
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322398255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Knowledge Representation and Validation in a
Decision Support System: Introducing a

Variability Modelling Technique

Abdelrahman Osman Elfaki1, Saravanan Muthaiyah2
Chin Kuan Ho2 and Somnuk Phon-Amnuaisuk3

1Management and Science University
2Multimedia University Cyberjaya,
3Tunku Abdul Rahman University

 Malaysia

1. Introduction

Knowledge has become the main value driver for modern organizations and has been
described as a critical competitive asset for organizations. An important feature in the
development and application of knowledge-based systems is the knowledge representation
techniques used. A successful knowledge representation technique provides a means for
expressing knowledge as well as facilitating the inference processes in both human and
machines [19]. The limitation of symbolic knowledge representation has led to the study of
more effective models for knowledge representation [17].
Malhotra [14] defines the challenges of the information-sharing culture of the future
knowledge management systems as the integration of decision-making and actions across
inter-enterprise boundaries. This means a decision making process will undergo different
constraints. Therefore, existence of a method to validate a Decision Support System (DSS)
system is highly recommended. In the third generation of knowledge management, the
knowledge representation acts as boundary objects around which knowledge processes can
be organized [26]. Knowledge is viewed in a constructionist and pragmatic perspective and
a good knowledge is something that allows flexible and effective thinking and construction
of knowledge-based artifacts [26].
This paper answers the two questions of [26] and [14] in the context of a DSS: 1) how to
define and represent knowledge objects and 2) how to validate a DSS.
For any decision, there are many choices that the decision maker can select from [7]. The
process of selection takes place at a decision point and the selected decision is a choice. For
example, if someone wants to pay for something, and the payment mode is either by cash or
by credit card, the payment mode is the decision point; cash and credit card are choices.
Now, we can conclude that the choices and decision points represent the knowledge objects
in DSS. Choices, decision points and the constraint dependency rules between these two are
collectively named as variability. Task variability is defined in [5] as the number of
exceptions encountered in the characteristics of the work. The study in [5] tested the
importance of variability in the system satisfaction. Although there are many existing
approaches for representing knowledge DSS, the design and implementation of a good and
useful method that considers variability in DSS is much desired.

www.intechopen.com

Efficient Decision Support Systems – Practice and Challenges From Current to Future

30

The term variability generally refers to the ability to change; to be more precise, this kind of
variability does not occur by chance but is brought about on purpose. In other words,
variability is a way to represent choices. Pohl et al. [20] suggest the three following
questions to define variability.
What does it vary? : Identifying precisely the variable item or property of the real world.
The question leads us to the definition of the term variability subject (A variability subject is
a variable item of the real world or a variable property of such an item).
Why does it vary? : There are different reasons for an item or property to vary: different
stakeholders’ needs, different countries laws, technical reasons, etc. Moreover, in the case of
interdependent items, the reason for an item to vary can be the variation of another item.
How does it vary? : This question deals with the different shapes a variability subject can
take. To identify the different shapes of a variability subject, we define the term variability
object (a particular instance of a variability subject).

Example of variability Subject and Objects for “Car”:

The variability subject “car” identifies a property of real-world items. Examples of

variability objects for this variability subject are Toyota, Nissan, and Proton.

The problem of representing variability in a DSS requires a complex representation scheme
to capture static and dynamic phenomena of the choices that can be encountered during the
decision process. We believe that the key feature of such knowledge representation (for
variability in a DSS) is its capability of precise representation of diverse types of choices and
associations within them. This involves: i) qualitative or quantitative description of choices
and their classification, ii) representation of causal relationships between choices and iii) the
possibility of computerizing the representation.
The main aim of variability representing in DSS is to create a decision repository that

contains decision points, its related choices and the constraint dependency relations

between decision points-choices, choices-choices, or decision points-decision points.

Nowadays, Feature Model (FM) [12] and Orthogonal Variability Model (OVM) [20] are the
well-known techniques to represent variability. Although, FM and OVM are successful
techniques for modeling variability, some challenges still need to be considered such as
logical inconsistency, dead features, propagation and delete-cascade, and explanation and
corrective recommendation. Inconsistency detection is defined as a challenging operation to
validate variability in [2]. In [27] the source of logical inconsistency is defined from a skill-
based or rule-based errors which would include errors made in touch-typing, in copying
values from one list to another, or other activities that frequently do not require a high level
of cognitive effort. One of the main drawbacks coming from the fusion of several different
and partial views is logical inconsistency [9]. Dead feature is defined in [6] as a frequent case
of error in feature model- based variability. Instead of dead feature, we called it dead choice.
Modeling variability methods must consider constraint dependency rules to assure the
correctness of the decision. Propagation and delete cascade operation is proposed to support
auto selection of choices in the decision making process. Propagation and delete cascade
operation is a very critical operation in the semi-auto environment.
This paper defines a rule-based approach for representing and validating knowledge in
DSS. In addition to representing variability to capture knowledge in DSS, intelligent rules
are defined to validate the proposed knowledge representation. The proposed method
validates two parts. The first part is validating a decision repository in which a logical
inconsistency and dead choices are detected. The second part is validating the decision

www.intechopen.com

Knowledge Representation and Validation in a Decision
Support System: Introducing a Variability Modelling Technique

31

making process by providing automated constraint dependency checking, explanation and
corrective recommendation, and propagation and delete-cascade.
This paper is structured as follows: Literature is surveyed in section two. Knowledge
representation of DSS using variability is demonstrated in section three. Knowledge
validation is illustrated in section four and implementation is discussed in section five.
Section six contains the conclusion and future work.

