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1. Introduction  

Escherichia coli (E. coli) is a very diverse bacterial species found naturally in the intestinal 
tract of humans and many other animal species. Even though E. coli is known to be part of 
the normal gut microbiota, some strains – that are pathogenic – cause a wide variety of 
different intestinal and extraintestinal diseases (Marrs et al., 2005). Typical extraintestinal 
infections due to E. coli include urinary tract infections (UTI), diverse intra-abdominal 
infections, pneumonia, surgical-site infection, meningitis, osteomyelitis, soft-tissue 
infections, bacteremia (Russo & Johnson, 2006).  
UTIs are one of the most frequently acquired bacterial infections and E. coli accounts for as 
many as 90% of all community-acquired UTIs. Approximately 50% of all women have had a 
UTI by their late 20s. About 20–30% of women with first UTI will have two or more 
infections; while 5%, will develop chronic recurring infections which greatly disrupt a 
woman’s life (Marrs et al., 2005). In Slovenia E. coli is the causative agent of approximately 
80% of uncomplicated UTIs (Lindič, 2005). 
E. coli isolates that cause UTI exhibit a number of specific characteristics and are classified, 
as uropathogenic E. coli (UPEC), a subgroup of extraintestinal pathogenic E. coli (ExPEC) 
(Russo & Johnson, 2000). UPEC strains mainly belong to the B2 phylogenetic group and to a 
lesser extent to the D group, while commensal strains belong to groups A and B1 (Picard et 
al., 1999). Further, some O-antigens (O1, O2, O4, O6, O7, O18 and O83) are more prevalent 
among uropathogenic E. coli strains and are therefore associated with UTI (Moreno et al. 
2006). In comparison to commensal E. coli strains, UPEC possess an array of virulence 
factors namely, adhesins, toxins, polysaccharide coatings, invasins, iron uptake systems and 
systems to evade host immune responses (Oelschlaeger et al., 2002).  
Of serious concern and an increasing health problem, on a global scale, is the appearance 
and spread of antimicrobial resistance. One of the major health care concerns is emergence 
of multidrug resistant bacteria and clinical microbiologists increasingly agree that multidrug 
resistant Gram-negative bacteria pose the greatest risk to public health (Kumarasamy et al., 
2010). Therefore, it is essential to determine susceptibility of pathogenic strains for 
antimicrobial agents and association of antimicrobial resistance with virulence genes.  
One of the means for acquiring specific virulence factor genes and antimicrobial resistance 
genes, is via mobile DNA (e. g. conjugal plasmids, transposons/integrons) (Alekshun & 
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Levy, 2007; Boerlin & Reid-Smith, 2008; Dobrindt et al., 2010). Hence, determining the 
prevalence of mobile elements and examining the correlation of antimicrobial 
resistance/virulence factor genes with mobile elements among UPEC is of great 
significance. 
The search for alternative antibacterial agents is of great importance and colicins, toxic, 
narrow killing spectrum exhibiting proteins produced by colicinogenic E. coli, exhibit great 
potential as an alternative approach in the battle against microbes. It has been reported that 
colicins are effective against intestinal and UPEC strains (Rijavec et al., 2007; Schamberger et 
al., 2004; Stahl et al., 2004), and that they prevent colonization of urinary catheters (Trautner 
et al., 2005). To evaluate the potential of colicins as antimicrobial agents, studies on the 
prevalence of colicins and colicin resistance are needed. 
In summary, to diminish the burden of UPEC, using effective preventive measures, data on 
phylogenetic groups, serogroups, virulence factor prevalence, antimicrobial resistance, 
presence of mobile DNA, colicin production and colicin resistance among E. coli isolates 
from different geographic regions must be assessed.  
In Slovenia in 2002, we collected 110 E. coli isolates from humans with community-acquired 
urinary tract infections at the Institute of Microbiology and Immunology, Medical Faculty, 
Ljubljana, Slovenia. Isolation was performed according to standard laboratory protocols and 
UPEC were isolates from > 105 colony-forming units (CFU) (Rijavec et al., 2006). These 
isolates were studied in order to obtain an extended characterisation, including 
phylogenetic groups, serogroups, virulence factor prevalence, antimicrobial resistance, 
presence of mobile DNA and colicinogeny and colicin resistance (Rijavec et al., 2006; Starčič 
Erjavec et al., 2006; Starčič Erjavec et al., 2007; Starčič Erjavec & Žgur-Bertok, 2008; Starčič 
Erjavec et al., 2008; Starčič Erjavec et al., 2009; Starčič Erjavec et al., 2010). 

