
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322398298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0

Error Control Coding for Flash Memory

Haruhiko Kaneko
Tokyo Institute of Technology

Japan

1. Introduction

Error control code (ECC) is extensively used in high-speed wireless/wired communication
system, magnetic disk, and optical disc (Lin & Costello, 2004). Also the ECC can efficiently
improve data reliability of semiconductor memory system (Fujiwara, 2006). This chapter
presents error control coding techniques for flash memory and solid-state drive (SSD). This
chapter begins with brief introduction of error sources in the flash memory, and then provides
fundamental mathematics of the ECC, followed by constructions of practical ECCs.

2. Errors in flash memory

Efficient ECC should be designed based on the analysis of error characteristics/statistics in the
flash memory. This section outlines error sources of the flash memory, and presents a channel
model based on a Gaussian-distribution approximation of the threshold voltage.

2.1 Errors sources in flash memory

2.1.1 Physical defect

Similar to general LSI circuits, flash memory suffers from wafer process defect (Muroke,
2006), such as short circuit between drain contact and control gate, adjacent poly lines, metal
lines, poly and metal lines, or two metal levels. Other major defects in the flash memory are
observed in tunnel oxide and peripheral circuit.
Many of the above defects can be detected by memory chip test (Mohammad et al., 2001), and
thus a moderate number of defects can be masked by a redundant hardware design, while
faulty chips with an excessive number of defects are discarded. Hence, the above physical
defects do not affect ECC design significantly.

2.1.2 Trapping / detrapping in tunnel oxide

Stress on the tunnel oxide by program/erase (P/E) cycles causes generation of traps, such as
positive-charge, neutral, and electron traps. The positive-charge and neutral traps induce
leakage current, as explained in 2.1.3, and the electron traps lengthen the charge time in
programming phase. Also, detrapping of electrons trapped in the tunnel oxide causes lowered
threshold voltage.

2.1.3 Leakage current

Leakage of electrons stored in the floating gate causes alteration of the threshold voltage,
which results in errors in readout data. Stress induced leakage current (SILC) is caused by

2

www.intechopen.com

2 Will-be-set-by-IN-TECH

Fig. 1. Read/write disturb in NAND flash memory.

deterioration of the tunnel oxide after many P/E cycles, that is, positive-charge and neutral
traps generated in the tunnel oxide causes leakage of electrons from the FG (Mielke et al.,
2008). The leakage current significantly increases when multiple traps in the tunnel oxide
form a path through which the FG is discharged (Ielmini et al., 2005). In multilevel cell (MLC)
memory, the highest level cells are affected by the SILC more severely compared to lower level
cells because of the largest electric field in the tunnel oxide.

2.1.4 Read/write disturb

High voltages applied to the CG in the read/write process cause insertion of electrons into the
FG. Figure 1 illustrates the following read/write disturb in NAND flash memory.

• Read disturb: FG in the same string of a selected cell is charged.

• Write disturb in selected string: FG in the same string of a selected cell is charged.

• Write disturb in selected WL: Inhibited FG in the same WL of a selected cell is charged.

2.1.5 Overprogramming / overerase

The FG could be excessively charged in the programming phase because of, for example,
random telegraph noise in verify step and erratic tunneling caused by positive charges in the
tunnel oxide (Mielke et al., 2008). The overprogramming results in error due to an elevated
threshold voltage. Some errors caused by overprogramming might be accidentally recovered
by detrapping of electrons trapped in the tunnel oxide.
Overerase phenomena is also observed in the flash memory cell (Chimenton et al., 2003),
where the threshold voltage is excessively dropped by the erasing. Overerased bits are
classified into two classes, that is, tail bit and fast bit. The tail bit has a slightly lower threshold
compared to normal bits, while the fast bit has a much lower threshold. It is predicted that
the tail and fast bits are caused by statistical fluctuations of cell charges and physical nature
of the cell, respectively.

2.1.6 Ionizing radiation

In a radiation harsh environment, such as spacecraft, aircraft, and nuclear plant, errors in the
flash memory could be induced by radiation of ionizing particles (e.g., α-particle, β-particle,
neutron, and cosmic rays) and high-energy electromagnetic wave (e.g., ultraviolet, X-ray,
and γ-ray). The ionizing radiation causes lattice displacement in crystal, which changes
the property of the semiconductor junctions, and thus results in errors. Effects of the total
ionization dose (TID) on the flash memory have been extensively examined (Claeys et al.,
2002; Oldham et al., 2007), and some experiments show that memory cells fail at the TID of

32 Flash Memories

www.intechopen.com

Error Control Coding for Flash Memory 3

Probability
density

1.5

1.0

0.5

0.0 Threshold
voltage v0 2 4 6 8

Level 0

Level 1 Level 2 Level 3

P0(v) P1(v) P2(v) P3(v)

Fig. 2. Example of PDF Pi(v) of threshold voltage.

Fig. 3. Probabilities Pr(i|i + 1) and Pr(i + 1|i).

around 100 [Krad]. The TID affects the functions of the charge pump and row decoder, as well
as the cell array (Bagatin et al., 2009).

2.2 Channel model

Since error sources of the flash memory are various as described in 2.1, it is difficult to establish
a precise channel model of the flash memory. Therefore, an approximated channel model
is derived based on a Gaussian approximation of the threshold voltage distribution. In the
following, we assume a b-bit MLC having Q = 2b charge levels of the FG. Let Pi(v) be the
probability density function (PDF) representing the probability that the threshold voltage of
level-i cell is equal to v, where i ∈ {0, 1, . . . , Q − 1}. The PDF Pi(v) is approximated by the

Gaussian distribution as Pi(v) = 1√
2πσi

exp
(
− (x−µi)

2

2σ2
i

)
, where µi and σi are the mean and

standard deviation of the threshold voltage of level-i cell, respectively. Figure 2 illustrates an
example of Pi(v) for 2-bit/cell memory, where b = 2, Q = 2b = 4, µ0 = 2.0, µ1 = 3.5, µ2 =
4.5, µ3 = 6.0, σ0 = 0.3, and σ1 = σ2 = σ3 = 0.2. In general, the standard deviation of level-0
cell is larger than that of higher level cells.
Let V i

R be the read (verify) voltage of control gate which discriminates level-i and level-(i + 1)

cells, where i ∈ {0, 1, . . . , Q − 2} and µi < V i
R < µi+1. For a given PDF Pi(v) and a read

voltage V i
R, the probability that level-i cell is identified as level-j is given by

Pr(j|i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ V0
R

−∞
Pi(v)dv (j = 0)

∫ V
j
R

V
j−1
R

Pi(v)dv (1 ≤ j ≤ Q − 2)

∫ ∞

VQ−2
R

Pi(v)dv (j = Q − 1)

.

Figures 3 (a), (b), and (c) illustrate the probabilities Pr(i|i + 1) and Pr(i + 1|i) for three read
voltages. Here, the dark and light shaded areas represent the probabilities Pr(i + 1|i) and
Pr(i + 1|i), respectively. It is obvious from Fig. 3(b) that error probability between level-i
and level-(i + 1) cells is minimized when V i

R is determined such that Pi(V
i
R) = Pi+1(V

i
R).

For example, for the 4-level cell shown in Fig. 2, the optimum read voltages satisfying this
equation are determined as V0

R = 2.288, V1
R = 4.000, and V2

R = 5.250.

33Error Control Coding for Flash Memory

www.intechopen.com

4 Will-be-set-by-IN-TECH

Fig. 4. Error control coding using a block code.

If the spatial and temporal correlations of errors are negligible in the flash memory, the errors
can be described by a Q-ary stationary memoryless channel, whose channel matrix is given as

P =

⎡
⎣

p0,0 . . . p0,Q−1
...

. . .
...

pQ−1,0 . . . pQ−1,Q−1

⎤
⎦ =

⎡
⎣

Pr(0|0) . . . Pr(Q − 1|0)
...

. . .
...

Pr(0|Q − 1) . . . Pr(Q − 1|Q − 1)

⎤
⎦ ,

where pi,j = Pr(j|i).

3. Introduction to linear block code

Figure 4 illustrates an error control coding scheme for the flash memory, where a block code
is employed to correct/detect errors. In the write process, an information word is encoded
to a codeword by the encoder, and then the codeword is written to the flash memory. In the
read process, a received word (i.e., a readout codeword possibly having errors) is decoded by
the decoder, wherein the errors are corrected or detected. Since many of practical ECCs are
classified into linear block code, this section provides fundamentals of the linear block codes.

3.1 Galois field

Practical linear block codes are usually defined over Galois field. This subsection covers
definition and construction of Galois field.

3.1.1 Definition

Galois Field GF(q) is defined as a finite set having q elements on which two binary operations,
namely, addition (+) and multiplication (·), are defined, where q is a prime number or a power
of a prime number. Galois field is defined such that the following axioms hold.