2. Related work

The aim of knowledge representation is to facilitate effective knowledge management which
concerns expressive representation and efficiency of reasoning in human [15]. Related works
on this area are summarized as follows:
Haas [10] investigated the feasibility of developing an overarching knowledge
representation for Bureau of Labor Statistics information that captured its semantics,
including concepts, terminology, actions, sources, and other metadata, in a uniformly
applicable way. Haas suggested the (ISO/IEC 11179) standard for metadata, as knowledge
representation techniques. Molina [16] reported the advantages of using knowledge
modeling software tool to help developers build a DSS. Molina describes the development
of DSS system called SAIDA where knowledge is represented as components, which was
designed by Knowledge Structure Manager (KSM). KSM is a knowledge-modeling tool that
includes and extends the paradigm of task method-domain followed by different
knowledge engineering methodologies. KSM provides a library of reusable software
components, called primitives of representation that offer the required freedom to the
developer to select the most convenient representation for each case (rules, frames,
constraints, belief networks, etc.).
Froelich and Wakulicz-Deja [8] investigated problems of representing knowledge for a DSS
in the field of medical diagnosis systems. They suggested in [8] a new model of associational
cognitive maps (ACM). The ability to represent and reason with the structures of causally
dependant concept is the theoretical contribution of the proposed ACM. Antal [1] proposed
the bayesian network as a knowledge representation technique to represent multiple-point-
of views. The proposed technique in [1] serves as a refection of multiple points of view and
surpasses bayesian network both by describing dependency constraint rules and an auto-
explanation mechanism. Lu et al. [13] developed a knowledge-based multi-objective DSS.
The proposal in [13] considers both declarative and procedural knowledge. Declarative
knowledge is a description of facts with information about real-world objects and their
properties. Procedural knowledge encompasses problem-solving strategies, arithmetic and
inferential knowledge. Lu et al. [13] used text, tables and diagrams to represent knowledge.
Brewster and O’Hara [3] prove difficulties of representative skills, distributed knowledge, or
diagrammatic knowledge using ontologies. Pomerol et.al [21] used artificial intelligence
decision tree to represent operational knowledge in DSS. Christiansson [4] proposed
semantic web and temporal databases as knowledge representation techniques for new
generation of knowledge management systems. One of the most sophisticated knowledge
modeling methodologies is Common KADS [24]. Common KADS explains how to model a
knowledge application through structural top-down analysis of the problem domain. The
outcome of modeling process according to Common KADS consists of three layers that are
called contextual model, conceptual model and design model. Common KADS model did
not provide mechanism to define relation between objects or between layers. Padma and

www.intechopen.com

Efficient Decision Support Systems – Practice and Challenges From Current to Future

32

Balasubramanie [18] used traditional knowledge-based tool to define DSS. Williams [28]
described the benefits of using Ontologies and Argumentation for DSS. Suh in [25] applied
Database Management System (DBMS) in two-phased decision support system for resource
allocation.
To the best of our knowledge, there is no one particular or specific method for handling

variability as a knowledge representation technique in DSS. In addition to variability

representation, our proposed method could be used to deal with main challenges in

variability representation such as: constraint dependency rules, explanation, propagation

and delete-cascade, logic inconsistency detection and dead decision detection. Table 1

summarized the previous works in knowledge representation and validation regarding a

DSS. The columns are denoted as following: KR for Knowledge Representation, CDR for

Constraint Dependency Rules, Expl for Explanation, Pro and DC for Propagation and

delete-cascade, LID for Logic Inconsistency Detection and DDD for Dead Decision

Detection.

Technique Ref. KR Reasoning CDR Expl Pro
and
DC

LID DDD Gap

ISO/IEC 11179 10 Yes No No No No No No 6/7

Traditional
artificial
intelligence
knowledge
representation
techniques such
as
frames, decision
trees, belief
networks, etc

16,1,12 Yes Yes No No No No No 5/7

Associational
cognitive
maps(ACM)

8 Yes Yes No No No No No 5/7

Bayesian network 1 Yes Yes Yes Yes No No No 3/7

Text, tables and
diagrams

13 Yes No No No No No No 6/7

Ontologies 3, 28 Yes Yes No No No No No 5/7

Temporal
database and
Semantic Web

4 Yes Yes Yes Yes No No No 3/7

Three layer
modeling(KADS)

24 Yes Yes No No No No No 5/7

DBMS 25 Yes Yes No No No No No 5/7

Table 1. Summary of Literature Review

www.intechopen.com

Knowledge Representation and Validation in a Decision
Support System: Introducing a Variability Modelling Technique

33

Table 1 clarifies the need for new method of representation and validating knowledge in
DSS. Although the logic inconsistency and dead decision problems are cleared in variability
representation methods, some works in literature expressed these problems in a DSS [27].

3. Knowledge representation in DSS using variability

In this section, we defined variability is DSS, and then described how to represent variability
in a DSS using First Order Logic (FOL).

3.1 Define variability in DSS

By variability in DSS, we mean choices representation (considering dependency constraint
rules between them). In the choice phase, the decision maker chooses a solution to the
problem or opportunity. DSS help by reminding the decision maker what methods of choice
are appropriate for the problem and help by organizing and presenting the information [7].
Hale [11] states that "relationships between knowledge objects such as kind-of, and part-of
become more important than the term itself”. We can look for choices as knowledge objects.
The proposed method defines and deals with these types of relationship and with
dependency constraints between choices such as require and exclude.
There is no standard variability representation for a DSS [21]. The proposed method can
enhance both readability and clarity in representation of variability in DSS. Consequently,
the proposed method represents variability in high degree of visualization (using graph
representation) considering the constraints between choices. As we mentioned before in the
definition of variability, there are two items: variability subject and variability object. We
suggest variability subject as a decision point and variability object and a choice. As example
from figure 1: the variability subject “Promotion” identifies a decision point. Examples of
variability objects for this variability subject are “Experience, Qualifications, or Special
Report”. This example illustrated three choices: “Experience, Qualifications, or Special
Report” that the decision maker can select from in the decision point “Promotion”.

A reward system as an example:

Rewards systems can range from simple systems to sophisticated ones in which there are
many alternatives. It is closely related to performance management. Both rewarding and
performance measuring are difficult tasks due to the decision variability that takes place in
different activities of human resources cycle as it can be seen in figure 1.

3.2 Representing variability in DSS using first order logic
In this sub-section, the notations of the proposed method are explained. Syntaxes and
semantics (the most important factors for knowledge representation methods) for the
proposed method are defined. The proposed methods composed of two layers. The upper
layer is a graphical diagram. Providing visual picture is the function of the upper layer. The
lower layer is a representation of the upper layer in forms of predicates. Providing a
reasoning tool is the aim of the lower layer. You can imagine the upper layer as a user-
interface while the lower layer as a source code. In the lower layer, decision point, choices,
and constraint dependency rules are represented using predicates. The output of this
process is a complete modeling of variability in DSS as knowledge- based. In other words,
this process creates a decision-repository based on two layers. This decision-repository
contains all decisions (choices) grouped by decision points. The proposed method validates
both decision-repository and decision making process.

www.intechopen.com

Efficient Decision Support Systems – Practice and Challenges From Current to Future

34

Fig. 1. Variability in Reward System: Upper layer representation

3.1.1 Upper layer representation of the proposed method (FM-OVM)

In this layer, we combined FM diagram with OVM notations. Figure 1 represents the upper
layer of our proposed method. Optional and mandatory constraints are defined in Figure 1
by original FM notations [9], and constraint dependency rules are described using OVM
notations. OVM and FM can easily become very complex for validating a medium size
system, i.e., several thousands of decision points and choices are needed. This reason
motivates us to develop an intelligent method for representing and validating variability in
DSS.

