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1. Introduction 

Robotic systems with parallel link mechanisms (PLMs) have mechanical characteristics such 
as rigidity of the mechanism and precise positioning (Stewart, 1966), (Merlet 2006), (Wang & 
Liu, 2008). These characteristics enable them to stably perform contact tasks with sensitive 
force, e.g. mold grindings and rehabilitation robotics. On the other hand, mechanical 
interference and the singularity of the mechanisms (Merlet, 1989) restrict the robot’s 
movable range. PLMs have therefore been conventionally applied not to general-purpose 
industrial robots, but to special-purpose machines (Weck, 2002), (Oiwa, 1997). 
In order to expand this limited application of PLMs, we have proposed a new parallel link 
mechanism with multi drive linear motors (MDLMs) (Harada & Nagase, 2009, 2010). The 
multi drive is a control method for linear motors in which a number of moving parts are 
individually driven on one stator part. We have proposed various configurations of PLMs 
which have been constructed for MDLMs. These PLMs expand the robot’s movable range 
while retaining the advantageous rigid mechanism and precise positioning that PLMs offer. 
Moreover, the proposed PLMs are suitable for force control, because the linear motors are 
directory driven without friction full gearings.  
Several studies related to expanding the movable range of the PLM have previously been 
published (Honegger et al., 1997), (Kim et al., 2003), (Liu et al., 2004), (In et al., 2008), 

(Milutinovis et al., 2005), (Zhang, 2008). Notably, redundantly actuated 3-DOF xy planar 
PLMs on linear actuators (Zhang, 2008), (Wang et al., 2008), (Marquet et al., 2001) have been 
proposed as mechanisms that are similar to our PLM. A two 2-DOF PRRRP (P denotes 
prismatic joint and R denotes rotational) parallel manipulator (Liu et al., 2007) has been 
employed as a mechanical element of these planar PLMs, including ours. However, these 
planar PLMs, excluding ours, aim at position control, not at force control. Conventionally, 
gearings or ball screws are used for the actuator transmission of PLMs. However, it is 
difficult to compensate for the undesired internal force among the redundant link 
mechanisms with the position controlled actuators. This undesired internal force results in 
mechanical deformation around the transmission parts (Leong et al., 2004).  
Our PLM is suitable for force control, because it employs directly driven linear motors. It 

can control the internal force and compensate for the mechanical deformation because of the 

favorable effect of force control and the back-drivability of the directly driven linear motors. 
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Moreover, it is designed to have constant inertia and decoupled dynamics in the x 

(horizontal) direction. Gravitational force only affects it in the y (vertical) direction. The 

simple characteristics of the dynamics make it easy to install a fast acceleration control or 

impedance control (Hogan, 1985) to the PLM, where the nonlinear dynamics of the PLM 

must be compensated for. 

 In this paper, we investigate the kinetostatics (kinametics and static force), and dynamics 

characteristics of the 3D4M PLM using symbolic mathematical analysis and numerical 

simulations. This paper is organized as follows: first, configurations of the 3D4M PLM on 

multi drive linear motors are introduced. Second, kinematic equations, forward kinematics 

and derivative kinematics of the 3D4M PLM are derived. The derived equations are 

symbolically programmed using Mathematica. Next, singularity and static forces of the 

3D4M PLM are analyzed using Mathematica. Then, the decoupled dynamical design of the 

3D4M PLM is introduced. The equations of motion of the 3D4M PLM are derived by 

symbolic programming using Mathematica. Finally, some examples are introduced for 

solving the equations of motion numerically using Mathematica. 