Axioms of Galois field
1. Closure under addition: ∀x, y ∈ GF(q), x + y ∈ GF(q).
2. Commutativity of addition: ∀x, y ∈ GF(q), x + y = y + x.
3. Associativity of addition: ∀x, y, z,∈ GF(q), (x + y) + z = x + (y + z).
4. Additive identity: ∀x ∈ GF(q), ∃0 ∈ GF(q), x + 0 = 0 + x = x.
5. Additive inverse: ∀x ∈ GF(q), ∃(−x) ∈ GF(q), x + (−x) = (−x) + x = 0.
6. Closure under multiplication: ∀x, y ∈ GF(q), x · y ∈ GF(q).
7. Commutativity of multiplication: ∀x, y ∈ GF(q), x · y = y · x.
8. Associativity of multiplication: ∀x, y, z ∈ GF(q), (x · y) · z = x · (y · z).
9. Multiplicative identity: ∀x ∈ GF(q), ∃1 ∈ GF(q), x · 1 = 1 · x = x.
10. Multiplicative inverse: ∀x ∈ GF(q)− {0}, ∃x−1, x · x−1 = x−1 · x = 1.
11. Distributivity: ∀x, y, z ∈ GF(q), x · (y + z) = x · y + x · z.
In the above notation, 0 and 1 are referred to as zero and unity, respectively. The set of axioms
says that the four arithmetic operations (addition, substitution, multiplication, and division)
can be applied to elements in GF(q). There exist two types of Galois field, that is, prime field
GF(q) and extension field GF(qm), where q is a prime number and m ≥ 2 is an integer.

34 Flash Memories

www.intechopen.com

Error Control Coding for Flash Memory 5

Table 1. Addition and multiplication tables of GF(5).

3.1.2 Prime field

Prime field is defined as GF(q) = {0, 1, . . . , q − 1}, where q is a prime, and addition and
multiplication of elements x, y ∈ GF(q) are defined as

(x + y) mod q and (x · y) mod q,

respectively. Here, “a mod q” indicates the remainder of a divided by q. Table 1 presents an
example of addition and multiplication tables of GF(5).

3.1.3 Extension field

Extension field GF(qm) is constructed using a polynomial defined over GF(q). Let

f (x) =
m

∑
i=0

fix
i = fmxm + fm−1xm−1 + · · ·+ f1x + f0

be a polynomial over GF(q) of degree m, where fi ∈ GF(q) for 0 ≤ i ≤ m and fm �= 0. Addition
and multiplication of polynomials over GF(q) is defined in the same manner as polynomials
over the real number except that addition and multiplication of coefficients are performed
according to the definitions of GF(q). Period of a polynomial f (x) is defined as the minimum
positive integer e satisfying f (x)|(xe − 1), where f (x)|g(x) indicates that g(x) is divisible by
f (x).
Irreducible polynomial is a polynomial which cannot be factorized to polynomials over GF(q).
For example, x2 + 1 over GF(2) is not irreducible because x2 + 1 = (x + 1)(x + 1), whereas
x2 + x + 1 over GF(2) is irreducible. Primitive polynomial p(x) is an irreducible polynomial
whose period is qm − 1. List of primitive polynomials is provided in various ECC text books,
such as in (Lin & Costello, 2004).
Let p(x) = ∑

m
i=0 pix

i be a primitive polynomial of degree m over GF(q), where pm = 1, and

let α be a root of p(x), that is p(α) = 0. Since α satisfies αm = − ∑
m−1
i=0 piα

i, αs is expressed as
a polynomial of α of degree less than m for any non-negative integer s, that is,

αs =
m−1

∑
i=0

aiα
i, (1)

where ai ∈ GF(q). The left-hand side and the right-hand side of Eq.(1) are referred to as the
power and polynomial representations of αs, respectively, and its coefficient vector

vec(αs) = (am−1, am−2, . . . , a0)

is referred to as the vector representation of αs.

Example 1. Let α be a root of primitive polynomial p(x) = x3 + x + 1 over GF(2). Table 2 shows the
polynomial and vector representations of the powers of α. (Note that −x = x in GF(2).)

35Error Control Coding for Flash Memory

www.intechopen.com

6 Will-be-set-by-IN-TECH

Power Polynomial Vector Power Polynomial Vector

α0 1 (0, 0, 1) α5 α3 + α2 = α2 + α + 1 (1, 1, 1)
α1 α (0, 1, 0) α6 α3 + α2 + α = α2 + 1 (1, 0, 1)
α2 α2 (1, 0, 0) α7 α3 + α = 1 (0, 0, 1)
α3 α + 1 (0, 1, 1) ...

...
...α4 α2 + α (1, 1, 0)

Table 2. Polynomial and vector representation of powers of a root α of primitive polynomial
p(x) = x3 + x + 1 over GF(2).

Table 3. Addition and multiplication tables of GF(23).

Theorem 1. Let α be a root of primitive polynomial p(x) of degree m over GF(q). The following
relation holds for non-negative integers i and j:

αi = αj ⇔ i ≡ j (mod qm − 1).

An extension field GF(qm) of degree m is generated from a ground field GF(q) as GF(qm) =
{0, α0, α1, . . . , αqm−2}, where α is a root of primitive polynomial of degree m over GF(q), and
the vector representation of 0 is (0, . . . , 0). Here, the additive and multiplicative identities are
0 and α0 = 1, respectively, and the addition and multiplication of αi and αj are defined as

αi + αj = αk

and
αi · αj = α(i+j) mod qm−1,

where vec(αi) + vec(αj) = vec(αk) over GF(q). In short, the addition is defined on the vector
representation, and the multiplication on the power representation.

Example 2. Let α be a root of primitive polynomial p(x) = x3 + x + 1 over GF(2). Extension field
GF(23) is defined as GF(23) = {0, α0, α1, . . . , α6}, where the non-zero elements are listed in Table 2.
The addition and multiplication tables of GF(23) are presented in Table 3.

3.2 Linear space

3.2.1 Definition

Let u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1) be vectors of length n over GF(q), where
ui, vi ∈ GF(q) for 0 ≤ i ≤ n − 1 and GF(q) is either prime field or extension field. For the
vectors over GF(q), addition, inner product, and scalar multiplication are defined as

u + v = (u0 + v0, u1 + v1, . . . , vn−1 + un−1),

u · v = u0 · v0 + u1 · v1 + · · ·+ un−1 · vn−1, and

a · v = (a · v0, a · v1, . . . , a · vn−1),

36 Flash Memories

www.intechopen.com

Error Control Coding for Flash Memory 7

respectively, where the addition and multiplication of vector components are defined on
GF(q). For simplicity, the multiplication operator ’·’ will be omitted hereafter. Let V be a
set of vectors of length n over GF(q). The set V is a linear space if the following conditions
hold.
1. Closure under addition: ∀u, v ∈ V, u + v ∈ V.
2. Commutativity of addition: ∀u, v ∈ V, u + v = v + u.
3. Associativity of addition: ∀u, v, w ∈ V, (u + v) + w = u + (v + w).
4. Zero vector: ∀u ∈ V, ∃o ∈ v, u + o = o + u = u.
5. Inverse vector: ∀u ∈ V, ∃ − u ∈ V, u + (−u) = o.
6. Closure under scalar multiplication: ∀u ∈ V, ∀a ∈ GF(q), au ∈ V.
7. Distributivity (scalar addition): ∀u ∈ V, ∀a, b ∈ GF(q), (a + b)u = au + bu.
8. Distributivity (vector addition): ∀u, v ∈ V, ∀a ∈ GF(q), a(u + v) = au + av.
9. Associativity of scalar multiplication: ∀u ∈ V, ∀a, b ∈ GF(q), (ab)u = a(bu).
10. Identity of scalar multiplication: ∀u ∈ V, 1u = u.

Example 3. The following set of all vectors over GF(2) of length 4 is a linear space:

V = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1),

(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)}.

A subset S of a linear space V is a linear subspace if the following conditions hold:
1. Closure under addition: ∀u, v ∈ S, u + v ∈ S.
2. Closure under scalar multiplication: ∀u ∈ S,∀a ∈ GF(q), au ∈ S.

Example 4. One example of the linear subspace of V in Example 3 is S = {(0, 0, 0, 0), (0, 0, 1, 1),
(1, 1, 0, 0), (1, 1, 1, 1)}.

3.2.2 Basis vector and dimension

Linear space V can be specified by a set of basis vectors as follows:

V = {v = a0v0 + a1v1 + · · ·+ ak−1vk−1 | ai ∈ GF(q), vi: basis vector},

where v0, v1, . . . , vk−1 are linearly independent vectors of length n over GF(q). Here, the basis
vectors satisfy the following condition:

a0v0 + a1v1 + · · ·+ ak−1vk−1 = o ⇔ a0 = a1 = · · · = ak−1 = 0,

where o is the zero-vector.

Example 5. The followings are examples of basis vectors of V and S of Examples 3 and 4, respectively.
One example of basis vectors of V: {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)}.
Another example of basis vectors of V: {(0, 0, 1, 1), (1, 1, 0, 0), (0, 0, 0, 1), (0, 1, 1, 0)}.
An example of basis vectors of S: {(0, 0, 1, 1), (1, 1, 0, 0)}.

For a given vector space V, there exists a number of combinations of basis vectors, while the
number of basis vectors in each combination is identical. The dimension k of vector space V is
defined as the number of basis vectors of V.

Example 6. The dimensions of V and S in Examples 3 and 4 are k = 4 and 2, respectively.

37Error Control Coding for Flash Memory

www.intechopen.com

8 Will-be-set-by-IN-TECH

Fig. 5. Example of null space over GF(2).

3.2.3 Null space

Let V be a linear space of dimension k defined as

V = {v = a0v0 + a1v1 + · · ·+ ak−1vk−1 | ai ∈ GF(q), vi is basis vector},

where vi is a vector of length n over GF(q). The null space of V is defined as

Ṽ = {ṽ = (ṽ0, ṽ1, . . . , ṽn−1) | ∀v ∈ V, v · ṽ = 0, ṽi ∈ GF(q)}.

Equivalently, the null space Ṽ is defined using the basis vectors of V as

Ṽ = {ṽ = (ṽ0, ṽ1, . . . , ṽn−1) | ∀i ∈ {0, 1, . . . , k − 1}, vi · ṽ = 0, ṽi ∈ GF(q)}.