3.1.2 Lower layer of the proposed method
Decision points, choices, and constraint dependency rules are used to describe variability
[20]. Constraint dependency rules are: decision point requires or excludes decision point,
choice requires or excludes choice, and choice requires or excludes decision point. In this
sub-section, decision points, choices, and dependency constraint rules are described using
predicates as a low level of the proposed method. Examples are based on Figure 1. Terms
beginning with capital letters represent variables and terms beginning with lower letter
represent constants. Table 2 shows the representation of Negative Performance decision point
using the lower layer of the proposed method.

www.intechopen.com

Knowledge Representation and Validation in a Decision
Support System: Introducing a Variability Modelling Technique

35

DECISION POINT

A decision point is a point that the decision maker selects one or more choices. In figure 1,
training represents a decision point and Basic and High level represent its choices. The
following five predicates are used to describe each decision point:

type:

Syntax: type(Name1,decisionpoint).
Semantic: Identify the type, Name1 defines the name of decision point, e.g. type (promotion,
decisionpoint).

choiceof:

Syntax: choiceof(Name1, Name2).
Semantic: Identifies the choices of a specific decision point. Name1 represents name of
decision point and Name2 represents the name of a choice, e.g. choiceof (promotion,
promotion decision)

max:

Syntax: max(Name, int).
Semantic: Identifies the maximum number of allowed selection at a decision point. Name
defines the name of the decision point and int is an integer,e.g. max(positive performance,
2).

min:

Syntax: min(Name, int).
Semantic: Identifies the minimum number of allowed selection at a decision point. Name
defines the name of the decision point and int is an integer, e.g. min(positive performance,1).
The common choices(s) in a decision point is/are not included in maximum-minimum
numbers of selection.

Common:

Syntax: common(Name1, yes). common(Name2, no).
Semantic: Describes the commonality of a decision point. Name1 and Name2 represent the
names of decision points, e.g. common(promotion, yes) If the decision point is not common,
the second slot in the predicate will become no e.g. common(punishment, no).

CHOICE

A choice is decision belonging to a specific decision point. For instance, in Figure 1, time on
is a choice that belongs to the negative performance decision point. The following two
predicates are used to describe a choice

Type:

Syntax: type(Name1,choice).
Semantic: Define the type. Name1 represents the name of variant, e.g. type(recognition,
choice).

Common

Syntax: common(Name1, yes). common(Name2, no).
Semantic: Describes the commonality of a choice, e.g. common(first reminder, yes). If the
choice is not common, the second slot in the predicate will become no -as example-
common(time on ,no).

www.intechopen.com

Efficient Decision Support Systems – Practice and Challenges From Current to Future

36

Constraint dependency rules

The following six predicates are used to describe constraint dependency rules:

requires_c_c:

Syntax: requires_c_c(Name1, Name2).
Semantic: choice requires another choice. Name1 represents the first choice and Name2
represents the required choice, e.g. requires_c_c(promotion decision, recognition).

excludes_c_c:

Syntax: excludes_c_c (Name1, Name2).
Semantic: choice excludes choice. Name1 represents the first choice and Name2 represents the
excluded choice, e,g. excludes_c_c(decrease level, high level).

requires_c_dp:

Syntax: requires_c_dp(Name1, Name2).
Semantic: Choice requires decision point. Name1 represents the choice and Name2 represents

the required decision point, e.g. requires_c_dp(promotion decision, positive performance).

excludes_c_dp:

Syntax: excludes_c_dp(Name1, Name2).
Semantic: Choice excludes decision point. Name1 represents the choice and Name2
represents the excluded decision point, e.g. excludes_c_dp(non promotion decision, positive
performance).

requires_dp_dp:

Syntax: requires_dp_dp(Name1, Name2).
Semantic: Decision point requires another decision point. Name1 represents the first decision
point and Name2 represents the required decision point, e.g. requires_dp_dp(negative
performance, punishment).

excludes_dp_dp:

Syntax: excludes_dp_dp(Name1, Name2).
Semantic: Decision point excludes another decision point. Name1 represents the first
decision point and Name2 represents the excluded decision point, e.g.
excludes_dp_dp(negative performance, positive performance)

type(negative performance, decisionpoint).
choiceof(negative performance, time on).
choiceof(negative performance, N% salary).
common(negative performance, no).
min(negative performance, 1).
max(negative performance, 2).
requires_dp_dp(negative performance, punishment).
excludes_dp_dp(negative performance, positive performance).

Table 2. Representation of Negative Performance

In addition to these predicates, we define two more predicates select and notselect. The select

predicate is assigned for all selected choices. The notselect predicate prevents the choice from

www.intechopen.com

Knowledge Representation and Validation in a Decision
Support System: Introducing a Variability Modelling Technique

37

the selection process, i.e. validate decision-making process. At the end, the choices that

represent the final decisions are assigned by select and not(notselected) predicates.

4. Variability validation in DSS

Although variability is proposed as a technique of knowledge representation that provides a
decision repository; validating this repository and decision making process is important.
In a decision making process, a decision maker selects the choice(s) from each decision
point. The proposed method guides the decision maker by: 1) validating the constraint
dependency rules, 2) automatically selecting (propagation and delete-cascade) decisions,
and 3) provide explanation and corrective recommendation. In addition, the proposed
method validates the decision-repository by detecting dead choices and logical
inconsistency. In this section, six operations are illustrated. These operations are
implemented using Prolog [29].