2. Phylogenetic groups and subgroups 

E. coli strains can be assigned to one of four main phylogenetic groups: A, B1, B2, and D. The 
four groups were identified on the basis of allelic variation at enzyme-encoding genes 
detected by multilocus enzyme electrophoresis (Ochman et al., 1983, Whittam et al., 1983). 
Clermont et al. (2000) established the method of rapid and simple determination of the E. 
coli phylogenetic groups by a triplex PCR. This genotyping method is based on the 
amplification of a 279 bp fragment of the chuA gene; a 211 bp fragment of the yjaA gene; and 
a 152 bp fragment of TSPE4.C2, a noncoding region of the genome. The presence or absence 
of combinations of these three amplicons is used to assign E. coli to one of the four 
phylogenetic groups. However, to increase the discriminative power of phylogenetic group 
analysis, Escobar-Paramo et al. (2004) proposed the introduction of phylogenetic subgroups. 
They defined (Figure 1), apart from the phylogenetic group B1 (lacking chuA and yjaA and 
having Tspe4.C2), the following six subgroups: in the phylogenetic group A, subgroupA0 
(lacking chuA, yjaA, and Tspe4.C2) and subgroup A1 (lacking chuA, having yjaA, and lacking 
Tspe4.C2); in the phylogenetic group B2, subgroup B22 (having chuA and yjaA and lacking 
Tspe4.C2) and subgroup B23 ( having chuA, yjaA, and Tspe4.C2); in the phylogenetic group 
D, subgroup D1 (having chuA and lacking yjaA and Tspe4.C2) and subgroup D2 (having 
chuA, lacking yjaA, and having Tspe4.C2), Fig. 1. 
Analysis of our collection of 110 UPEC isolates showed that 55 (50%) belonged to group B2, 
28 (25%) to A, 21 (19%) to D, and 6 (5%) to the B1 group (Rijavec et al., 2006). When 
subgroups were considered the distribution of the isolates was: 4 (4%) of the studied isolates 
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belonged to the subgroup A0, 24 (22%) to A1, 6 (5%) to B22, 49 (45%) to B23, 16 (15%) to D1 
and 5 (5%) to D2 (our unpublished data).  
 

 
Fig. 1. Diagram of phylogenetic (sub)group determination. 

The obtained distribution of the studied isolates into the phylogenetic groups, with the large 
majority classifying to the B2 group was expected since, it is known that ExPEC isolates 
mainly belong to the B2 phylogenetic group (Picard et al., 1999) however, the 
disproportionate distribution into the B22 (5%) and B23 (45%), and A0 (4%) and A1 (22%) 
subgroups was surprising. 

3. Serogroups 

Serotyping of E. coli isolates is an often used method for distinguishing possible pathogenic 
E. coli from commensal E. coli. It is complex since among E. coli 173 O-antigens, 80 K-
antigens, and 56 H-antigens can be found. The O-, K-, and H-antigens can occur in many 
possible combinations therefore, the final number of E. coli serotypes is very high, 50,000-
100,000 or more. However, the number of frequent pathogenic serotypes is limited. Two 
main groups of frequent serotypes are: (i) serotypes from diarrhoeal disease and (ii) 
serotypes from extraintestinal disease (Orskov & Orskov, 1992). 
Serotyping of the 110 uropathogenic strains revealed that 77 (70%) were O-antigen typable, 
19 (17%) were O-nontypable, and 14 (12.7%) were rough. Sixty-three (57%) of the examined 
strains were H-antigen typable, 41 (37%) were H-antigen negative, and 6 (5%) were H-
antigen nontypable. The O-typable strains were distributed into 31 serogroups. 
Nevertheless, the most frequent were O2 (9 isolates) and serotype O6:H1 (10 isolates). Five 
common serotypes were identified in three or more strains: O2:HNT (n = 3), O2:H6 (n = 3), 
O6:H1 (n = 10), O7:HNT (n = 3), and O74:H39 (n = 4) accounting for 30% of the serotypable 
isolates. A number of other serotypes were detected in one or two strains (Rijavec et al., 
2006). 
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Serotype analysis of the studied strains revealed that they belonged to diverse serogroups. 
However, the most frequent were O2 and O6, which are well established as associated with 
urinary tract infections. The large majority, 96%, of the O2 and O6 isolates were assigned to 
the B2 phylogenetic group (Rijavec et al., 2006). 

4. Virulence factors 

Any component of a microbe that is required for, or potentiates its ability to cause disease is 
designated as a virulence factor. Many different virulence factors exist however, they can all 
be placed in one of the four major groups of virulence factors: adhesins, toxins, iron uptake 
systems and host immunity evading systems. Hence, virulence factors facilitate colonization 
and invasion of the host, avoidance or disruption of host defence mechanisms, injury to host 
tissue, and/or stimulation of a noxious host inflammatory response (Johnson and Steel, 
2000). 