It can be proved that the null space is a linear space.

Example 7. Figure 5 presents an example of linear space V and its null space Ṽ over GF(2).

3.3 Linear block code

3.3.1 Definition

Let Fn be a linear space defined as a set of all vectors of length n over GF(q), that is,

Fn = {u = (u0, u1, . . . , un−1) | ui ∈ GF(q)}.

A block code of length n over GF(q) is defined as a subset of Fn, and a linear block code C of length
n over GF(q) is defined as a linear subspace of Fn. A code C of length n with dimension
k is denoted as (n, k) code. Encoding by a linear block code C is defined as a bijective
mapping from Fk to C. Vectors in C and Fk are referred to as codeword and information
word, respectively.

Example 8. From the linear subspace V shown in Fig. 5, (6,3) linear block code C over F = GF(2) is
generated as

C = {(0, 1, 1, 1, 0, 0), (1, 0, 1, 0, 1, 0), (1, 1, 0, 0, 0, 1), (0, 0, 0, 1, 1, 1),

(0, 0, 0, 0, 0, 0), (1, 1, 0, 1, 1, 0), (1, 0, 1, 1, 0, 1), (0, 1, 1, 0, 1, 1)}.

Encoding by C is defined as an arbitrarily bijective mapping from F3 to C. The following is one example
of the bijective mapping:

(0, 0, 0)→ (0, 0, 0, 0, 0, 0) (0, 0, 1)→ (1, 1, 0, 0, 0, 1) (0, 1, 0)→ (1, 0, 1, 0, 1, 0) (0, 1, 1)→ (0, 1, 1, 0, 1, 1)
(1, 0, 0)→ (0, 1, 1, 1, 0, 0) (1, 0, 1)→ (1, 0, 1, 1, 0, 1) (1, 1, 0)→ (1, 1, 0, 1, 1, 0) (1, 1, 1)→ (0, 0, 0, 1, 1, 1)

Systematic encoding is an encoding in which each bit in the information word appears in a fixed
position of the codeword. The above encoding example is a systematic encoding because an
information word d = (d0, d1, d2) ∈ F3 is mapped to a codeword u = (u0, u1, u2, u3, u4, u5) ∈
C, where d0 = u3, d1 = u4, and d2 = u5.

38 Flash Memories

www.intechopen.com

Error Control Coding for Flash Memory 9

3.3.2 Generator matrix

Since linear block code C of length n over GF(q) is a linear subspace, C can be specified by a set
of basis vectors {g0, g1, . . . , gk−1}, where gi is a row vector of length n over GF(q). Generator
matrix G of an (n, k) linear block code C is defined as a k × n matrix over GF(q) whose row
vectors are basis vectors of C, that is,

G =

⎡

⎣
g0,0 . . . g0,n−1

...
. . .

...
gk−1,0 . . . gk−1,n−1

⎤

⎦ =

⎡

⎣
g0
...

gk−1

⎤

⎦ ,

where gi,j ∈ GF(q) for 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ n − 1. The code C is defined using the
generator matrix G as follows:

C = {u = (u0, u1, . . . , un−1) = dG | d = (d0, d1, . . . , dk−1), di ∈ GF(q)}.

From this definition, linear code C is equivalent to the row space of G.

Example 9. A generator matrix of the linear block code C shown in Example 8 is given as

G =

[
0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

]
.

3.3.3 Parity-check matrix

Let C̃ be the null space of linear code C, and let {h0, h1, . . . , hr−1} be the set of basis vectors

of C̃, where hi is a row vector of length n over GF(q), and r = n − k. Parity-check matrix H of
the linear code C is defined as the following r × n matrix over GF(q):

H =

⎡
⎣

h0,0 . . . h0,n−1
...

. . .
...

hr−1,0 . . . hr−1,n−1

⎤
⎦ =

⎡
⎣

h0
...

hr−1

⎤
⎦ ,

where hi,j ∈ GF(q) for 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ n − 1. The code C is defined by the
parity-check matrix as follows:

C = {u = (u0, u1, . . . , un−1) | HuT = oT = (0, . . . , 0)T , ui ∈ GF(q)}.

In this definition, the code C is equivalent to the null space of the row space of H.

Example 10. An example parity-check matrix of the code C shown in Example 8 is given as

H =

[
1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

]
.

3.3.4 Minimum distance

Let u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1) be vectors of length n over GF(q).
Hamming weight of u is defined as

w(u) = (the number of nonzero elements in u),

39Error Control Coding for Flash Memory

www.intechopen.com

10 Will-be-set-by-IN-TECH

and Hamming distance between u and v is defined as d(u, v) = w(u − v). In other words,
Hamming distance d(u, v) is the number of component positions in which the two vectors
differ. Minimum distance of a block code C is defined as

dmin(C) = min
u,v∈C,u �=v

d(u, v).

In general, it is hard to determine the minimum distance from the above definition if the
cardinality of C is large. The following theorems are useful to determine the minimum
distance of a linear block code.

Theorem 2. For a linear block code C, it holds that dmin(C) = min
u∈C,u �=o

w(u).

Proof. Since C is a linear block code, the following relation holds:

dmin(C) = min
u,v∈C,u �=v

d(u, v) = min
u,v∈C,u �=v

w(u − v) = min
w∈C,w �=o

w(w).

The above theorem says that the minimum distance of a linear block code C is equal to the
minimum Hamming weight of non-zero codeword of C. The minimum Hamming weight of
non-zero codeword can be determined from the parity-check matrix as follows.

Theorem 3. Let H be a parity-check matrix of linear block code C. If there exist d column vectors in
H which are linearly dependent, and also d − 1 or fewer column vectors in H are linearly independent,
then the minimum Hamming weight of non-zero codeword of C is d.

Proof. Since H has d column vectors which are linearly dependent, there exists a codeword u
of Hamming weight d satisfying HuT = oT. Also, since d − 1 or fewer column vectors in H
are linearly independent, any vector x of Hamming weight 1 ≤ w(x) ≤ d − 1 does not satisfy
HxT = o, which means that C does not have non-zero codeword of Hamming weight less
than or equal to d − 1. Therefore, the minimum Hamming weight of non-zero codeword of C
is d.

Combining Theorems 2 and 3, the following theorem is obtained.

Theorem 4. Let H be a parity-check matrix of linear block code C. If there exist d column vectors in
H which are linearly dependent, and also d − 1 or fewer column vectors in H are linearly independent,
then the minimum distance of C is d.

3.3.5 Error control capability of bounded distance decoding

Let u = (u0, u1, . . . , un−1) be a codeword over GF(q), and let

r = (r0, r1, . . . , rn−1) = u + e = (u0, u1, . . . , un−1) + (e0, e1, . . . , en−1)

be a received word, that is, a readout word from flash memory, where e is an error vector over
GF(q). The number of errors in r is defined as d(u, r) = w(u − r) = w(e).

Theorem 5. A block code of minimum distance d is capable of correcting t errors and detecting s errors
by the bounded distance decoding, where d ≥ t + s + 1 and t ≤ s.

Figure 6 illustrates the relation between t, s and d under the bounded distance decoding.

40 Flash Memories

www.intechopen.com

Error Control Coding for Flash Memory 11

Fig. 6. Relation between the minimum distance and error correction/detection capabilities
under the bounded distance decoding.

3.4 Cyclic code

3.4.1 Construction

Cyclic code C is a subclass of linear block code satisfying the following condition:

u = (u0, u1, . . . , un−2, un−1) ∈ C ⇒ u′ = (un−1, u0, . . . , un−3, un−2) ∈ C.

That is, if u is a codeword of C, then a cyclic shift of u is also a codeword. Cyclic code is usually
defined using polynomials over GF(q). Let u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1)
be codewords of C. Polynomial representations of u ∈ C and v ∈ C are given as follows:

u(x) = u0+u1x+u2x2+. . .+un−1xn−1, v(x) = v0+v1x+v2x2+. . .+vn−1xn−1,

where ui, vi ∈ GF(q). Addition of two codewords u(x) ∈ C and v(x) ∈ C is expressed as

u(x) + v(x) = (u0 + v0) + (u1 + v1)x + (u2 + v2)x
2 + · · ·+ (un−1 + vn−1)x

n−1,

and right cyclic shift of u(x) ∈ C as

xu(x) mod (xn − 1) = un−1 + u0x + u1x2 + · · ·+ un−2xn−1 ∈ C. (2)

By recursively applying the relation of Eq.(2), we obtain xiu(x) mod (xn − 1) ∈ C for any
non-negative integer i. Since C is a linear block code, (xi + xj)u(x) mod (xn − 1) ∈ C for
any pair of non-negative integers i and j. This implies that, if u(x) is a codeword of C, then
f(x)u(x) mod (xn − 1) is also a codeword of C, where f(x) is a polynomial over GF(q).

Definition 1. Let g(x) be a factor of (xn − 1), that is, (xn − 1) = g(x)h(x), where the degree of
g(x) is r. Cyclic code C over GF(q) of length n is defined using g(x) as the generator polynomial, that
is,

C = {f(x)g(x) mod (xn − 1) | f(x): polynomial over GF(q)}
= {d(x)g(x) | d(x): polynomial over GF(q) of degree less than n − r}.

The following theorem is obvious from the above definition.

Theorem 6. Let C be a cyclic code generated by g(x). Polynomial u(x) is a codeword of C if and only
if

u(x) mod g(x) = 0.

Example 11. Polynomial (x7 − 1) over GF(2) is factorized as

(x7 − 1) = (x3 + x + 1)(x3 + x2 + 1)(x + 1).