4.1 Validating the decision making process
4.1.1 Constraint dependency satisfaction

To validate the decision-making process, the proposed method triggers rules based on
constraint dependencies. Based on the constraint dependency rules, the selected choice is
either accepted or rejected. After that, the reason for rejection is given and correction actions
are suggested. When the decision maker selects a new choice, another choice(s) is/are
assigned by the select or notselect predicates. As example, in table 3: number 1, the choice x is

1. ∀ x, y: type(x, choice) ∧ type(y, choice) ∧ requires_c_c(x, y) ∧ select(x) ⟹ select(y)

2. ∀ x, y: type(x, choice) ∧ type(y, choice) ∧ excludes_c_c(x ,y) ∧ select(x) ⟹ notselect(y)

3. ∀ x, y: type(x, choice) ∧ type(y, decisionpoint) ∧ requires_c_dp(x, y) ∧ select(x) ⟹
select(y)

4. ∀ x, y: type(x, choice) ∧ type(y, decisionpoint) ∧ excludes_c_dp(x, y) ∧ select(x) ⟹
notselect(y)

5. ∀ x, y: type(x, decisionpoint) ∧ type(y, decisionpoint) ∧ requires_dp_dp(x, y) ∧ select(x) ⟹ select(y)

6. ∀ x, y: type(x,decisionpoint) ∧ type(y, decisionpoint) ∧ excludes_dp_dp(x, y) ∧ select(x) ⟹ notselect(y)

7. ∀ x, y: type(x, choice) ∧ type(y, decisionpoint) ∧ select(x) ∧ choiceof (y, x) ⟹ select(y)

8. ∃x ∀y:type(x, choice) ∧ type(y, decisionpoint) ∧ select(y) ∧ choiceof (y, x) ⟹ select(x)

9. ∀ x, y: type(x, choice) ∧ type(y, decisionpoint) ∧ notselect(y) ∧ choiceof (y, x) ⟹
notselect(x)

10. ∀ x, y: type(x,choice) ∧ type(y, decisionpoint) ∧ common(x,yes) ∧ choiceof (y, x) ∧

select(y) ⟹ select(x)

11. ∀ y: type(y, decisionpoint) ∧ common(y) ⟹ select(y)

12. ∀ x, y: type(x, choice) ∧ type(y, v decisionpoint) ∧ choiceof (y, x) ∧select(x) ⟹ sum(y,(x))
≤ max(y,z)

13. ∀ x, y: type(x, choice) ∧ type(y, decisionpoint) ∧choiceof(y, x) ∧select(x) ⟹ sum(y,(x))
≥ min(y,z)

Table 3. The main rules in the proposed method

www.intechopen.com

Efficient Decision Support Systems – Practice and Challenges From Current to Future

38

selected (assigned by select predicate (select(x)) and x requires the choice y. Then the system
automatically assigns y by select predicate (select(y)). That means y is selected also. At the
end, select and not notselect predicates represent the selections of decision-making process.
Table 3 shows the main rules in our proposed method. The proposed method contains
thirteen main rules to validate the decision-making process. Rules 1 through 6 are used to
validate constraint dependency rules. Rules 7 and 8 deal with relationships between
decision point and their choice(s). Rules 10 and 11 satisfy the common property of decision
points and choices. Rules 12 and 13 validate the maximum and minimum property of
decision points. Appendix 1 describes the proposed rules in details.

4.1.2 Propagation and delete-cascade

This operation defines how some choices are selected automatically as a reaction to previous
selection of other choices.
Definition 1: Selection of the choice n, select(n), is propagated from selection of the choice x,
select(x), in three cases:
i. ∀x,y,z,n:type(x,choice)∧choiceof(y,x)∧select(x)∧requires_dp_dp(y,z)∧type(n,choice)∧choiceof(z,

n)∧common(n,yes)⟹ select(n).
If x is a choice and x belongs to the decision point y and x is selected, that means y is selected
(rule 7), and the decision point y requires a decision point z, that means z is also selected
(rule 5), and the choice n belongs to the decision point z and the choice n is common. It
means the choice n is selected (rule 10).
ii. ∀ x,n: type(x,choice) ∧ type(n,choice) ∧ select(x)∧ requires_c_c(x,n) ⟹ select(n).
 If the choice x is selected and it requires the choice n, it means the choice n is selected, (rule
1). The selection of choice n propagated from the selection of x.
iii. ∀x,z,n:type(x,choice)∧select(x)∧type(z,decisionpoint)∧requires_c_dp(x,z)∧type(n,choice)∧choiceof(

z,n) ∧common(n)⟹select(n).
If the choice x is selected and it requires the decision point z, that means the decision point z
is selected (rule 3), and the choice n is common and belongs to the decision point z and that
means the choice n is selected (rule 10). The selection of the choice n is propagated from the
selection of x.

Delete-cascade operation

This operation validates the automated decision-making process during execution time. The
following scenario describes the problem:
If choice x is selected in time N and the two choices y and k are propagated due to selection

of x, then the decision list (at time N) = {x, y, k}. In time (N + 1), the choice m is selected, and

m excludes x, then x is removed from the decision list. The decision list at time (N + 1) = {m,

y, k}. The presence of the choices y and k is not correct. The choices y and k are not decision

maker’s choices. The following rule implements the delete-cascade operation. ∀x,y:type(x,choice)∧ type(y,choice)∧ requires_c_c(y,x)∧ select(x)∧ notselect(y)⟹ notselect(x).

For all choices x, and y; if the choice y requires x and x is selected and y is assigned by

notselect predicate, that means y is excluded in the configuration process, and x was selected

according to selection of y (y requires x), then the presence of x after exclusion of y is not true.

The output for this operation is the assignment of the choice x with notselect predicate. This

assignment permits the proposed method to perform delete-cascade operation to verify the

selections.

www.intechopen.com

Knowledge Representation and Validation in a Decision
Support System: Introducing a Variability Modelling Technique

39

4.1.3 Explanation and corrective recommendation
This operation is defined (in this paper) for highlighting the sources of errors within
decision- making process. The errors happened due to dissatisfaction of constraint
dependency rules.
The general pattern that represents failure due to dissatisfaction of constraint dependency
rules is:

Decision A excludes Decision B and Decision A is selected then Decision B fails to select.