4.1 Adhesins 
Among the first virulence factors that come into play during establishment of an infection 
are adhesins. Besides their primary role as adhesin molecules, they can also function as 
invasins, promoters of biofilm formation and transmitors of signals to epithelial cells 
resulting in inflammation. Various adhesins have been identified and studied (Zhang & 
Foxman, 2003). In our analysis we focused on the four mostly studied: type 1 fimbriae, P 
fimbriae, S fimbriae and the Afa/Dr family of adhesins (Starčič Erjavec & Žgur-Bertok, 
2008). 
Type 1 fimbriae are the most common adhesive organelles of E. coli strains. They are 
encoded by the vast majority of uropathogenic E. coli (UPEC) isolates and many other 
pathogenic and commensal isolates (Bower et al., 2005). Receptors for type 1 fimbriae are 
present on erythrocytes, buccal epithelial cells, intestinal cells, vaginal cells and uroepithelial 
cells (Johnson, 1991). The fimH gene that was tested in our study (Starčič Erjavec & Žgur-
Bertok, 2008), encodes the minor subunit protein FimH that mediates binding to the 
receptor. FimH has several variants: UPEC strains have a FimH that binds both 
monomannose and trimannose containing glycoprotein receptors, while commensal E. coli 
isolates typically show high affinity binding to only trimannose residues (Bower et al., 2005). 
Type 1 fimbriae function not just as adhesins, but also as invasins for bladder epithelial cells 
(Martinez et al., 2000).  
P fimbriae are among the best studied fimbrial adhesive fibres of UPEC strains. The P 
fimbrial adhesin molecule (PapG) recognizes globoseries of glycolipids as receptors (Zhang 
& Foxman, 2003). In our study the papC, papGII and papGIII genes were included (Starčič 
Erjavec & Žgur-Bertok, 2008). The papC gene encodes the outer membrane usher protein that 
is required for ordered P fimbriae assembly (Thanassi et al., 1998). Many studies showed 
that P fimbriae occur more frequently among UPEC than fecal isolates. Based on binding 
specificities, P fimbriae are grouped into three major classes: I, II and III (Zhang & Foxman, 
2003). 
S fimbriae bind to sialyl galactosides. Studies showed that E. coli UTI isolates were at least 
two times more likely to carry S fimbriae genes (sfa operon) than fecal strains (Zhang & 
Foxman, 2003). In our study the fimbriae typical gene sequence sfa/foc was investigated 
(Starčič Erjavec & Žgur-Bertok, 2008). 
The Afa/Dr family consists of 13 known adhesins that all bind to the Dra blood group 
antigen present on the complement regulatory molecule CD55, also known as decay-
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accelerating factor (DAF) (Bower et al., 2005). The E. coli strains harbouring these adhesins 
have been found to be associated with UTIs and also with various enteric infections (Servin, 
2005). 
Among the tested adhesin genes in the studied UPEC isolates (Table 1), the type 1 fimbriae 
were the most prevalent - the fimH gene nucleotide sequences were detected in 107 strains 
(97%). The P fimbriae were also abundant, the papC encoding gene sequence was found in 
54 strains (49%), 37 strains (34%) harboured the class II papG adhesin sequence and 14 
strains (13%) harboured the class III papG adhesin. Twenty-six (24%) possessed the S 
fimbriae typical gene sequence sfa/foc. Only 2 strains (2%) harbored afa/dra sequences (Starčič 
Erjavec & Žgur-Bertok, 2008). 
Analysis of the distribution of adhesin gene sequences among phylogenetic groups revealed 
that adhesin gene sequences were differently distributed (Table 1): fimH sequences were 
found with similar prevalence in strains of all four phylogenetic groups, papC sequences 
were found in all phylogenetic groups, but they were most prevalent (65%) among B2 group 
strains. The association of papC with the B2 group was statistically significant. Nevertheless, 
papGII sequences were found in all phylogenetic groups, in contrast, papGIII adhesin 
sequences were exclusively found among strains of the B2 group. 
Further, a very high, statistically significant, prevalence of S fimbriae in the B2 group was 
detected, 45% of the strains belonging to the B2 group harboured sfa/foc sequences (Starčič 
Erjavec & Žgur-Bertok, 2008). 