Let g(x) = x3 + x + 1 be the generator polynomial of cyclic code of length n = 7. Table 4 lists
codewords of the cyclic code generated by g(x). This code is referred to as (7, 4) cyclic Hamming code.

Example 12. Cyclic redundancy check (CRC) codes are used as error detecting code. Table 5 shows
generator polynomials of standardized CRC codes (Lin & Costello, 2004; Witzke & Leung, 1985).

41Error Control Coding for Flash Memory

www.intechopen.com

12 Will-be-set-by-IN-TECH

d(x) u(x) = d(x)g(x) (vector) d(x) u(x) = d(x)g(x) (vector)

0 0 (0000000) x3 x3 + x4 + x6 (0001101)
1 1 + x + x3 (1101000) 1 + x3 1 + x + x4 + x6 (1100101)
x x + x2 + x4 (0110100) x + x3 x + x2 + x3 + x6 (0111001)

1 + x 1 + x2 + x3 + x4 (1011100) 1 + x + x3 1 + x2 + x6 (1010001)
x2 x2 + x3 + x5 (0011010) x2 + x3 x2 + x4 + x5 + x6 (0010111)

1 + x2 1 + x + x2 + x5 (1110010) 1 + x2 + x3 1+x+x2+x3+x4+x5+x6 (1111111)
x + x2 x + x3 + x4 + x5 (0101110) x + x2 + x3 x + x5 + x6 (0100011)

1+x+x2 1 + x4 + x5 (1000110) 1+x+x2+x3 1 + x3 + x5 + x6 (1001011)

Table 4. (7, 4) Cyclic Hamming code generated by g(x) = x3 + x + 1.

Standard Generator polynomial Standard Generator polynomial

CRC-12 x12 + x11 + x3 + x2 + x + 1 CRC-16 x16 + x15 + x2 + 1
IBM-SDLC x16 + x15 + x13 + x7 + x4 + x2 + x + 1 CCITT X-25 x16 + x12 + x5 + 1
CD-ROM x32 + x31 + x16 + x15 + x4 + x3 + x + 1 DVD-ROM x32 + x31 + x4 + 1
IEC TC57 x16 + x14 + x11 + x8 + x6 + x5 + x4 + 1
IEEE 802.3 x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1

Table 5. Example of standardized CRC code.

3.4.2 Systematic encoding

Let C be a cyclic code of length n, and let g(x) be a degree-r generator polynomial of C.
Systematic encoding of an information word d(x) of degree k = n − r by C is defined as

u(x) = xrd(x)− ρ(x),

where ρ(x) = xrd(x) mod g(x). It can be easily verified that u(x) is a codeword of C because
the following relation holds.

u(x) mod g(x) = (xrd(x)− ρ(x)) mod g(x)

= (xrd(x)− xrd(x) mod g(x)) mod g(x)

= (xrd(x)− xrd(x)) mod g(x) = 0.

This systematic encoding generates a codeword

u(x) = u0 + u1x + · · ·+ ur−1xr−1 + urxr + ur+1xr+1 + . . . un−1xn−1,

where the first r terms correspond to the check part ρ(x), and the remaining k = n − r terms
to the information word d(x).

Example 13. Table 6 presents the systematic encoding of the (7,4) cyclic Hamming code generated by
g(x) = x3 + x + 1. Although this code is identical to the code shown in Table 4, the mapping from
d(x) to u(x) is systematic, that is, d(x) = d0 + d1x + d2x2 + d3x3 corresponds to u3x3 + u4x4 +
u5x5 + u6x6.

4. Basic error control codes

This section introduces basic error control codes which have been applied to various digital
systems. All codes presented in this section are linear codes of length n defined over GF(2m),
where m is a positive integer. That is, a codeword is expressed as u = (u0, u1, . . . , un−1),
where ui ∈ GF(2m) for 0 ≤ i ≤ n − 1. Here, ui is referred to as bit (for m = 1) or symbol (for
m ≥ 2). Example of codeword structure of a systematic code is shown in Fig. 7(a), where the

42 Flash Memories

www.intechopen.com

Error Control Coding for Flash Memory 13

d(x) u(x) (vector) d(x) u(x) (vector)

0 0 (0000000) x3 1 + x2 + x6 (1010001)
1 1 + x + x3 (1101000) 1 + x3 x + x2 + x3 + x6 (0111001)
x x + x2 + x4 (0110100) x + x3 1 + x + x4 + x6 (1100101)

1 + x 1 + x2 + x3 + x4 (1011100) 1 + x + x3 x3 + x4 + x6 (0001101)
x2 1 + x + x2 + x5 (1110010) x2 + x3 x + x5 + x6 (0100011)

1 + x2 x2 + x3 + x5 (0011010) 1 + x2 + x3 1 + x3 + x5 + x6 (1001011)
x + x2 1 + x4 + x5 (1000110) x + x2 + x3 x2 + x4 + x5 + x6 (0010111)

1+x+x2 x + x3 + x4 + x5 (0101110) 1+x+x2+x3 1+x+x2+x3+x4+x5+x6 (1111111)

Table 6. Systematic encoding of (7, 4) cyclic Hamming code generated by g(x) = x3 + x + 1.

Fig. 7. Example of systematic codeword structure.

codeword consists of information and check parts of length k and r, respectively. Note that
the check part can be divided and distributed over the codeword, as illustrated in Fig, 7(b).

4.1 Parity-check code

4.1.1 Definition

Parity-check code is a single-bit error detecting code over GF(2) whose codeword is expressed

as u = (u0, u1, . . . , un−1), where ui ∈ GF(2) for 0 ≤ i ≤ n − 1 and ∑
n−1
i=0 ui = 0. Here,

the information length is k = n − r = n − 1 and the minimum distance is dmin = 2. The
parity-check and generator matrices are given as

H =
[

1 1 . . . 1
]

1×n
and G =

⎡
⎣

1

Ik

...
1

⎤
⎦ =

⎡
⎣

1 0 1
. . .

...
0 1 1

⎤
⎦

k×n

,

respectively, where Ik is the k × k identity matrix.

4.1.2 Encoding/decoding

Encoding: Let d = (d0, d1, . . . , dk−1) be an information word of length k. Codeword u for
the information word d is determined as u = (u0, u1, . . . , un−2, un−1) = (d0, d1, . . . , dk−1, p),

where n = k + 1 and p = ∑
k−1
i=0 di.

Decoding: Let r = (r0, r1, . . . , rn−1) be a received word, where ri ∈ GF(2) for 0 ≤ i ≤ n − 1.
Syndrome s is calculated as s = ∑

n−1
i=0 ri. If s = 0 holds, r is assumed to have no error; otherwise

r has an odd number of errors.

4.2 Hamming SEC code

4.2.1 Definition

Hamming code is a single-bit error correcting (SEC) code over GF(2) defined by a parity-check
matrix H whose column vectors are nonzero and distinct. The code length n of the Hamming
code is upper bounded by n ≤ 2r − 1, where r is the number of check bits. Table 7 presents
the maximum code length and information length of the Hamming code for 2 ≤ r ≤ 10.
Systematic parity-check matrix H of (n, n − r) Hamming SEC code is expressed as H =[

Q Ir
]

, where Q is an r × (n − r) matrix whose column vectors have Hamming weight ≥ 2,

43Error Control Coding for Flash Memory

www.intechopen.com

14 Will-be-set-by-IN-TECH

Check length: r 2 3 4 5 6 7 8 9 10
Maximum code length: n = 2r − 1 3 7 15 31 63 127 255 511 1023
Information length: k = n − r 1 4 11 26 57 120 247 502 1013

Table 7. Maximum code length n and information length k of Hamming code.

and Ir is the r × r identity matrix. Generator matrix of the code is G =
[

Ik QT
]

, where QT

indicates the transpose of Q.

Example 14. The following shows the parity-check and generator matrices of (7, 4) Hamming code:

H=
[

Q I3

]
=

[
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

]
and G=

[
I4 QT

]
=

⎡

⎣
1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎤

⎦ .

4.2.2 Encoding

Encoding using generator matrix

Let G be a k × n generator matrix of (n, k) Hamming code. Information word d = (d0, d1, . . . ,
dk−1) of length k is encoded as u = (u0, u1, . . . , un−1) = dG.

Example 15. Let G be the generator matrix of Example 14. Information word d = (0, 1, 1, 0) is
encoded as

u = dG = (0, 1, 1, 0)

⎡
⎣

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎤
⎦ = (0, 1, 1, 0, 0, 1, 1).

Encoding using systematic parity-check matrix

Let H = [Q Ir] be an r × n systematic parity-check matrix of (n, n − r) Hamming code, and
let d = (d0, d1, . . . , dk−1) be an information word of length k = n − r. This information word
d is encoded as u = (d, p) = (d0, d1, . . . , dk−1, p0, p1, . . . , pr−1), where the check part p is

determined as p = (p0, p1, . . . , pr−1) = dQT .

Example 16. Let H =
[

Q I3

]
be the systematic parity-check matrix of Example 14. The check part

p for information word d = (0, 1, 1, 0) is calculated as

p = dQT = (0, 1, 1, 0)

⎡

⎣
0 1 1
1 0 1
1 1 0
1 1 1

⎤

⎦ = (0, 1, 1).

Thus, codeword is generated as u = (d, p) = (0, 1, 1, 0, 0, 1, 1).

