z z ξ α ξ α

z z e e e g e

α α
e f g α g ξ α f g ξ f g z

z z

  

. 

 

Select 

1 2

1 T 2 2
3 1 2 1 3 3 2 3 2 2 1 1 1 2

2 1

( , , ) ( ) ( )zk   
          

ξ
α αα z z ξ g e g e f f g ξ f g z
z z

, 

 

then it follows that 

2 2 1 1 1

T T T T
3 1 2 1 1 1 1 2 3 3 2 3

1
( , , ) ( )

4
z zV k k k    

      z z ξ z z e e e e e g ξ α . 

 

For the system (9), let T
4 1 2 1 2 3 1 2 1 2 3 2 3

1
( , , , ) ( , , ) ( ) ( )

2
V V   z z ξ ξ z z ξ ξ α ξ α  be the candidate 

Lyapunov function and let 
2 2 3e  ξ α , we have 
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2

2 2 1 1 1

2

T
4 1 2 1 2 3 1 2 1 2 3

T T T T
1 1 1 2 3 3 2 3

T 3 3 3
4 4 3 3 2 2 2 1 1 1 2

1 2 1

( , , , ) ( , , ) ( )

( )

1
( ) ( ) ( )

4

z z

V V

k k k



  

 

  

      

   
           

z z ξ ξ z z ξ e ξ α

z z e e e e e g ξ α

α α α
e f g u f g ξ f g ξ f g z

ξ z z

  

. 

If we select the control to be 

2 2

1

1
4 4 5

1 T 3 3 3
4 3 4 3 3 2 2 2 1 1 1 2

1 2 1

sign( )

( ) ( ) ( )

k k 







    
   

           

u g e e

α α α
g g e f f g ξ f g ξ f g z

ξ z z

. 

Obviously, it follows that 

2 2 1 1 2 2 2

T T T T
4 1 2 1 2 1 1 1 2 3 4 5

1
( , , , )

4
z zV k k k k k     

      z z ξ ξ z z e e e e e e e , 

then if one selects 5 0k  and 
25

1

4
k  

e , the following inequality is satisfied 

2 2 1 1 2 2

T T T T
4 1 2 1 2 1 1 1 2 3 4( , , , ) 0z zV k k k k        z z ξ ξ z z e e e e e e , 

thus the origin of the affine nonlinear system with drift term is asymptotically stable. If we 

select 0, 1,2,3,4
2

ik i


   , then the last inequality can be rewritten as 

4 4V V  . 

The solution of the differential inequality is given by 

0( )
4 4 0( ) ( ) t tV t V t e   . 

Thus the control (10) will render the system (9) exponentially stabilize to the origin 
( , ) (0,0)z ξ . This completes the proof. 

Remark 3: As 1 2
2 R g  is not a square matrix for the robot system considered in this paper, 

the inverse matrix of 2g  is calculated by Moore-Penrose pseudo-inverse T T 1
2 2 2 2( ) g g g g . 

Remark 4: Different from the most of control plants of nonholonomic systems in literatures, 

the affine nonlinear system (9) with drift terms 0i f  is considered in this paper, thus the 

control presented by (10) can both stabilize the unstable balance point and track a feasible 

trajectory of the hopping robot system (2). The nonlinear control methods suggested by 

(Olfati-Saber, 2000, 2002) and (Qaiser, 2007) can not be utilized to the trajectory tracking 

problem. 

6. Motion planning for the hopping robot in stance phase 

Motion planning for a hopping robot with non-SLIP model is not intuitional. Fig.2 shows a 
sketch of motion of the hopping robot in stance phase. In the figure, MC denotes the mass 
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center of the robot, sx  indicates the moving distance of MC of the robot in stance phase,   
is the angle of MC deviating from the vertical line that traverses the point of foot contacting 
with the ground. For an underactuated mechanical system, not arbitrary motions are 
feasible, the planned motion must satisfy the second-order nonholonomic constraints of the 
system. As to the robot system in Fig.1, the second-order nonholonomic constraints are 
given by the first equation of (4).  

Denote  Tc c cx yX  to be the position of MC of the robot in stance phase, the kinematics 

of the MC of the robot can be formulated as 

 c 1( )X F q . (11) 

The acceleration equation of (11) has form 

 c 1 1 X Jq Jq   , (12) 

where 1  J F q . With considering the second-order nonholonomic constraints, the feasible 
motion in joint space can be calculated by 

 

1 d
1d c

1
pp pa p p0

     
                 

J JqX
q

M M C H

 
 , (13) 

where  d
cX  is the desired trajectory of MC that is planned in Cartesian space.  

 




MC

sx

 

Fig. 2. Motion sketch of the robot in stance phase 

The configuration with balance potential forces is an important point in joint space of the 
robot in stance phase. This point is both the control target of the robot for static balance and 
the reference point of planning a feasible trajectory of MC of the robot in every stance phase 
for continuous hopping. For searching the static balance configuration, one has to employ a 
numerical method since the complexity of the robot dynamics. For instance, define an 
optimization measure as follow 
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 T 2
1 1 1 c( ) x  q H H , (14) 

where 1H  is the potential force term in equation (3), and cx  is the coordinate of MC of the 
robot along horizontal direction. If the measure 1( ) 0 q  is minimized such that it has 

*
1( ) 0 q , then the corresponding optimized variables *

1q  is the searching configuration 
that satisfies the static balance condition.  
Many algorithms can be employed to search for the optimal solution. One simple algorithm 
can be given as 

  
1

1 1

1 1 T

0
1 1

( 1) ( )

(0)

i i



 