In the proposed method, there are two possibilities for the decision: decision point or choice.
Three possibilities for the exclusion constraint: choice excludes choice, choice excludes
decision point, or decision point excludes decision point. We assign the predicate notselect to
the excluded choice for preventing future select.
The following definition describes these possibilities in the form of rules:
Selection of choice n, select (n), fails due to selection of choice x, select(x), and assign by
notselect predicate in three cases:
i. ∀x,y,n:type(x,choice)∧select(x)∧type(y,decisionpoint)∧choiceof(y,x)∧type(n,choice)∧excludes_c_

dp(n,y)⟹ notselect(n).
If the choice x is selected, and it belongs to the decision point y, this means y is selected

(Rule 7), and the choice n excludes the decision point y, this means n is assigned by notselect

predicate.

ii. ∀x,y,z,n:type(x,choice)∧select(x)∧type(y,decisionpoint)∧type(z,decisionpoint) ∧type(n,choice) ∧ choiceof(y,x)∧ choiceof(z,n) excludes_dp_dp(y,z)⟹ notselect(n).
If the choice x is selected and x belongs to the decision point y, that means y is selected (Rule

7), and if the decision point y excludes the decision point z, this means z is assigned by

notselect predicate (rule 6), and the choice n belongs to decision point z, this means n is

assigned by notselect predicate (rule 9).

iii. ∀x,n: type(x,choice)∧select(x)∧type(n,choice)∧ excludes_c_c(x,n) ⟹notselect(n).
If the choice x is selected, and x excludes the choice n, which means n is assigned by
notselect predicate (rule 2).
Two examples are presented to express how the proposed method could be used for

guiding the decision maker by explanation and corrective recommendation. Example 1

shows an interactive corrective recommendation mechanism. Example 2 shows how the

proposed method validates decision maker in future based on his current selections.

Example 1

Suppose the decision maker selected decrease level as a punishment for one employee. After

that, the decision maker selects high level as training for the same employee; the system

rejects the choice and directs the decision maker to deselect decrease level first. Table 4

describes Example 1. This example represents rule (iii). The example illustrates how the

proposed method guides decision makers to solve the rejection reason.

Example 2

The decision maker asks to select the choice non promotion decision, which is excludes positive

performance decision point. The system accepts the choice and assigns the decision point

positive performance by notselect predicate to validate future selections. Table 5 describes

Example 2. The predicate notselect (positive performance) prevents the selection of its choices,

Rule 9.

www.intechopen.com

Efficient Decision Support Systems – Practice and Challenges From Current to Future

40

The proposed method guides the decision maker step by step (in each choice). If the
decision maker’s choice is invalid, the choice is immediately rejected and corrective actions
are suggested, see Example 1. Moreover, notselect predicate can be assigned to some choices
according to decision maker’s selection, see Example 2. The notselect predicate prevents the
decision maker from future errors; see Table 3: Rule 9.

? select (decrease level).

You have to deselect high level

Table 4. Example 1

? select (non promotion decision).
Yes
notselect (positive performance)
added to knowledge base.

Table 5. Example 2

4.2 Validate decision repository
4.2.1 Logical inconsistency detection
Inconsistency occurs from contradictions in constraint dependency rules. It is a very
complicated problem. Inconsistency has different forms and it can occur between: groups
(as example: (A and B) require (D and C) and (D and C) exclude (A and B)), group and
individual (as example: (A and B) require D and D excludes (A and B)), or between
individuals only (as example: (A requires B and B requires C and C excludes A)). A, B, C
and D could be choices or decision points.
In this paper, we suggest rules to detect logical inconsistency between individuals. The rules
that can be used to detect logical inconsistency (between individuals) are categorized in
three groups. Each group contains two rules.

Group 1

In this group, we discuss the constraint dependency relation between two decisions from
the same type (decision point or choice).
The first decision requires the second one while the second decision excludes the first one.
The logical inconsistency between two decisions could be indirect, e.g. A requires B and B
requires C and C excludes A. Therefore, to transfer the logical inconsistency to be directly
within two decisions, we define these transfer rules:
i. ∀x,y,c:type(x,choice)∧type(y,choice)∧type(c,choice)∧requires_c_c(x,y)∧ requires_c_c(y,c)⟹

requires_c_c(x,c).
ii. ∀x,y,c:type(x,decisionpoint)∧type(y,decisionpoint)∧type(c,decisionpoint)∧requires_dp_dp(x,y)∧

requires_dp_dp(y,c)⟹ requires_dp_dp(x,c).

The following rules detect inconsistency in group 1:

i. ∀x,y:type(x,choice)∧type(y,choice)∧ requires_c_c(x,y)∧ excludes_c_c(y,x)⟹ error.
If the choice x requires the choice y which means selection of x leads to selection of y (Rule
1). In addition, choice y excludes the choice x which means if y selected, x must not be
selected (Rule 2). This is an error.

www.intechopen.com

Knowledge Representation and Validation in a Decision
Support System: Introducing a Variability Modelling Technique

41

ii. ∀x,y:type(x,decisionpoint)∧type(y,decisionpoint)∧requires_dp_dp(x,y)∧excludes_dp_dp(y,x)⟹
error.

If the decision point x requires the decision point y that means selection of x leads to
selection of y (Rule 5), and the decision point y excludes the decision point x which means if
y is selected x must not be selected (Rule 6). This is an error.

Group 2

In this group, we discuss the constraint dependency relation between two decision points.

At the same time, there is a contradictory relation between one choice (belongs to the first

decision point) and the second decision point. The following rules illustrated group 2:

i. ∀x,y,z:type(x,choice)∧common(x,yes)∧type(y,decisionpoint)∧choiceof(y,x)∧type(z,decisionpoint) ∧ requires_dp_dp(y,z)∧ excludes_c_dp(x,z) ⟹ error.
If the common choice x belongs to the decision point y, and x excludes the decision point z,
which means if x selected, no choice belonging to z must be selected (Rule 4, and Rule 9),
and the decision point y requires the decision point z which means if y is selected z must
also be selected(Rule 5). Selection of the decision point y means selection of the common
choice x (Rule 10) but x excludes z. This is an error.
ii. ∀x,y,z:type(x,choice)∧type(y,decisionpoint)∧choiceof(y,x)∧type(z,decisionpoint)∧excludes_dp_d

p(y,z) ∧ requires_c_dp(x,z) ⟹ error.
If the choice x belongs to the decision point y and x requires the decision point z that means

if x selected z should be selected (Rule 3). The decision point y excludes the decision point z

that means if one of the choices belongs to y is selected none belongs to z should be selected

(Rules 6, 7, and 9). X requires z is an error.

Group 3

In this group, we discuss the constraint dependency relation between two decision points.