4.2.3 Decoding

Let u′ = (u′
0, u′

1, . . . , u′
n−1) be a received word expressed as

u′ = u + e = (u0, u1, . . . , un−1) + (e0, e1, . . . , en−1),

where u is an original codeword and e is an error vector. If e is the zero-vector, u′ has no
error. Hamming SEC code can recover u from u′ when w(e) ≤ 1. Decoding is based on the
following relation:

s = Hu′T = H(u + e)T = HuT + HeT = HeT .

44 Flash Memories

www.intechopen.com

Error Control Coding for Flash Memory 15

Check length: r 3 4 5 6 7 8 9 10 11

Maximum code length: n = 2r−1 4 8 16 32 64 128 256 512 1024
Information length: k = n − r 1 4 11 26 57 120 247 502 1013

Table 8. Maximum code length n and information length k of OWC SEC-DED code.

This relation says that, if u′ has a single bit error in the i-th bit, the syndrome s is equal to the
i-th column vector of H, where 0 ≤ i ≤ n − 1. The received word u′ is decoded as follows:

1. The syndrome s is calculated as s = Hu′T .

2. If s is the zero-vector, then u′ is assumed to have no error, and thus decoded word is
determined as ũ = u′.

3. If s is equal to the i-th column vector of H, the received word u′ is assumed to have an
error in the i-th bit. Decoded word is determined as ũ = u′ + ii, where ii is a binary vector
whose i-th element is 1 and the other elements are 0.

4. If s is nonzero and is not equal to any column vector of H, the received word u′ has
multiple-bit error. Decoding result of this case is uncorrectable error detection.

Example 17. Let u = (0, 1, 1, 0, 0, 1, 1) be the codeword generated in Example 16, and let e =
(0, 0, 1, 0, 0, 0, 0) be the error vector. Received word is given as

u′ = (0, 1, 1, 0, 0, 1, 1) + (0, 0, 1, 0, 0, 0, 0) = (0, 1, 0, 0, 0, 1, 1).

The syndrome of u′ is calculated as

s = Hu′T =

[
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

]
(0, 1, 0, 0, 0, 1, 1)T = (1, 1, 0)T.

Since the calculated syndrome is equal to the 2nd column of H, decoded word is determined as

ũ = u′ + i2 = (0, 1, 0, 0, 0, 1, 1) + (0, 0, 1, 0, 0, 0, 0) = (0, 1, 1, 0, 0, 1, 1) = u.

4.3 Odd-weight column (OWC) SEC-DED code

4.3.1 Definition

OWC code is a liner code over GF(2) having minimum distance dmin = 4, and thus this code
can be used as either single-bit error correcting - double-bit error detecting (SEC-DED) code
or triple-bit error detecting (TED) code. The code length n of the OWC code is upper bounded
by n ≤ 2r−1, where r is the number of check bits. Table 8 presents the maximum code length
and information length of the OWC SEC-DED code for 3 ≤ r ≤ 11.
Parity-check matrix of this code is generated from odd-weight column vectors. Systematic
parity-check matrix of (n, n − r) OWC code is expressed as H = [QO Ir], where QO is an
r × (n − r) matrix whose column vectors have odd Hamming weight w ≥ 3, and Ir is the r × r
identity matrix. Generator matrix of the code is given as G = [Ik QT

O].

Example 18. The following shows the parity-check and generator matrices of (8, 4) OWC code:

H=
[

QO I4

]
=

⎡
⎣

0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1

⎤
⎦ and G=

[
I4 QT

O

]
=

⎡
⎣

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

⎤
⎦ .

45Error Control Coding for Flash Memory

www.intechopen.com

16 Will-be-set-by-IN-TECH

m 3 4 5 6 7 8 9 10
n 7 15 31 63 127 255 511 1023

(t = 1) 4 11 26 57 120 247 502 1013
(t = 2) - 7 21 51 113 239 493 1003

k (t = 3) - 5 16 45 106 231 484 993
(t = 4) - - 11 39 99 223 475 983
(t = 5) - - 6 36 92 215 466 973

Table 9. Maximum code length n and information length k of t-bit error correcting BCH code.

4.3.2 Encoding

Information word d = (d0, d1, . . . , dk−1) is encoded by either generator matrix G or systematic
parity-check matrix H =

[
QO Ir

]
in the same way as the Hamming SEC code.

Example 19. Information word d=(0, 1, 0, 1) is encoded by the generator matrix G of Example 18 as

u = dG = (0, 1, 0, 1)

⎡
⎢⎢⎣

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

⎤
⎥⎥⎦ = (0, 1, 0, 1, 0, 1, 0, 1).

4.3.3 Decoding

Decoding is based on the Hamming weight of syndrome s = Hu′T = He′T . That is, since
every column vector of H has an odd Hamming weight, syndrome s of a single-bit error has
an odd weight, while that of a double-bit error has an even weight w ≥ 2. This means that the
syndromes of double-bit errors are distinct from those of single-bit errors. Hence, the OWC
SEC-DED code can be decoded in the same way as Hamming code shown in 4.2.3.

Example 20. Let u = (0, 1, 0, 1, 0, 1, 0, 1) be the codeword generated in Example 19, and let e =
(0, 1, 0, 0, 0, 0, 1, 0) be the error vector. Received word is given as

u′ = u + e = (0, 1, 0, 1, 0, 1, 0, 1) + (0, 1, 0, 0, 0, 0, 1, 0) = (0, 0, 0, 1, 0, 1, 1, 1).

The syndrome of u′ is calculated as

s = Hu′T =

⎡
⎢⎢⎢⎣

0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1

⎤
⎥⎥⎥⎦ (0, 0, 0, 1, 0, 1, 1, 1)T = (1, 0, 0, 1)T.

Since the calculated syndrome has even Hamming weight w(s) = 2, the syndrome is not equal to any
column vector of H. Hence, the decoding algorithm indicates that u′ has uncorrectable errors.

4.4 BCH code

4.4.1 Definition

Binary primitive BCH code is a t-bit error correcting cyclic code of length n = 2m − 1 with
r ≤ mt check bits, where t ≥ 1 and m ≥ 2. In most cases, r = mt holds, and thus information
length is k = 2m − 1 − mt. Table 9 presents the maximum code length n and information
length k of the BCH code for 3 ≤ m ≤ 10 and 1 ≤ t ≤ 5 (Lin & Costello, 2004).

46 Flash Memories

www.intechopen.com

Error Control Coding for Flash Memory 17

Let α be a primitive element of GF(2m). The parity-check matrix of t-bit error correcting BCH
code is defined as

H =

⎡
⎢⎢⎢⎣

1 α1 α2 α3 . . . αi . . . αn−1

1 α3 (α3)2 (α3)3 . . . (α3)i . . . (α3)n−1

1 α5 (α5)2 (α5)3 . . . (α5)i . . . (α5)n−1

...
...

...
...

...
...

1 α2t−1 (α2t−1)2 (α2t−1)3 . . . (α2t−1)i . . . (α2t−1)n−1

⎤
⎥⎥⎥⎦ ,

where αi is expressed as a column vector of length m.
Generator matrix of the binary primitive BCH code is derived from the generator polynomial
as follows. Let cnjm(i) be a set of exponents of conjugates of αi ∈ GF(2m), defined as follows:

cnjm(i) = { i · 2j mod (2m − 1) | j ∈ {0, 1, 2, . . . } }.

Minimal polynomial of αi ∈ GF(2m) is defined as

φi(x) = ∏
j∈cnj

m
(i)

(x − αj).

The generator polynomial of t-bit error correcting BCH code is given as

g(x) = g0 + g1x + g2x2 + · · ·+ grxr = LCM{φ1(x), φ3(x), . . . , φ2t−1(x)},

where LCM is the least common multiple of polynomials, and gi ∈ GF(2). Then, generator
matrix is determined as

G =

⎡
⎢⎢⎢⎣

g0 g1 g2 · · · · · · · · · gr 0 · · · · · · · · · 0
0 g0 g1 g2 · · · · · · · · · gr 0 · · · · · · 0
0 0 g0 g1 g2 · · · · · · · · · gr 0 · · · 0

...
0 · · · · · · · · · 0 g0 g1 g2 · · · · · · · · · gr

⎤
⎥⎥⎥⎦ .

4.4.2 Encoding/decoding

Information word is encoded using either generator matrix G or generator polynomial g(x) as
described in 3.4.2. From the definition of generator polynomial g(x), a codeword polynomial
u(x) = u0 + u1x + u2x2 + · · · + un−1xn−1 has 2t consecutive roots, α1, α2, . . . , α2t , that is
u(αi) = 0 for i ∈ {1, 2, . . . , 2t}. Using this relation, a received word u′(x) = u′

0 + u′
1x +

u′
2x2 + · · ·+ u′

n−1xn−1 is decoded as follows.

1. Syndrome calculation: Syndrome s is determined as s = (s1, s2, . . . , s2t), where si = u′(αi).
If s = (0, 0, . . . , 0), then u′(x) is assumed to have no error.

2. Generation of error-location polynomial σ(x): Error-location polynomial

σ(x) = σ0 + σ1x + · · ·+ σt′ x
t′

is calculated from the syndrome s. This polynomial has t′ roots, α−j1 , α−j2 , . . . , α−jt′ , where
t′ ≤ t is the number of errors in u′(x), and ji ∈ {0, 1, . . . , n − 1} is the location of i-th error.
The following shows Berlekamp’s algorithm to derive σ(x) from s.

(Berlekamp’s algorithm) Error-location polynomial σ(x) is derived using Table 10, where the
rows of µ = −1 and µ = 0 are given initial values. In the following, µ is referred to as the

47Error Control Coding for Flash Memory

www.intechopen.com

18 Will-be-set-by-IN-TECH

µ ρµ σµ(x) lµ µ − lµ dµ

−1 - 1 0 −1 1
0 - 1 0 0 S1
...