2. Configurations of link mechanism 

2.1 Multi drive linear motor 
A ball screw driven by a rotational motor, as shown in Fig.1 (a), is generally used as a linear 
actuator in conventional PLMs. A single driving part moves in a straight line on a linear 
stator; we will refer to this below as a single drive. The single drive disturbs the space in 
which movement takes place, and restricts the general-purpose application of PLMs. 
Moreover, it is difficult in principal for the load of the tip to be transmitted back to the 
actuator, which in turn renders the ball screw drive incapable of force control.  
To cope with these problems, multi drive linear motors (MDLMs), as shown in Fig.1 (b), are 
employed in our research. MDLMs offer a way to arrange more than one moving parts on 
one stator of a linear motor, with each moving part individually controlled and driven. 
 

motor

ball screw

moving part

(a) single drive (b) multi drive

stator part

moving parts

linear motor

 

Fig. 1. Single and multi drive linear motors 

2.2 Configuration of 3-DOF planar mechanisms 

Configurations of a 3-DOF (xy) planar PLM with 3 non-redundant moving parts (3D3M) 

and a 3-DOF (xy) planar PLM with 4 redundant moving parts (4D4M), are shown in Figs. 
2(a) and (b). The 3D4M PLM with 4 redundant moving parts is the centerpiece of our 
research. The redundancy of the PLMs is not used only for singularity avoidance as sought 
by conventional research, but is also used for forward kinematics computation (Merlet, 
1996) and calibration of the mechanism (Zhuang & Liu, 1998), (Chiu & Perg, 2003), which 
have been standing problems with conventional PLMs. 
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We are planning to apply the PLM to a table mechanism of 5 axis machine tools. A 
schematic view and the motions of the 3D4M PLM are illustrated in Fig. 3 and Fig. 4. 
 

(a) 3D3M (b) 3D4M

x

y



 

Fig. 2. 3-DOF planar parallel mechanisms 

 

x


yend plate

stator partmoving parts
multi drive linar motors

link

 

Fig. 3. Schematic view of the 3D4M mechanism 

 

x

y



 

Fig. 4. Motions of the 3D4M mechanism 

3. Kinematics of the parallel link mechanism 

3.1 Kinematics of 3-DOF parallel link mechanisms 
On the basis of the general kinematics formulation of parallel link mechanisms (Arai et al., 

1991), kinematics equations for the proposed 3-DOF parallel link mechanism are derived. In 

turn, the parallel link mechanism of the particular configuration of our research can also be 

analyzed by the general method of kinematics. 

The kinematic relationships of the 3D4M PLM, as shown in Fig. 5, are expressed as 
follows: 
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where ci (i = 1,..,4) is the control variable of the ith actuator, i.e., the position of the ith 

moving part of the multi drive linear motor. The length of the ith rod (link) is expressed as li. 

The distance from the central point of the end plate to the ith pair of the end plate is 

expressed as rt. Other symbols are indicated as in Fig. 5. 

 

li

a

y

x

link

linear motor

p



p
1

Rsi

Li

zi

ci


1 

3 
2


4

rt

p
2

end plate

i=1 i=3 i=2 i=4  

Fig. 5. Kinematic model of the 3-DOF PLM 

Equation (1) expresses the relationship between the positions of the moving parts ci (i=1,..,4) 

and the positions p and orientation  of the end plate. By solving (1) as ci, an inverse 

kinematics equation is derived as follows: 

 2 2 2( ) ( )T T T
i i i i i ic l   L a L a L L . (2) 

For the 1st and 3rd link, the plus-minus sign in (2) is given as positive, and for 2nd and 

4th link is given as negative. The unit direction vector zi and angle i of the ith rod are 
given as 

 
1

[ , ] ( ) /

tan

T
i xi yi i i i

yi
i

xi

z z c l

z

z


  

 
   

 


z L a

. (3) 

By applying derivatives to both sides of (1), the derivative relation of the 3D4M PLM is 

derived as follows: 
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Where Je43 and Jc4 are Jacobian matrices of the system. Kinematic characteristics such as 

singular point and static force can be analyzed by using Eq. (4). 

The kinematic equation of the 3D3M PLM is derived by removing the redundant part from 

Eqs. (1)-(4) as follows: 
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J p J c

p

c

. (5) 

3.2 Symbolical programming using Mathematica 
Equations (1)-(5) are symbolically programmed using Mathematica. Mathematica is a 

computational software program widely used in scientific, engineering, and mathematical 

fields and other areas of technical computing.  

Positional vector p and matrix R in Eq. (1) are symbolically defined by Mathematica. 

  (M. 1) 

Program code of Mathematica is indicated as (M. i). Valuables x[t], y[t] and [t] in (M. 1) are 

defined as function of time t. 