At the same time, there is a contradictory relation between their choices. The following rules

illustrates group 3:

i. ∀x,y,n,z:type(x,choice)∧type(y,decisionpoint)∧choiceof(y,x)∧type(n,choice)∧type(z,decisionpoint
)∧choiceof(z,n)∧ common(n,yes) ∧ excludes_c_c(x,n)∧ requires_dp_dp(y,z)⟹ error.
The common choice x belongs to the decision point y and the common choice n
belongs to z. The decision point y requires the decision point z that means if y selected
then z must be selected, (Rule 5), and selection of y and z means selection of x and n,
(Rule 10). X excludes n is an error.

ii. ∀x,y,n,z:type(x,choice)∧type(y,decisionpoint)∧choiceof(y,x)∧type(n,choice)∧type(z,decisionpoint
)∧choiceof(z,n)∧requires_c_c(x,n)∧excludes_dp_dp(y,z)⟹ error.

If choice x belongs to the decision point y, and the choice n belongs to the decision point z,

and x requires n which means if x is selected, n should also be selected (Rule1). Selection of

the choice x means selection of the decision point y, and selection of choice n means selection

of decision point z (Rule 7). The decision point y excludes the decision point z t which means

if one of the choices belonging to y is selected, then none belonging to z must be selected

(Rules 6, 7, and 9). X requires n is an error.

4.3 Dead decision detection

A dead decision is a decision that never appears in any legal decision process. The only

reason to prevent a decision from being included in any decision process is that there is a

www.intechopen.com

Efficient Decision Support Systems – Practice and Challenges From Current to Future

42

common choice/decision point that excludes this decision. The general form for describing a

dead decision is:

Decision A excludes decision B and decision A is common then decision B is a dead decision.

According to the proposed method, there are two possibilities for a decision: decision point

or choice, two possibilities for decision (A) to be common and three possibilities for the

exclusion.

Two possibilities for decision (A) to be common:

1. Common decision point: ∃A :type(A, decisionpoint) ∧ common(A,yes).
2. Common choice belongs to common decision point: ∃A,C:type(A, choice) ∧ type(C, decisionpoint) ∧ choiceof(C,A) ∧common(C,yes) ∧common(A,yes).

Three possibilities for the exclusion constraint:

3. Choice excludes choice:
 ∃A,B: type(A, choice) ∧ type(B, choice) ∧ excludes_c_c(A,B).
4. Choice excludes decision point:
 ∃A,C :type(A,choice) ∧ type(C, decisionpoint) ∧ excludes_c_dp(A,C).
5. 5. Decision point excludes decision point: ∃A,C: type(A, decisionpoint) ∧ type(C, decisio point) ∧ excludes_dp_dp(A,C).
If we apply the two possibilities of common decision to the three possibilities of the
exclusion constraint then we have six possibilities for satisfying the general form of the dead
decision. These possibilities are (1, 3),(1, 4),(1, 5),(2, 3),(2, 4),(2, 5). The possibilities (1, 3), (1,
4) and (2, 5) are excluded because decision A cannot be decision point and choice at the
same time. Therefore, all the possible scenarios for the dead decision are: (1, 5), (2, 3), (2, 4).
These scenarios are represented by the following rules:
i. ∀A,B,C:type(A,decisionpoint)∧common(A,yes)∧type(C,decisionpoint)∧excludes_dp_dp(A,C)∧

type(B,choice) ∧ choiceof(C ,B) ⟹ dead_ decision (B).
The decision point C in the above rule represents a dead decision point. All choices

belonging to a dead decision point are dead decisions.

ii. ∀A,B,C:type(A,choice)∧type(C,decisionpoint)∧choiceof(C,A)∧common(C,yes)∧common(A,yes)∧
type(B, choice) ∧excludes_c_c(A,B) ⟹ dead_ decision(B).

iii. ∀A,B,C,D:type(A,choice)∧type(C,decisionpoint)∧choiceof(C,A)∧common(C,yes)∧common(A,yes
)∧type(B,choice)∧type(D,decisionpoint)∧choiceof(D,B)∧excludes_c_dp(A,D)⟹ dead_ decision
(B).

Rule (i) represents case (1, 5), rule (ii) represents case (2, 3) and rule (iii) represents case (2,
4). The decision point D in rule 3 represents a dead decision point. The choice B represents
all choices belonging to D.

5. Scalability testing

Scalability is approved as a key factor in measuring applicability of the techniques dealing
with variability modeling [23]. The output time is a measurement key for scalability. A
system considers scalable for specific problem if it can solve this problem in a reasonable
time.
In this section, we discuss the experiments, which are developed to test the scalability of the
proposed method.

www.intechopen.com

Knowledge Representation and Validation in a Decision
Support System: Introducing a Variability Modelling Technique

43

5.1 The experiment

In the following, we describe the method of our experiment:

 Generate the decision repository: repository is generated in terms of predicates (Decision
points, and choices). We generated four sets containing 1000, 5000, 15000, and 20000
choices. Choices are defined as numbers represented in sequential order, as example: In
the first set (1000 choices) the choices are: 1, 2, 3,…, 1000. In the last set (20000 choices) the
choices are: 1, 2, 3, …, 20000. The number of decision point in each set is equal to number
of choices divided by five, which means each decision point has five choices.

 Define the assumption: We have three assumptions: i) each decision point and choice
has a unique name, ii) each decision point is orthogonal, and iii) all decision points have
the same number of choices.

 Set the parameters: The main parameters are the number of choices and the number of
decision points. The remaining eight parameters (common choice, common decision
point, choice requires choice, choice excludes choice, decision point requires decision
point, decision point excludes decision points, choice requires decision point, and choice
excludes decision point) are defined as a percentage. Three ratios are defined: 10%, 25%,
and 50%. The number of the parameters related to choices (such as; common choice,
choice requires choice, choice excludes choice, choice requires decision point, and choice
excludes decision point) is defined as a percentage of the number of the choices. The
number of parameters related to decision point (such as; decision point requires decision
point) is defined as a percentage of the number of decision points. Table 6 represents
snapshots of an experiment’s dataset, i.e. the decision repository in our experiments.

 Calculate output: for each set, we made thirty experiments, and calculated the
execution time as average. The experiments were done with the range (1000-20000)
choices, and percentage range of 10%, 25%, and 50%.

In the following section, the experiments that are done for dead decision detection,
explanation, and logical inconsistency detection are discussed. The rest two operations
(constraint dependency satisfaction, and propagation and delete-cascade) are working in
semi-auto decision environment, where some decisions are propagated automatically
according to decisions made. In semi-auto decision environment, the scalability is not a
critical issue.

type(dp1,decisionpoint).

type(1,choice).

variants(dp1,1).

common(570,yes).