2t

Table 10. Berlekamp’s algorithm.

row number. Values in the rows from µ = 1 to µ = 2t are determined as follows:

Step 1 Current row number is set as µ = 0.
Step 2 If dµ �= 0, ρµ+1 is determined as

ρµ+1 = arg max
−1≤µ′<µ
dµ′ �=0

(µ′ − lµ′).

That is, ρµ+1 is a row number µ′ which is prior to the current row µ, where dµ′ �= 0, and

µ′ − lµ′ has the largest value among the prior rows.

Step 3 Polynomial σµ+1(x) is determined as follows:

σµ+1(x) =

{
σµ(x) (dµ = 0)
σµ(x) + dµd−1

ρ xµ−ρσρ(x) (dµ �= 0)
,

where ρ is ρµ+1 determined in Step 2.

Step 4 If µ = 2t − 1, then σµ+1(x) = σ2t(x) gives the error-location polynomial.
Step 5 lµ+1 is determined as the degree of σµ+1(x).
Step 6 dµ+1 is determined as follows:

dµ+1 = Sµ+2 + σ
µ+1
1 Sµ+1 + σ

µ+1
2 Sµ + · · ·+ σ

µ+1
lµ+1

Sµ+2−lµ+1
,

where σ
µ+1
i is the coefficient of degree-i term of σµ+1(x).

Step 7 The current row number is incremented as µ = µ + 1, and go to Step 2.

3. Search of the roots of σ(x): The roots of the error-location polynomial σ(x) are determined

by Chien search, which finds a set of integers, {l ′1, l ′2, . . . , l ′τ}, satisfying σ(αl ′i) = 0, where
0 ≤ l ′i ≤ n − 1.

4. Error correction: Error pattern is determined as e(x) = xl1 + xl2 + · · · + xlτ , where li =
(n − l ′i) mod n for 1 ≤ i ≤ τ. Finally, errors in u′(x) are corrected as ũ(x)=u′(x)+e(x).

4.5 Reed-Solomon code

RS code is a linear cyclic code over GF(q) of length n = q − 1 with r check symbols, where the
minimum distance is dmin = r + 1. Practically, q is a power of 2, such as q = 28, and thus the
following considers the RS codes over GF(2m). Let α be a primitive element of GF(2m). The
parity-check matrix of RS code over GF(2m) is given as

H =

⎡
⎢⎢⎢⎢⎣

1 α1 α2 . . . αn−2 αn−1

1 α2 α4 . . . α2(n−2) α2(n−1)
...

...
...

...
...

1 αr−1 α(r−1)2 . . . α(r−1)(n−2) α(r−1)(n−1)

1 αr αr·2 . . . αr(n−2) αr(n−1)

⎤
⎥⎥⎥⎥⎦

,

and the generator polynomial of RS code is defined as g(x) = (x − α)(x − α2) . . . (x − αr).

48 Flash Memories

www.intechopen.com

Error Control Coding for Flash Memory 19

Fig. 8. Example of Tanner graph.

5. Low-Density Parity-Check (LDPC) code

LDPC code is a linear block code defined by a sparse parity-check matrix (Gallager, 1962), that
is, the number of non-zero element in an m × n parity-check matrix is O(n). The LDPC codes
are employed in recent high-speed communication systems because appropriately designed
LDPC codes have high error correction capability. The LDPC codes will be applicable to
high-density MLC flash memory suffering from high BER.

5.1 Tanner graph

An LDPC matrix H = [hi,j]m×n is expressed by a Tanner graph, which is a bipartite graph
G = (V , E), where V = V ∪ C is a set of nodes, and E is a set of edges. Here, V = {v0, v1, . . . ,
vn−1} is a set of variable-nodes (v-nodes) corresponding to column vectors of H, and C =
{c0, c1, . . . , cm−1} is a set of check-nodes (c-nodes) corresponding to row vectors of H. The
edge set is defined as E = {(ci, vj)|hi,j �= 0}. That is, c-node ci and v-node vj are connected by
an edge (ci, vj) if and only if hi,j �= 0. Girth of G is defined as the length of shortest cycle in G .
The girth affects the error correction capability of LDPC code, that is, a code with a small girth
l, e.g., l = 4, will have poor error correction capability compared to codes with a large girth.

Example 21. Figure 8 presents a parity-check matrix H and corresponding Tanner graph G .

5.2 Regular/irregular LDPC code

5.2.1 Regular LDPC code

Regular LDPC code is defined by a parity-check matrix whose columns have a constant
weight λ ≪ m and rows have almost constant weight. More precisely, Hamming weight
wc(H∗,j) of the j-th column in H satisfies wc(H∗,j) = λ for 0 ≤ j ≤ n − 1, and Hamming
weight wr(Hi,∗) of the i-th row in H satisfies ⌊nλ/m⌋ ≤ wc(Hi,∗) ≤ ⌈nλ/m⌉ for 0 ≤ i ≤ m− 1.
Note that the total number of nonzero elements in H is nλ. The regular LDPC matrix is
constructed as follows (Lin & Costello, 2004; Moreira & Farrell, 2006).

• Random construction: LDPC matrix H is randomly generated by computer search under the
following constraints:
– Every column of H has a constant weight λ.
– Every row of H has weight either ⌊nλ/m⌋ or ⌈nλ/m⌉.
– Overlapping of nonzero element in every pair of columns in H is at most one.
The last constraint guarantees that the girth of generated H is at least six.

• Geometric construction: LDPC matrix can be constructed using geometric structure, such as,
Euclidean geometry and projective geometry.

5.2.2 Irregular LDPC code

Irregular LDPC code is defined by an LDPC matrix having unequal column weight. The
codes with appropriate column weight distribution have higher error correction capability
compared to the regular LDPC codes (Richardson et al., 2001).

49Error Control Coding for Flash Memory

www.intechopen.com

20 Will-be-set-by-IN-TECH

Column no. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Locations 0 32 64 8 31 63 14 30 17 28 22 27 7 19 6

of 1s. 1 34 70 18 42 76 45 47 62 48 60 49 53 44 46
(Row no.) 4 39 78 95 54 91 94 83 80 82 81 84 77 85 75

Table 11. Position of 1s in the base matrix H0 of IEEE 802.15.3c.

5.3 Example

5.3.1 WLAN (IEEE 802.11n, 2009)

(1296,1080) LDPC code is defined by the following parity-check matrix:

H =

⎡

⎣
48 29 37 52 2 16 6 14 53 31 34 5 18 42 53 31 45 − 46 52 1 0 − −
17 4 30 7 43 11 24 6 14 21 6 39 17 40 47 7 15 41 19 − − 0 0 −
7 2 51 31 46 23 16 11 53 40 10 7 46 53 33 35 − 25 35 38 0 − 0 0

19 48 41 1 10 7 36 47 5 29 52 52 31 10 26 6 3 2 − 51 1 − − 0

⎤

⎦ ,

where “−” indicates the 54× 54 zero matrix, and integer i indicates a 54× 54 matrix generated
from the 54 × 54 identity matrix by cyclically shifting the columns to the right by i elements.

5.3.2 WiMAX (IEEE 802.16e, 2009)

(1248,1040) LDPC code is defined by the following parity-check matrix:

H =

⎡
⎣

0 13 29 − 25 2 − 49 45 4 46 28 44 17 2 0 19 10 2 41 43 0 − −
− 3 − 19 21 25 6 42 25 − 22 11 6 38 7 39 0 23 26 0 0 0 0 −
27 43 44 2 36 − 11 − 16 13 49 33 43 4 46 42 32 47 36 8 − − 0 0
36 − 27 8 − 19 7 5 5 10 28 48 15 49 30 16 45 49 5 35 43 − − 0

⎤
⎦ ,

where “−” indicates the 52× 52 zero matrix, and integer i indicates a 52× 52 matrix generated
from the 52 × 52 identity matrix by cyclically shifting the columns to the right by i elements.

5.3.3 WPAN (IEEE 802.15.3c, 2009)

Let H0 be a 96 × 15 matrix whose elements are all-zero expect the elements listed in Table 11.
(1440,1344) Quasi-cyclic LDPC code is defined by the following parity-check matrix:

H =
[

H0 H1 H2 . . . H94 H95

]
,

where Hi is obtained by cyclically i-row upward shifting of the base matrix H0.

5.4 Soft input decoding algorithm of binary LDPC code

Let u = (u0, u1, . . . , un−1) be a codeword of binary LDPC code defined by an m × n LDPC
matrix H. To retrieve a codeword u stored in the flash memory, the posteriori probability fi(x)
is determined from readout values (v0, v1, . . . , vn−1), where fi(x) denotes the probability that
the value of i-th bit of the codeword is x ∈ {0, 1}. For example, if a binary input asymmetric
channel with channel matrix P = [pi,j]2×2 is assumed, then the posteriori probability is given
as fi(x) = px,vi

/(p0,vi
+ p1,vi

), where it is assumed that Pr(ui = 0) = Pr(ui = 1) = 1/2. The
sum-product algorithm (SPA) determines a decoded word ũ = (ũ0, ũ1, . . . , ũn−1) from the
posteriori probabilities (f0(x), f1(x), . . . , fn−1(x)). The SPA is an iterative belief propagation
algorithm performed on the Tanner graph G = (V , E), where each edge ei,j = (ci, vj) ∈ E is
assigned two probabilities Qi,j(x) and Ri,j(x), where x ∈ {0, 1}. The following notations are
used in the SPA.

• dc
i = |{j | ei,j ∈ E}|: degree of c-node ci.