Vectors si, Li (i=1,…4) and a in Eq. (1) are defined as 

   (M. 2) 

   (M. 3) 

 .  (M. 4) 

The position of each moving part ci (i=1,...,4) in Eq. (2) is expressed as 
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  (M. 5) 

The unit direction vector zi and angle i (i=1,...,4) of the i th rod in Eq. (3) are defined 
as 

   (M. 6) 

   (M. 7) 

Matrix R in Eq. (4) is defined as 

 .  (M. 8) 

Jacobian Matrices Je43 in Eq. (4) and Je33 in Eq. (5) are expressed as 

   (M. 9) 

   (M. 10) 

3.3 Forward kinematics 
As shown in Fig. 5, two links are connected to the same pair of each end of the end plate. 

This makes it easy to solve the forward kinematics solution. The positions of the kinematic 

pairs p1:[x1,y1]T and p2:[x2,y2]T are expressed by the ci, the position of the moving part of the 

linear motor, as follows: 
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. (6) 
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If the length of each link li is designed with the same value as l, the forward kinematics of 
the PLM becomes a simple formula, as follows: 

 
 

 

2 2
1 1 2 1 2 1

2 2
2 2 3 4 4 3
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      

. (7) 

The orientation and the central position of the end plate are given from the positions of the 
actuators ci, as follows: 
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. (8) 

 3.4 Singularity of the 3-DOF PLM 
It is well known that parallel link mechanisms have two kinds of singularities (Gosselin & 
Angels, 1990). When PLM arrives at a position and orientation such that the Jacobian 
matrices Jcm in Eqs. (4)-(5) are singular, the output of the actuator does not transfer to the 
link mechanism. These situations are referred to as the 1st kind of singularity. When the 
PLM arrives at a position and orientation such that the Jacobian matrices Jen in Eqs. (4)-(5) 
are singular, the output of the end effecter does not transfer to the link mechanism. These 
situations are referred to as the 2nd kind of singularity. Variables m and n express the 
number of actuators and the degree of freedom of the end plate, respectively. 
When each element of Jcm equals zero, the proposed PLM becomes the 1st kind of 
singularity. The condition of the 1st kind of singularity is expressed as follows: 

 0T
i z a . (9) 

Equation (9) implies that if the unit direction vector a of the actuator and the unit direction 
vector zi of each link are orthogonal, the PLM becomes one of the 1st kind of singular points.  
The 2nd kind of singularity differs, depending on the configuration of the PLM. Here, the 
singular points of the 3D3M PLM are derived. The conditions of the 2nd kind of singularities 
are given as the determinant of the Jacobian matrix in Eq. (5), which equals zero as follows: 

 33det( ) 0e J . (10) 

Using symbolic mathematics software, equation (10) is solved. In case of each rod length li is 
identical as l, the following 4 types of singular points exist in the 3D3M PLM. 

Type 1:  1sin ( / )ty r   (11. 1) 

Type 2:  1sin (( ) / )tl y r     (11. 2) 

Type 3:  1 2 2 2cos ( (( ) ) /( )t tl r y l r       (11. 3) 
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Type 4:  1 2 2 2cos ( (( ) ) /( )t tl r y l r       (11. 4) 

3.5 Singularity analysis using Mathmatica 
Here, we show how to derive the singularity conditions of Eqs. (11. 1) – (11. 4) using 
Mathematica.  
When each rod length li is identical, Jacobian Matrix Je33 of (M. 10) is redefined Je33a as 
follows: 

. (M. 11) 

At that time, det(Je33) is simplified as follows: 

  (M. 12) 

 . (M. 13) 

(M. 13) is the output of (M. 12) by Mathematica. Equation (10) is solved by Mathematica as 
follows: 

  (M. 14) 

 (M. 15) 

(M. 15) is the output of (M. 14) by Mathematica. Singular points of Eqs. (11. 1) – (11. 4) are 
given by (M. 15). 