Common(dp123,yes).

requires_c_c(7552,2517).

requires_dp_dp(dp1572,dp1011).

excludes_dp_dp(dp759,dp134).

excludes_c_c(219,2740).

requires_c_dp(3067,dp46).

excludes_c_dp(5654,dp1673).

Table 6. Snapshot of experiment’s dataset

www.intechopen.com

Efficient Decision Support Systems – Practice and Challenges From Current to Future

44

5.2 Empirical results

Dead Decision Detection: Figure 2 illustrates the average execution time. For (20,000)
choices and 50% of constraint dependency rules, the execution time is 3.423 minutes which
can be considered as a reasonable time. The output of each experiment is a result file
containing the dead decisions.

Fig. 2. Dead decision detection results

Fig. 3. Explanation results

www.intechopen.com

Knowledge Representation and Validation in a Decision
Support System: Introducing a Variability Modelling Technique

45

Explanation

This process defines the source of error that might occur when the new choice is selected. To
evaluate the scalability of this operation, we define additional parameter, the predicate
select(C): where C is random choice. This predicate simulates decision maker selection.
Number of select predicate (defined as a percentage of number of choices) is added to the
knowledge-based for each experiment, and the choice C is defined randomly (within scope
of choices). Figure 3 illustrates the average execution time. The output of each experiment is
a result file containing the selected choices and the directive messages.
Logical Inconsistency-Detection: Figure 4 illustrates the average execution time to detect
inconsistency in FM Range from 1000 to 20,000 choices

Fig. 4. Logical Inconsistency Detection

6. Conclusion and future work

Representing knowledge objects and the relation between them is the main issues of the

modern knowledge representation techniques. We suggest variability for representing

knowledge objects in DSS. By introducing variability to represent knowledge in DSS we can

get both formalized knowledge representation in decision repository and support decision-

making process by validation operations. Decision selection processes are validated using

constraint dependency rules, propagation and delete cascade, and explanation and

corrective recommendation operations. Decision repository is validated by detecting logical

inconsistency and dead choices. In [5] it states, “developing and using a mathematical

model in a DSS, a decision maker can overcome many knowledge-based errors”. For this

reason, the proposed method is supported by FOL rules.

We plan to test and validate this work using real data and real life case studies from

industry. In addition, new operations are needed to validate DSS.

www.intechopen.com

Efficient Decision Support Systems – Practice and Challenges From Current to Future

46

7. Appendix A

Explanation of the rules in table 3
Rule 1:
For all choice x and choice y; if x requires y and x is selected, then y is selected.
Rule 2:

For all choice x and choice y; if x excludes y and x is selected, then y is assigned by notselect

predicate.
Rule 3:

For all choice x and decision point y; if x requires y and x is selected, then y is selected. This

rule is applicable as well, if the decision point is selected first and it requires a choice: ∀ x, y: type(x, choice) ∧ type(y, decisionpoint) ∧ require_c_dp(x, y) ∧ select(y) ⟹ select(x)

For all choice x and decision point y; if x requires y and y is selected, then x is selected.
Rule 4:

For all choice x and decision point y; if x excludes y and x is selected, then y is assigned by

notselect predicate. This rule is applicable as well, if the decision point is selected first and it

requires a choice: ∀ x, y: type(x, choice) ∧ type(y, decisionpoint) ∧ exclude_c_dp(x, y) ∧ select(y) ⟹ notselect(x)

For all choice x and decision point y; if x excludes y and y selected, then x is assigned by

notselect predicate.
Rule 5:

For all decision point x and decision point y, if x requires y and x selected, then y is selected.
Rule 6:

For all decision point x and decision point y, if x excludes y and x is selected, then y is

assigned by notselect predicate.
Rule 7:

For all choice x and decision point y, where x belongs to y and x is selected, that means y is

selected.

This rule determines the selection of decision point if one of its choices was selected.
Rule 8:

For all decision point y there exists of choice x, if y selected and x belongs to y, x is selected.

This rule states that if a decision point was selected, then if there is choice(s) belonging to
this decision point , must be selected.
Rule 9:
 For all choice x and decision point y; where x belongs to y and y defined by predicate
notselect(y), then x is assigned by notselect predicate. This rule states that if a decision point
was excluded, then none of its choices is selected.
Rule 10:
For all choice x and decision point y; where x is a common, x belongs to y, and y is selected,
then x is selected. This rule states that if a choice is common and its decision point selected
then it is selected.
Rule 11:
For all decision point y; if y is common, then y is selected. This rule states that if a decision
point is common then it is selected in any decision process.
Rule 12:
For all choice x and decision point y; where x belongs to y and x is selected, then the
summation of x must not be less than the maximum number allowed to be selected from y.

www.intechopen.com

Knowledge Representation and Validation in a Decision
Support System: Introducing a Variability Modelling Technique

47

Rule 13:
For all choice x and decision point y; where x belongs to y and x is selected, then the
summation of x must not be greater than the minimum number allowed to be selected from
y.
Rules 12 and 13 validate the number of choices' selection considering the maximum and
minimum conditions in decision point definition (cardinality definition). The predicate
sum(y, (x)) returns the summation number of selected choices belongs to decision point y.

8. References

[1] Antal, P.” Integrative Analysis Of Data, Literature, And Expert Knowledge By Bayesian

Networks”,, Phd Thesis , Katholieke University Leuven, 2008.

[2]Batory, D., Benavides, D., Ruiz-Cortés, A., “Automated Analyses of Feature Models:

Challenges Ahead”, Special Issue on Software Product Lines , Communications of the

ACM, 49(12) December 2006,pp. 45 – 47.

[3]Brewster, C., O’Hara, K., ”Knowledge Representation with Ontologies: The Present and

Future”, Intelligent Systems, IEEE 1094-7167/04, 19(1), 2004.

[4]Christiansson, P. “Next Generation Knowledge Management Systems For The

Construction Industry”, Paper w78-2003-80, Proceedings 'Construction It Bridging

The Distance. Cib Publication 284. Auckland 2003, pp. 80-87.

[5] Celderman, M. “Task Difficulty, Task Variability and Satisfaction with Management

Support systems:Consequences and Solutions”, Research Memorandum 1997-53,

Vrije University, Amsterdam, 1997.