50 Flash Memories

www.intechopen.com

Error Control Coding for Flash Memory 21

• {J
i,j
0 , J

i,j
1 , . . . , J

i,j
dc

i −2} = { J | ei,J ∈ E , J �= j}: set of indices of v-nodes adjacent to c-node ci

excluding vj.

Sum-product algorithm

1. Initialize Ri,j(x) as Ri,j(0) = Ri,j(1) = 1/2 for each ei,j ∈ E .

2. Calculate Qi,j(x) for each ei,j ∈ E :

Qi,j(x) = η × f j(x)× ∏
I∈{I|e I ,j∈E}\{i}

RI,j(x) ,

where x ∈ {0, 1} and η is determined such that Qi,j(0) + Qi,j(1) = 1.

3. Calculate Ri,j(x) for each ei,j ∈ E :

Ri,j(0) = ∑
(x0,...,xdc

i
−2)∈Xdc

i
−1

(
dc

i−2

∏
k=0

Q
i,J

i,j
k

(xk)

)
, Ri,j(1) = 1 − Ri,j(0),

where Xl =
{
(x0, . . . , xl−1)

∣∣∣∑l−1
i=0 xi = 0

}
.

4. Generate a temporary decoded word ũ = (ũ0, ũ1, . . . , ũn−1) from

Qj(x) = f j(x)× ∏
I∈{I|e I ,j∈E}

RI,j(x) ,

where x ∈ {0, 1} and

ũj =

{
0 (Qj(0) > Qj(1))
1 (otherwise)

.

5. Calculate syndrome s=HũT. If s=o, then output ũ as a decoded word, and terminate.

6. If the number of iterations is greater than a predetermined threshold, then terminate with
uncorrectable error detection; otherwise go to step 2.

There exist variations of the SPA, such as Log domain SPA and log-likelihood ratio (LLR) SPA.
Also, there are some reduced-complexity decoding algorithms, such as bit-flipping decoding
algorithm and min-sum algorithm (Lin & Costello, 2004).

5.5 Nonbinary LDPC code

5.5.1 Construction

Nonbinary LDPC code is a linear block code over GF(q) defined by an LDPC matrix
H = [hi,j]m×n, where hi,j ∈ GF(q). The nonbinary LDPC codes generally have higher
error correction capability compared to the binary codes (Davey & MacKay, 1998). Several
construction methods of the nonbinary LDPC matrix have been proposed. For example, high
performance quasi-cyclic LDPC codes are constructed using Euclidean geometry (Zhou et al.,
2009). It is shown in (Li et al., 2009) that, under a Gaussian approximation of the probability
density, optimum column weight of H over GF(q) decreases and converges to two with
increasing q. For example, the optimum column weight of rate-1/2 LDPC code on the AWGN
channel is 2.6 for q = 2, while that is 2.1 for q = 64.

51Error Control Coding for Flash Memory

www.intechopen.com

22 Will-be-set-by-IN-TECH

5.5.2 Decoding

The SPA for the binary LDPC code can be extended to the one for nonbinary codes
straightforwardly, in which probabilities Qi,j(x) and Ri,j(x) are iteratively calculated for

x ∈ GF(q). However, the computational complexity of Ri,j(x) is O(q2), and thus the SPA is

impractical for a large q. For practical cases of q = 2b, a reduced complexity SPA for nonbinary
LDPC code has been proposed using the fast Fourier transform (FFT) (Song & Cruz, 2003).

Definition 2. Let (X(0), X(α0), X(α1), . . . , X(αq−2)) be a vector of real numbers of length q = 2p ,
where α is a primitive element of GF(q). Function fk is defined as follows:

fk(X(0), X(α0), X(α1), . . . , X(αq−2)) = (Y(0), Y(α0), Y(α1), . . . , Y(αq−2)),

where

Y(β0) =
1√
2
(X(β0) + X(β1)) and Y(β1) =

1√
2
(X(β0)− X(β1)).

Here, β0 ∈ GF(2p) and β1 ∈ GF(2p) are expressed as

vec(β0) = (ip−1, ip−2, . . . , ik+1, 0, ik−1, . . . , i0) and

vec(β1) = (ip−1, ip−2, . . . , ik+1, 1, ik−1, . . . , i0).

The FFT of (X(0), X(α0), . . . , X(αq−2)) is defined as

F (X(0), X(α0), . . . , X(αq−2)) = fp−1(fp−2(. . . f1(f0(X(0), X(α0), . . . , X(αq−2))) . . .)).

Let G = (V , E) be the Tanner graph of LDPC matrix H = [hi,j]m×n over GF(q), where each
edge ei,j ∈ E is assigned a nonzero value hi,j ∈ GF(q). The following shows the outline of the
FFT-based SPA for given posteriori probability f j(x), that is, the probability of the i-th symbol
being x, where x ∈ GF(q) and 0 ≤ i ≤ n − 1.
FFT-based Sum-product algorithm for nonbinary LDPC code

1. Initialize Ri,j(x) as Ri,j(x) = 1/q for each ei,j ∈ E and x ∈ GF(q).

2. Calculate Qi,j(x) for each ei,j ∈ E and x ∈ GF(q):

Qi,j(x) = η × f j(x)× ∏
I∈{I|e I ,j∈E}\{i}

RI,j(x) ,

where η is determined such that ∑x∈GF(q) Qi,j(x) = 1.

3. Calculate Ri,j(x) for each ei,j ∈ E and x ∈ GF(q) as follows:

(a) Generate the probability distribution permuted by hi,j, that is, Q′
i,j(x · hi,j) = Qi,j(x).

(b) Apply the FFT to Q′
i,j(x) as

(Q̃i,j(0), Q̃i,j(α
0), . . . , Q̃i,j(α

q−2)) = F (Q′
i,j(0), Q′

i,j(α
0), . . . , Q′

i,j(α
q−2)).

(c) Calculate the product of Q̃i,j(x) for each ei,j ∈ E as R̃i,j(x) = ∏
dc

i−2
k=0 Q̃

i,J
i,j
k

(x).

(d) Apply the FFT to R̃i,j(x) as

(R′
i,j(0), R′

i,j(α
0), . . . , R′

i,j(α
q−2)) = F (R̃i,j(0), R̃i,j(α

0), . . . , R̃i,j(α
q−2)).

(e) Generate the probability distribution permuted by h−1
i,j , that is, Ri,j(x) = R′

i,j(x · hi,j).

52 Flash Memories

www.intechopen.com

Error Control Coding for Flash Memory 23

 -9

 -7

 -5

 -3

 -1

 0 0.2 0.3 0.4 0.5 0.6

10

10

10

10

10

 Binary code
w=3.0

w=2.5w=2.0

 Code rate = 1/2

 B
it
 e

rr
o

r
ra

te

 σ
 0

 -8

 -6

 -4

 -2

 0.2 0.3 0.4

10

10

10

10

 Binary code

w=3.0

w=2.0

w=2.5

 Code rate = 5/8

 σ

 B
it
 e

rr
o

r
ra

te

Fig. 9. Decoded BER of LDPC code over GF(8).

Fig. 10. w-Way interleave of (k + r, k) systematic code.

4. Generate a temporary decoded word ũ = (ũ0, ũ1, . . . , ũn−1) using

Qj(x) = f x
j × ∏

I∈{I|e I ,j∈E}
RI,j(x) ,

where x ∈ GF(q) and ũj = arg maxx∈GF(q) Qj(x).

5. Calculate syndrome s=HũT. If s=o, then output ũ as a decoded word, and terminate.

6. If the number of iterations is greater than a predetermined threshold, then terminate with
uncorrectable error detection; otherwise go to step 2.

5.6 Nonbinary LDPC code for flash memory

The following evaluates the decoded BER of the nonbinary LDPC codes for a channel model
of 8-level cell flash memory (Maeda & Kaneko, 2009), where the threshold voltages are
hypothesized as µ0 = −3.0000, µ1 = −2.0945, µ2 = −1.2795, µ3 = −0.4645, µ4 = 0.3505, µ5 =
1.1655, µ6 = 1.9805, and µ7 = 3.0000. These threshold voltages are determined to minimize the
raw BER under the condition that µ0 = −3.0000, µQ−1 = 3.0000, and the standard deviation
σi of Pi(v) is given as σi = σ for i ∈ {1, 2, . . . , Q − 2}, σ0 = 1.2σ, and σQ−1 = 1.5σ.
The decoded BER is calculated by decoding 100, 000 words, where the maximum number of
iterations in the SPA is 200. Figure 9 illustrates the relation between the standard deviation
σ and the decoded BER of nonbinary LDPC codes over GF(8) having code rates 1/2 and
5/8. The decoded BER is evaluated for the code length 8000, where the column weights of
the parity-check matrix are 2, 3, and 2.5. This figure also shows the decoded BER of binary
irregular LDPC code. This figure says that the nonbinary LDPC codes have lower BER than
binary irregular LDPC codes, and the nonbinary codes with column weight w = 2.5 give the
lowest BER in many cases.