3.6 Singularity avoidance by redundantly actuation 
The singularity avoidance of the 3D4M PLM is shown through the definition 
of manipulability (Yoshikawa, 1985). The derivative kinematics of the PLM is transformed 
as 

  1
3 3 33 33c e n ce n

    c J J p J p . (12) 

The manipulability of the PLM is defined as follows: 
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  33 33det( )T
ce cew  J J . (13) 

Numerical calculations of the manipulability of the 3D3M PLM and the 3D4M PLM in 

correspondence with the rotation angle of the end plate, are shown in Figs. 6(a) and (b). The 

ratio of each link length li and the length of the end effecter 2rt is given as 2:1. 

The 3D3M non-redundant PLM becomes the 4th type of singular point given in (11.4) when 

the angle of the end plate equals 28.7 degrees. Around this angle, the manipulability 

becomes to zero, as shown in Fig.6 (a). On the other hand, the singular point is avoided by 

the redundant 3D4M PLM, as shown in Fig.6 (b). This confirms that the redundancy of the 

3D4M PLM greatly increases homogeneous manipulability. 
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Fig. 6. Singularity analysis of the parallel link mechanisms 

4. Static force analysis of the PLM 

4.1 Static force analysis for the non-redundant PLM 
Conventional static force analysis only derives the relationship between the generative force 

and torque of actuators and the external forces of the end effecter based on the principle of 

virtual force. Here, we expand this static force analysis in order to also calculate internal 

forces such as the constraint forces at the joints and the axial forces of the links. 

First, the formula for static force is derived when the degree of freedom of the end effecter 

(n) and the actuators (m) is equivalent. For the sake of convenience, the external forces of the 

end plate fe and the generative forces of the actuators fc are expressed by vector forms as 

follows: 

  

1
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T
e x y

T
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f f

f f
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. (14) 

The relationship between fe and fc is derived by the principle of virtual forces as 
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As shown in Fig. 7, fni and fli are defined as quantities of the constraint force at the ith joint 
and axial force of the ith link, respectively. The values fni and fli represent the internal forces 
of the PLM. The unit direction vector n along the constraint force fni is orthogonal to the unit 
direction vector a along the actuator force fci. The equilibrium of forces at the ith joint is 
given as: 

 ci ni li if f f  a n z 0 . (16) 

 

cif

xf

yf

Ijf

lif

nif



 

Fig. 7. Internal and external forces of the PLM 

By applying the inner product to Eq. (16) with each vector a and n, with the condition that 

vectors a and n are mutually orthogonal, the following formulas are derived. 

  
( ) 0

( ) 0

T
ci i li

T
ni i li

f f

f f

 

 

z a

z n
 (17) 

The constraint force fni and the axial force fli of each link are combined as vector form fn and 

fI as follows: 

  1

1

( ,..., )

( ,..., )

T T
c m l cm l

T T
n m l nm l

diag

diag

    
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f z a z a f J f

f z n z n f J f
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From Eq. (15) to Eq. (18), the internal forces fn and fI are given by the following equations. 

 
1
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4.2 Static force analysis for the redundant PLM 
In this section, the static forces for the redundant 3D4M PLM, as shown in Fig. 2 (b), are 

derived. Instead of the inverse matrix in Eq. (15), a generalized inverse matrix is applied to 

the calculation of the static force equation. 

  43 43 43

1
43 4 43

( ) ( ( ) )T T T
c ce e ce ce

ce c e

 
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where  implies the pseudo inverse of a matrix, and k is a 1  arbitrary vector. In the case 
of the 3D4M PLM, the left side of (20) has 4 degrees of freedom. On the right side of (20), the 
1st term has 3 degrees of freedom, which means the 2nd term will have 1 degree of freedom. 

The null space projection matrix [I-(Jce43T)+ Jce43T] is 4 , but its rank is just one. Therefore, 
the dimension of the 2nd term on the right side of (20) is reduced to 

  

1
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3 4
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The dimension is reduced to one by the independent variable fi in (21). In its physical sense, 

fi corresponds to the quantity of internal force acting on the end plate. 

In Eq. (21), fiL and fiR are the internal forces which act upon the left and right ends of the end 

plate, respectively. For purposes of convenience, they are combined together as the vector fi. 

The direction of internal forces fiL and fiR coincides with the direction of the end plate, whose 

angle is defined by the rotation angle  of the end effecter. The values fiL and fiR have the 

same quantity fi, but have opposite directions. The one dimensional internal force that acts 

along the end plate is explicitly controlled by Eq. (21). 