    




q

q q

q q

q q

, (15) 

where 0   is the iterative step length, 
1

1

 
 

q
q

 is the grads of the measure 1( ) q  along 

the smooth vector field 1q , and i is the iterative times.  
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Fig. 3. Simulation for searching the balance configuration of the robot in stance phase 

The static balance configuration of the robot can be calculated to be 

   * o o o
1 1 2 3, , 72.763 ,45.980 , 120    q  when the physical parameters of the robot is 

selected as 

a. The gravitational acceleration is 9.8g  N/kg;  

b. The stiffness of spring in keen joint is 46.19k  Nm/rad; 

c. The phase angle between the tail and thigh is o
0 90  ; 

d. The mass, length and location of MC, and the inertia of every body are given by 

1 0.6kgm  , 1 0.4ml  ,
1 1

1

2
cl l , 2

1 1 1

1

12
cI m l , 
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2 1.5kgm  , 2 0.2ml  ,
2 2

1

2
cl l , 2

2 2 2

1

12
cI m l , 

3 5.0kgm  , 3 0.3ml  , 3 0cl  , 2
3 1 3

1

2
I m l , 

4 1.5kgm  , 4 0.4ml  ,
4 4

1

2
cl l , 2

4 4 4

1

12
cI m l . 

Fig.3 shows the convergent procedure for finding the balance configuration, and 
( , ) (0m,0.5219m)b b

c cx y  denotes the position of MC when the robot is static balance. 

7. Numerical simulations 

In this section, some numerical simulations are provided for verifying the feasibility of the 

robot mechanism and the nonlinear controller proposed in the former sections. The physical 

parameters of the robot mechanism are listed in section 6. Fig.4 shows the simulation results 

for stance balance control. In this simulation, the initial configuration errors of the robot is 

given by 
1

To o o10 -15 -50q
   e and the target configuration is  1 2 3, ,     

 o o o72.763 ,45.980 , 120 , which is obtained in section 6. One can find the configuration 

errors converge to zero (Fig.4 (b)) and finally stable at the balance configuration (Fig. 4 (a)). 

Fig. 4 (c) shows the trajectory of MC of the robots during the stabilizing procedure. Fig.4 (d) 

shows the corresponding torques of the actuators. For more intuitively, Fig.5 also shows the 

configurations snapshots of the robot during the stance balance control.  

The general stance phase motion for the hopping robot is commonly a continuous trajectory 
that nears to the stance balance configuration. Given the desired motion of MC of the robot is  

T2

d
c T2

0.07 sin( ) 0 1
( )

0.07 sin( ) 0 1

n n

n n

t t t s
t

t t s

 

 

    
    

X , 

where n  is the nature angular frequency of the robot. The desired motion is a periodical 

motion of MC moving along direction x . Fig.6 depicts the simulation results and one can 

find that the desired motion is approximately realized (see Fig.6 (b)). In Fig.6 (a)-(c), the 

curve in dashed indicates the desired motion, and the solid curve is the controlled motion of 

the corresponding variable. The large fluctuation of MC along direction y  is induced by the 

special synchronous transmission system of the keen joint and tail joint.  

Fig.7 shows another simulation result for trajectory control of MC moving along the 

direction y . In this simulation, the planned motion of MC is given by 

T2

d
c T2

0 0.03 sin( ) 1
( )

0 0.03 sin( ) 1

n n

n n

t t t s
t

t t s

 

 

    
    

X . 

In Fig.7 (a)-(c), the curve in dashed also indicates the desired motion, and the solid curve 

indicates the controlled motion of the corresponding variable. There is no capsizal torque 
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Fig. 4. Simulation for the stance balance control 
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Fig. 6. Simulation for a periodical motion of MC along direction x . 
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Fig. 7. Simulation for a periodical motion of MC along direction y . 
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need to be balanced since that the desired motion follows the vertical direction through the 
supporting point, one can find that the motion is realized with less error than it in Fig.6. 
Both Fig.6 (d) and Fig. 7(d) illustrate the torque of actuators during the corresponding 
controlled motion in two different directions of MC.   
It is well known that the angular momentum of a hopping robot system in flight phase is 
conserved, and the angular momentum is generally unintegrable, thus the hopping robot 
systems in flight phase are first order nonholonomic system. For the first order 
nonholonomic systems with two inputs, there is a theorem that confirms the system can be 
transformed into the so-called chained form (Murray & Sastry, 1993; Murray, 1994). As to 
the chained from systems, there are many feasible control method in literatures. Therefore, 
one can expect that the novel hopping system presented in this paper will stable hopping 
under appropriate motion planning. The optimal motion plan and control problems for the 
novel hopping system with considering the energy-efficiency, and comparing the presented 
mechanism with the SLIP model system from the point of view of energy-efficiency and 
mobility, are interesting works in the future. 

8. Conclusions 

On the basis of dynamic synthesis, a novel mechanism for one-legged hopping robot is 
proposed. Different from the most of relative researches in literature, the proposed hopping 
robot mechanism is a non-SLIP model system, which generally shows more biological 
characteristics while the control problem of it is intractable, due to the complex nonlinear 
dynamics and the second-order nonholonomic constraints. Thanks to the special design, it is 
proved that the dynamics of the presented hopping robot mechanism can be transformed into 
the non-affine strict feedback normal form. Further more, it is shown that the normal form can 
also be rewritten as affine system with slightly approximation. Then a sliding model 
backstepping control is proposed for stabilizing the nonlinear dynamic system to its origin as 
well as a given trajectory around the balance configuration of the robot in stance phase. The 
stability of the presented control is proved, and verified by some numerical simulations. 
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