6. Combination of error control codes

6.1 Fundamental techniques

Interleaving: Interleaving is an effective technique to correct burst errors. Figure 10
illustrates the w-way interleave of a (k + r, k) systematic code. Here, information word
of length wk is interleaved to generate w information subwords of length k, which are

53Error Control Coding for Flash Memory

www.intechopen.com

24 Will-be-set-by-IN-TECH

Fig. 11. Product/concatenated code using systematic block codes.

independently encoded by the (k + r, k) systematic code. Then, the generated check bits are
interleaved and appended to the information word. If the (k + r, k) code can correct burst l-bit
errors, then the interleaved code can correct burst wl-bit errors.
Product code: Product code is defined using two block codes over GF(q), that is, (k1 +
r1, k1) code C1 and (k2 + r2, k2) code C2, as illustrated in Fig. 11(a). Information part is
expressed as a k1 × k2 matrix over GF(q). Each column of the information part is encoded by
C1, and then each row of the obtained (k1 + r1)× k2 matrix is encoded by C2. The minimum
distance of the product code is d = d1 × d2, where d1 and d2 are the minimum distances of C1

and C2, respectively.
Concatenated code: Concatenated code is defined using two block codes C1 and C2, where
C1 is a (k1 + r1, k1) code over GF(qm), and C2 is a (k2 + r2, k2) code over GF(q), as shown in
Fig. 11(b). Information part is expressed as a K1 × k2 matrix, where K1 = k1 × m. Each column
of the information part, which is regarded as a vector of length k1 over GF(qm), is encoded
by C1, and then each row of the obtained (K1 + R1)× k2 matrix over GF(q) is encoded by C2,
where R1 = r1 × m. For example, we can construct the concatenated code using a RS code
over GF(28) as C1 and a binary LDPC code as C2, by which bursty decoding failure of the
LDPC code C2 can be corrected using the RS code C1.

6.2 Three-level coding for solid-state drive

The following outlines a three-level error control coding suitable for the SSD (Kaneko et al.,
2008), where the SSD is assumed to have N memory chips accessed in parallel. A cluster
is defined as a group of N pages stored in the N memory chips, where the pages have
same memory address, and is read or stored simultaneously. Let (D0, D1, . . . , DN−2) be the
information word, where Di is a binary k × b matrix. This information word is encoded as
follows.

1. First level coding: Generate a parity-check segment as P = D0 ⊕ D1 ⊕ · · · ⊕ DN−2, where
P is a binary k × b matrix and ⊕ denotes matrix addition over GF(2).

2. Second level coding: Let d = (d0, d1, . . . , dN−2, p) be a binary row vector with length kN,
where di = (di,0 ⊕ di,1 ⊕ · · · ⊕ di,b−1)

T and p = (p0 ⊕ p1 ⊕ · · · ⊕ pb−1)
T. Encode d by

the code CCL to generate the shared-check segment Q = (Q0, Q1, . . . , QN−1) having r0bN
bits, where Qi = [qi,0qi,1 . . . qi,b−1] is a binary r0 × b matrix for i ∈ {0, 1, . . . , N − 1}.
Here, the check bits of CCL are expressed as a row vector with length r0bN bits, that is,
(qT

0,0, qT
0,1, . . . , qT

0,b−1, qT
1,0, . . . , qT

N−1,b−1). Then, for i ∈ {0, 1, . . . , N − 2}, append Qi to the
bottom of Di, and also append QN−1 to the bottom of P.

54 Flash Memories

www.intechopen.com

Error Control Coding for Flash Memory 25

Fig. 12. Encoding process of three level ECC for SSD.

3. Third level coding: For i ∈ {0, 1, . . . , N − 2} and j ∈ {0, 1, . . . , b − 1}, encode

(
di,j

qi,j

)
by

code CPG to generate check bits ri,j, where di,j, qi,j, and ri,j are binary column vectors with

lengths k, r0, and r1, respectively. Similarly, for j ∈ {0, 1, . . . , b − 1}, encode

(
pj

qN−1,j

)
by

the code CPG to generate check bits rN−1,j, where pj, qN−1,j, and rN−1,j are binary column
vectors with lengths k, r0, and r1, respectively.

The above encoding process generates encoded page Ui as shown in Fig. 12.

7. References

Lin, S. & Costello, D. J. Jr. (2004). Error Control Coding, Pearson Prentice Hall, 0-13-042672-5,
New Jersey.

Fujiwara, E. (2006). Code Design for Dependable Systems –Theory and Practical Applications–,
Wiley-Interscience, 0-471-75618-0, New Jersey.

Muroke, P. (2006). Flash Memory Field Failure Mechanisms, Proc. 44th Annual International
Reliability Physics Symposium, pp. 313–316, San Jose, March 2006, IEEE, New Jersey.

Mohammad, M. G.; Saluja, K. K. & Yap, A. S. (2001). Fault Models and Test Procedures for
Flash Memory Disturbances, Journal of Electronic Testing: Theory and Applications, Vol.
17, pp. 495–508, 2001.

Mielke, N.; Marquart, T.; Wu, N.; Kessenich, J.; Belgal, H.; Schares, E.; Trivedi, F.; Goodness,
E. & Nevill, L. R. (2008). Bit Error Rate in NAND Flash Memories, Proc. 46th Annual
International Reliability Physics Symposium, pp. 9–19, Phenix, 2008, IEEE, New Jersey.

Ielmini, D.; Spinelli, A. S. & Lacaita, A. L. (2005). Recent Developments on Flash Memory
Reliability, Microelectronic Engineering, Vol. 80, pp. 321–328, 2005.

Chimenton, A.; Pellati, P. & Olivo, P. (2003). Overerase Phenomena: An Insight Into Flash
Memory Reliability, Proceedings of the IEEE, Vol. 91, no. 4, pp. 617–626, April 2003.

Claeys, C.; Ohyama, H.; Simoen, E.; Nakabayashi, M. and Kobayashi, K, (2002). Radiation
Damage in Flash Memory Cells, Nuclear Instruments and Methods in Physics Research
B, Vol. 186, pp. 392–400, Jan. 2002.

Oldham, T. R.; Friendlich, M.; Howard, Jr., J. W.; Berg, M. D.; Kim, H. S.; Irwin, T. L. & LaBel,
K. A. (2007). TID and SER Response of an Advanced Samsung 4Gb NAND Flash
Memory, Proc. IEEE Radiation Effects Data Workshop on Nuclear and Space Radiation
Effect Conf, pp. 221–225, July 2007.

55Error Control Coding for Flash Memory

www.intechopen.com

26 Will-be-set-by-IN-TECH

Bagatin, M.; Cellere, G.; Gerardin, S.; Paccagnella, A.; Visconti, A. & Beltrami, S. (2009). TID
Sensitivity of NAND Flash Memory Building Blocks, IEEE Trans. Nuclear Science, Vol.
56, No. 4, pp. 1909–1913, Aug. 2009.

Witzke, K. A. & Leung, C. (1985). A Comparison of Some Error Detecting CRC Code
Standards, IEEE Trans. Communications, Vol. 33, No. 9, pp. 996–998, Sept. 1985.

Gallager, R. G (1962). Low Density Parity Check Codes, IRE Trans. Information Theory, Vol. 8,
pp. 21–28, Jan. 1962.

Moreira, J. C. & Farrell, P. G. (2006). Essentials of Error-Control Coding, Wiley, 0-470-02920-X,
West Sussex.

Richardson, T. J.; Shokrollahi, M. A. & Urbanke, R. L. (2001). Design of Capacity-Approaching
Irregular Low-Density Parity-Check Codes, IEEE Trans. Information Theory, Vol. 47,
No. 2, pp.619–637, Feb. 2001.

IEEE Std 802.11n-2009, Oct. 2009.
IEEE Std 802.16-2009, May 2009.
IEEE Std 802.15.3c-2009, Oct. 2009.
Davey, M. C. & MacKay, D. (1998). Low-Density Parity-Check Codes over GF(q), IEEE

Communications Letters, Vol. 2, No. 6, pp. 165–167, June 1998.
Zhou, B.; Kang, J.; Tai, Y. Y.; Lin, S. & Ding, Z. (2009) High Performance Non-Binary

Quasi-Cyclic LDPC Codes on Euclidean Geometry, IEEE Trans. Communications, Vol.
57, No. 5, pp. 1298–1311, May 2009.

Li, G.; Fair, I, J. & Krzymien, W. A. (2009). Density Evolution for Nonbinary LDPC Codes
Under Gaussian Approximation, IEEE Trans. Information Theory, Vol. 55, No. 3, pp.
997–1015, March 2009.

Song, H. & Cruz, J. R. (2003). Reduced-Complexity Decoding of Q-Ary LDPC codes for
Magnetic Decoding, IEEE Trans. Magnetics, Vol. 39, No. 3, pp. 1081–1087, March 2003.

Maeda, Y. & Kaneko, H. (2009). Error Control Coding for Multilevel Cell Flash Memories
Using Nonbinary Low-Density Parity-Check Codes, Proc. IEEE Int. Symp. Defect and
Fault Tolerance in VLSI Systems, pp. 367–375, Oct. 2009.

Kaneko, H.; Matsuzaka, T. & Fujiwara, E. (2008). Three-Level Error Control Coding for
Dependable Solid-State Drives. Proc. IEEE Pacific Rim International Symposium on
Dependable Computing, pp. 281–288, Dec. 2008.

56 Flash Memories

www.intechopen.com

Flash Memories

Edited by Prof. Igor Stievano

ISBN 978-953-307-272-2

Hard cover, 262 pages

Publisher InTech

Published online 06, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Flash memories and memory systems are key resources for the development of electronic products

implementing converging technologies or exploiting solid-state memory disks. This book illustrates state-of-

the-art technologies and research studies on Flash memories. Topics in modeling, design, programming, and

materials for memories are covered along with real application examples.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Haruhiko Kaneko (2011). Error Control Coding for Flash Memory, Flash Memories, Prof. Igor Stievano (Ed.),

ISBN: 978-953-307-272-2, InTech, Available from: http://www.intechopen.com/books/flash-memories/error-

control-coding-for-flash-memory

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