From Eq. (20) and Eq. (21), the generative forces of the actuators fc are calculated from the 

external force of the end effecter fe and the internal force of the end plate fi as 

 1
43 43( )T T

c ce e ce i i
  f J f J J f . (22) 

The internal force of the end plate exerts tensile or compressive stress on the end plate, 
which helps to diminish joint backlash and increase mechanical rigidity (Adli et al., 1991). 

4.3 Numerical simulation of the static force analysis 
Numerical simulation software of the static force analysis for the 3D4M PLM has been 

developed. The external force fe, the internal force fi, the generative force of the actuator fc, 

the constraint force fn and the tensile force of the link fl are calculated for an arbitrary 

position and orientation of the PLM. Examples of static force simulations for the 3D4M PLM 

are shown in Figs. 8 (a) and (b). 

Unit external force fe is acting at the central position of the end plate. Figure 8 (a) shows the 

case in which the internal force of the end plate fi is zero. Representations of the generative 

force of the actuator fc, the constraint force fn and the tensile force of the link fL are 

superimposed on the link mechanism as a solid line with the symbol * at the tip of the 

vector. Figure 8 (b) shows the case in which the unit internal force of the end plate fi was 

applied. In Fig. 8 (b), the internal force fi and additional forces caused by the fi at each joint 

are shown by broken lines. Representations of the generative force of the actuator fc, the 

constraint force fn and the tensile force of the link fL are also superimposed on the link 

mechanism as a solid line with the symbol * at the tip of the vector. These forces include 

elements of the internal force fi,. The situation in Fig. 8 (b) indicates how compressive forces 

are exerted upon the end plate.  
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Fig. 8. Numerical simulations about static forces 

5. Dynamics of the parallel link mechanism 

5.1 Equation of motion of the 3D4M PLM 

The positions and orientation of the end plate p=[x, y, ]T and the generative forces and 

torque at the end effecter fe=[fx,fy,]T are considered as generalized positions and 
generalized forces, respectively. In this formulation, gravity is assumed to be affected by the 
negative direction of the y-axis. The equation of motion is derived by applying Lagrange's 
equation. 
In particular, if the length, mass and moment of inertia of each link is designed with the 
same value, the equation of motion of the PLM becomes a simple formula, as follows: 
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q q q q

q

 


 (23) 

Equation (23) represents that the dynamics of the x direction of the 3D4M PLM has both 

decoupled and constant inertia characteristics. The dynamics of the y and  directions are 

also decoupled in the x direction. The constant of gravitational force affects only the y 

direction. 

5.2 Deriving the equation of motion using Mathematica 
Equation (23), the equation of motion of the 3D4M PLM, is derived using Mathematica. The 
equation of motion is derived by the Lagrange formulation as following steps. 
Step 1. Positions (and orientations) of the center of gravity (c.o.g) of mechanical elements - 

rods, end plate and actuator, - are defined as function of the generalized positions, 

x(t), y(t) and (t). 
Step 2. Velocities (and angular velocities) of the c.o.g. of the mechanical elements are 

derived as the time derivative of the positions (and orientations) of the c.o.g. 
Step 3. Kinetic energies and potential energies of the mechanical elements are calculated. 
Step 4. The Lagrangian L is derived as the difference between the total kinetic energy K and 

the total potential energy U of the mechanics. 

  L K U   (24) 

Step 5. Lagurange’s equation of motion is derived as 
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 i
i i

d L L
F

dt q q

  
  

  
. (25) 

Where, qi and Fi are generalized position and generalized force, respectively. 

5.2.1 Step 1 - positions and orientations of the mechanical elements 
The rod of the 3D4M PLM is designed as an even elongate bar. The c.o.g. of the rod is at the 

center of the bar. Positions of the c.o.g. of the rods are defined as follows: 

 .  (M. 16) 

Orientations of the rods are alreday defined as (M. 7). Position and orientation of the end 
plate are given as (M. 1). Positions of the actuatos are already defined as (M. 5). Positions 
and orientations of the mechanical elements are defined as functions of the generalised 
positions, x(t), y(t) and (t). 