[6] Czarnecki, K., Hwan, C., Kim, P. “Cardinality-based Feature Modeling and Constraints:

A Progress Report”, International Workshop on Software Factories at (OOPSLA’05

), San Diego California, 2005.

[7] Densham, P. J. “Spatial decision support systems”, Geographical information systems:

principles and applications, London, Longman, 1991,pp. 403 - 412.

[8] Froelich, W., Wakulicz-Deja, A. ” Associational Cognitive Maps for Medical Diagnosis

Support”, Intelligent Information Systems Conference , Zakopane, Poland, 2008,

pp. 387–396.

[9] Grégoire, E. “Logical Traps in High-Level Knowledge and Information Fusion”,

Specialist Meeting Conference on Information Fusion for Command Support (IST-

055/RSM-001), The Hague, The Netherlands,2005.

[10] Haas, S. W. ”Knowledge Representation, Concepts, and Terminology: Toward a

Metadata Registry for the Bureau of Labor Statistics”, Final Report to the United

States Bureau of Labor Statistics, School of Information and Library Science,

University of North Carolina at Chapel Hill, July 1999.

[11] Hale, P., Scanlan, J., Bru, C. ” Design and Prototyping of Knowledge Management

Software for Aerospace Manufacturing”, 10th ISPE International Conference on

Concurrent Engineering, Madeira Island , Portugal, 2003.

[12] Kang, K., Hess, J., Novak, W. Peterson, S. “Feature oriented domain analysis (FODA)

feasibility study”,Technical Report No. CMU/SEI-90-TR-21, Software Engineering

Institute, Carnegie Mellon University, 1990.

www.intechopen.com

Efficient Decision Support Systems – Practice and Challenges From Current to Future

48

[13] Lu, J., Quaddus, M.A., Williams, R. “Developing a Knowledge-Based Multi-Objective

Decision Support System”, the 33rd Hawaii International Conference on System

Sciences, Maui, Hawaii, 2000.

[14] Malhotra, Y. Why knowledge management fails? Enablers and constraints of

knowledge management in human enterprises, handbook of knowledge

management, chapter 30, springer, 2002, pp. 568-576.

[15] Mikulecky, P., Olsevicov´a, K., Ponce, D. ”Knowledge-based approaches for river basin

management”, the journal Hydrology and Earth System Sciences, Discuss., 4, 1999-

2033, 2007.

[16] Molina, M. “Building a decision support system with a knowledge modeling tool”,

Journal of Decision Systems, Lavoisier, Volume 14 (3), 2005.

[17] Martinez, S.I. A formalized Multiagent decision support in cooperative environments,

Doctoral Thesis, Girona Catalonia, Spain, 2008.

[18] Padma, T., Balasubramanie, P., Knowledge based decision support system to assist

work-related risk analysis in musculoskeletal disorder, Knowledge-Based Systems,

Elsevier, 22, 2009 ,72–78.

[19] Peleg M, Tu S. W.: Decision Support, Knowledge Representation and Management in

Medicine, 2006 IMIA Yearbook of Medical Informatics, Reinhold Haux, Casimir

Kulikowski, Schattauer, Stuttgart, Germany, BMIR-2006-1088, 2006.

[20] Pohl, k., G. Böckle, Linden, F. J. van der. Software product line engineering, Foundations,

Principles, and Techniques, Springer, Berlin, Heidelberg, 2005, 490.

[21] Pomerol, J., Brezillon, P. Pasquier, L., “Operational Knowledge Representation for

Practical Decision Making”, The 34th Hawaii International Conference on System

Sciences, 2001.

[22] Roth, B.M., Mullen, J. D. Decision Making: Its Logic, And practice, Lanham, MD:Rowman

& littlefield, 2002.

[23] Segura S. ,”Automated Analysis of Feature Models using Atomic Sets”, the 12th

international conference of software product line, Limerick Irland,2008.

[24] Schreiber, G., Akkermans, H., Anjewierden, A., Dehoog, R. Shadbolt, N . Vandevelde,

W. Wieling, B, Knowledge Engineering and Management:The CommonKADS

Methodology, MIT Press, 1999.

[25] Suh C.K. “An Integrated Two-Phased Decision Support System for Resource

Allocation”, Wseas transactions on business and economics,Volume 4(11), November

2007.

[26] Tuomi I., ” The Future of Knowledge Management”, Lifelong Learning in Europe

(LLinE), vol VII, issue 2/2002, , 2002 ,pp. 69-79.

[27] Williams, M., Dennis, A. R., Stam, A., Aronson, J. “The Impact of DSS Use and

Information Load on Errors and Decision Quality”, Working Papers on Information

Systems, Indiana University, USA, Sprouts: Working Papers on Information

Systems, 4(22). http://sprouts.aisnet.org/4-22, 2004.

[28] Williams, M. H. Integrating Ontologies and Argumentation for decision-making in

breast cancer, PhD Thesis, University College London, 2008.

[29] Wielemaker J.: SWI-Prolog (Version 5.6.36) free software, Amsterdam, University of

Amsterdam, 2007.

www.intechopen.com

Efficient Decision Support Systems - Practice and Challenges From

Current to Future

Edited by Prof. Chiang Jao

ISBN 978-953-307-326-2

Hard cover, 542 pages

Publisher InTech

Published online 09, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This series is directed to diverse managerial professionals who are leading the transformation of individual

domains by using expert information and domain knowledge to drive decision support systems (DSSs). The

series offers a broad range of subjects addressed in specific areas such as health care, business

management, banking, agriculture, environmental improvement, natural resource and spatial management,

aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This

book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs;

Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications

of DSSs in multidisciplinary domains. The book is shaped upon decision support strategies in the new

infrastructure that assists the readers in full use of the creative technology to manipulate input data and to

transform information into useful decisions for decision makers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Abdelrahman Osman Elfaki, Saravanan Muthaiyah, Chin Kuan Ho and Somnuk Phon-Amnuaisuk (2011).

Knowledge Representation and Validation in a Decision Support System: Introducing a Variability Modelling

Technique, Efficient Decision Support Systems - Practice and Challenges From Current to Future, Prof.

Chiang Jao (Ed.), ISBN: 978-953-307-326-2, InTech, Available from:

http://www.intechopen.com/books/efficient-decision-support-systems-practice-and-challenges-from-current-to-

future/knowledge-representation-and-validation-in-a-decision-support-system-introducing-a-variability-model

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