5.2.2 Step 2 - velocities and angular velocities of the mechanical elements 
Velocities of the rods are given as time derivative of (M. 16) as follows: 

 .  (M. 17) 

Angular velocities of the rods are given as time derivative of (M. 7) as follows: 

 .  (M. 18) 

Velocities of the actuators are given as time derivative of (M. 6) as follows: 

.  (M. 19) 

Velocity and angular velocity of the end plate are given as time derivative of (M. 1) as follows: 

.  (M. 20) 

5.2.3 Step 3 - kinetic energies and potential energies of the mechanical elements 
Kinetic energy Ki of each rod, and Kt of the end plate are defined as follows: 
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 (M. 21) 

 (M. 22) 

Mass and moment of inertia of the i th rod are defined as mi and Ii, respectively. Mass and 
moment of inertia of the end plate are expressed as mt and It, respectively. 
Sum of kinetic energies of the actuators are expressed as 

. (M. 23) 

Mass of the i th actuator is expressed as mmi. 
Potential energies of rods and end plate are expressed as follows: 

.  (M. 24) 

5.2.4 Step 4 - The Lagrangian of the mechanism 
The Lagrangian L is derived as the difference between the total kinetic energy K of (M. 21)  – 
(M. 23) and the total potential energy U of (M. 24) as follows: 

. (M. 25) 

5.2.5 Step 5 - Lagurange’s equation of motion of the mechanism 
Equation of motion of the mechanism is derived by applying Lagrange’s equation of Eq. (25) 
to (M. 25) as follows. 

  (M. 26) 

S1, S2 and S3 are the left parts of Lagrange’s equation of Eq. (25). 

5.3 Simplify the dynamic characteristics of the 3D4M 
As shown in Eq. (23), if the length, mass and moment of inertia of each link is designed with 
the same value, the equation of motion of the 3D4M PLM becomes a simple formula. Here 
we derive Eq. (23) using symbolic analysis by Mathematica. 
Mass and moment of inertia of each mechanical part is descrived as follows. 

 (M. 27) 
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By applying the list (M. 27) to (M. 26), the equation of motion of the 3D4M PLM becomes 

.  (M. 28) 

Left side of equation of motion along the direction x becomes as follows: 

.  (M. 29) 

The equation of motion along the direction x is reduced to 

 (4 4 ) ( )l m t xm m m x t f    (26) 

Equation (26) indicates that the dynamics of the direction x of the 3D4M PLM has both 
decoupled and constant inertia characteristics. 
We obtain the gravity terms of the equation of motion as 

. (M. 30) 

(M. 30) indicates that the constant of gravitational force gy = (2ml+mt)g affects only to the 
direction y. Effective mass my and m of the direction y in Eq. (23) are derived as 

 (M. 31) 

. (M. 32) 

Coeffcients of Coriolis and centrifigual forces of the durection y in Eq. (23) are reduced to 

 (M. 33) 
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 (M. 34) 

 (M. 35) 

Then, ( , )yh q q , Coriolis and centrifigual forces of the durection y in Eq. (23), is given as 

  2 2
1 2 3( , )y y y yh h y h y h   q q     . (27) 

Effective moment of inertia m and Corioli and centrifigual moment h of the direction  are 
given as the same mannar of (M. 31) – (M. 35). 

6. Numerical simulations of the dynamics 

Numerical simulations of the dynamics of the 3D4M PLM has been tested using Mathematica. 
Values of the kinematic parameters of the 3D4M PLM are set as Table 1. These values are 
given from the prototype of the 3D4M PLM (Harada & Nagase, 2010) as show in Fig. 9. 
Values of the kinematic parameters are given follows: 

 (M. 36) 

. (M. 37) 
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Link 

Length [m] 0.140 

Mass [kg] 0.026 

Moment of inertia [kgm2] 9.84×10-5 

End plate 

Length [m] 0.100 

Mass [kg] 0.132 

Moment of inertia [kg m2] 8.54×10-4 

Actuator Total mass [kg] 0.375 

Table 1. Specifications of the mechanical parts of the prototype 

 

   

Fig. 9. Front views of the prototype 

Equations of motion of Eq. (23) are nonlinear simultaneous ordinary differential equations 

about x(t), y(t) and (t) with respect to time t. They are numerically solved by the operator 
“NDSolve” in Mathematica. 
We show an example of numerical simulation with initial conditions of the generalized 
positions and velocities are set as Table 2. 
 

positions velocities 

x(0) [m] 0.0 (0)x [m/s] 0.0 

y(0) [m] 0.08 (0)y [m/s] 0.0 

(0) [deg] 20.0 (0) [rad/s] 0.0 

Table 2. Initial conditions of the numerical simulation 

Constant generalized forces and torque are applied as Table 3. 

forces and torque 

fx [N] 0.2 

fy [N] (2ml+mt)g 

[Nm] 0.0 

Table 3. Generalized forces and torque of the numerical simulation 1 

Constant force fy=(2ml+mt)g compensates the gravitational effect along the direction y as 
shown in (M. 30).  
Responses of the generalized positions with the conditions of Table 2 & 3 from time t=0 [s] 
to t=2.0 [s] are numerically calculated by Mathematica as follows: 

www.intechopen.com



 
Numerical Analysis – Theory and Application 

 

412 

 (M. 38) 

The results are graphically shown by using Mathematica with the following codes. 

 (M. 39) 

 (M. 40) 

 (M. 41) 

Outputs of (M. 39) and (M. 41) are shown as Fig. 10 (a), (b) and (c), respectively. 
 

         
                          (a) x                                              (b) y                                              (c)  

Fig. 10. Results of the numerical simulation 1 (generalized positions) 

 

 

Fig. 11. Results of the numerical simulation 1 (skeletons) 
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Motions of the mechanism are graphically shown by the following code of Mathematica. 

 (M. 42) 

Output of (M. 41) is shown as Fig. 11. 
As shown in Fig. 10 and Fig. 11, the 3D4M PLM generated a constant motion of acceleration 
in the direction x while maintaining its initial configuration. The characteristiocs of the 
constant and decoupled dynamics of the 3D4M PLM along the direction x has been 
confirmed by this simulation. 
We show another example of numerical simulation with initial conditions of the generalized 
positions and velocities are set same as Table 2, but other types of constant generalized 
forces and torque are applied as Table 4. 
 

forces and torque
fx [N] 0.0
fy [N] (2ml+mt)g

 [Nm] 0.005

Table 4. Generalized forces and torque of the numerical simulation 2 

Code for solving the nonlinear simultaneous ordinary differential equations is given as  

. (M. 43) 
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Results of the simulation are shown in Fig. 12 and Fig. 13. 
 

         
                      (a) x                                          (b) y                                              (c)  

Fig. 12. Results of the numerical simulation 2 (generalized positions) 

 

 

Fig. 13. Results of the numerical simulation 2 (skeletons) 

As shown in Fig 12 and Fig. 13, the 3D4M PLM generated a constant motion of acceleration 

in the  direction while maintaining its initial horisontal (x) position. As shown if Fig. 12 (b), 

position of the direction y slightly moves because of the dynamical coupling between the 

directions y and . 

7. Conclusion 

A novel redundantly actuated planar parallel link mechanism using multi drive linear 

motors has been proposed. It expands the range of motion, while retaining the advantages 

of rigid mechanism and precise positioning. The kinetostatics and dynamics characteristics 

of the mechanism have been analyzed using symbolic mathematical analysis and numerical 

simulations.  

1. Kinematic equations, forward kinematics and derivative kinematics of the mechanism 

have been derived. The derived equations have been symbolically programmed using 

Mathematica.  

2. Singularity and static forces of the mechanism have been analyzed using Mathematica. 

The conditions of the singularity have been symbolically solved using Mathematica. 

3. The equations of motion of the mechanism have been symbolically derived using 

Mathematica by Lagrange’s formulation. 
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4. If the length, mass and moment of inertia of each link were designed with the same 
value, the equations of motion of the mechanism have been showed the decoupled and 
constant inertia characteristics in the horizontal direction. 

5. Examples have been introduced for solving the equations of motion numerically using 
Mathematica. The characteristics of the decoupled and constant inertia of the 
mechanism has been confirmed by the simulations. 
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