4.2 Toxins 

Toxins affect an astonishing variety of fundamental eukaryotic processes and thereby harm 
the host (Kaper, 2004) and are important virulence factors in a variety of E. coli mediated 
diseases – in UTI the production of toxins by colonized E. coli may cause an inflammatory 
response that leads to the UTI symptoms (Zhang & Foxman, 2003).  
In pathogenic E. coli strains several important toxins have been identified, the best known, 
associated with UPEC strains, are alpha hemolysin (HlyA) and cytotoxic necrotizing factor 1 
(CNF1) (Zhang & Foxman, 2003).  
Well known toxins are also invasins, the Ibe proteins that help E. coli strains to invade the 
human brain microvascular endothelial cells (Xie et al., 2004). The presence of IbeA protein 
is statistically significantly higher in strains causing cystitis and/or pyelonephritis (Johnson 
et al., 2005). The gene for the uropathogenic specific protein (USP) that was found as a 
homologue of the Vibrio cholerae zonula occludens toxin encoding gene (Kurazono et al., 
2000), has been significantly more often detected in UPEC strains than in fecal strains from 
healthy individuals (Bauer et al., 2002). 
Among the screened toxin encoding genes in the studied UPEC isolates (Table 1), the usp 
gene had the highest prevalence as usp specific nucleotide sequences were detected in 48 
strains (44%). The prevalence of hlyA and cnf1 was similar, 28 (25%) and 25 strains (23%), 
respectively, possessed the tested nucleotide sequences. Only 10 strains (9%) harboured ibeA 
sequences (Starčič Erjavec et al., 2008). 
Analysis of the distribution of toxin encoding genes among the determined phylogenetic 
groups of studied strains (Table 1) revealed that the tested toxin encoding genes hlyA, cnf1, 
ibeA and usp were mostly harboured by UPEC strains belonging to the B2 phylogenetic 
group, as 26 (93%) of the strains harbouring hlyA belonged to the B2 group, 25 (100%) 
harbouring cnf1, 9 (90%) harbouring ibeA and 42 (88%) harbouring usp belonged to the B2 
phylogenetic group (Starčič Erjavec et al., 2008). 
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 Prevalence (N, [%]) 

  Phylogenetic group 

Trait 
Total 

(N=110) 

A 

(N=28) 

B1 

(N=6) 

B2 

(N=55) 

D 

(N=21) 

Virulence factors      
Adhesins      

fimH 107 (97) 28 (26) 5 (5) 53 (50) 21 (20) 
papC 54 (49) 8 (15) 1 (2) 35 (65) 10 (19) 

papGII 37 (34) 5 (14) 1 (3) 21 (57) 10 (27) 
papGIII 14 (13) 0 (0) 0 (0) 14 (100) 0 (0) 
sfa/foc 26 (24) 1 (4) 0 (0) 25 (96) 0 (0) 
afa/dra 2 (2) 1 (50) 0 (0) 1 (50) 0 (0) 
Toxins      

hlyA 28 (25) 1 (4) 0 (0) 26 (93) 1 (4) 
cnf 25 (23) 0 (0) 0 (0) 25 (100) 0 (0) 

ibeA 10 (9) 0 (0) 0 (0) 9 (90) 1 (10) 
usp 48 (44) 1 (2) 0 (0) 42 (88) 5 (10) 

Iron uptake systems      
iucD 46 (42) 8 (17) 0 (0) 27 (59) 11 (24) 

iroCD (=iroN) 51 (46) 9 (18) 0 (0) 41 (80) 1 (2) 
ireA 22 (20) 4 (18) 0 (0) 12 (55) 6 (27) 
fyuA 84 (76) 17 (20) 3 (4) 49 (58) 15 (18) 

Host immunity evading systems      
K1 6 (5) 1 (17) 1 (17) 4 (67) 0 (0) 
K5 11 (10) 2 (18) 1 (9) 8 (73) 0 (0) 

traT 63 (57) 20 (32) 4 (6) 29 (46) 10 (16) 
tcpC 23 (21) 0 (0) 0 (0) 23 (100) 0 (0) 

Antimicrobial susceptibility      
Ampicillin 57 (52) 12 (21) 5 (9) 32 (56) 18 (32) 

Ciprofloxacin 99 (90) 23 (23) 5 (5) 52 (53) 19 (19) 
Chloramphenicol 50 (45) 7 (14) 3 (6) 32 (64) 8 (16) 

Kanamycin 95 (86) 20 (21) 5 (5) 51 (54) 19 (20) 
Mezlocillin 59 (54) 12 (20) 5 (8) 34 (58) 8 (14) 

Nalidixic acid 64 (58) 12 (19) 3 (5) 38 (59) 11 (17) 
Norfloxacin 99 (90) 23 (23) 5 (5) 52 (52) 19 (19) 

Streptomycin 69 (63) 15 (22) 5 (7) 40 (60) 9 (13) 
Sulfamethoxazole-Trimethoprim 87 (79) 18 (21) 6 (7) 49 (56) 14 (16) 

Tetracycline 47 (43) 6 (13) 4 (9) 33 (70) 4 (9) 
Trimethoprim 72 (65) 14 (19) 6 (8) 41 (57) 11 (15) 

Mobile genetic elements      
RepFIA 20 (18) 7 (35) 0 (0) 10 (50) 3 (15) 
RepFIB 57 (52) 18 (32) 2 (4) 26 (46) 11 (19) 
RepFIIA 24 (22) 7 (29) 0 (0) 15 (63) 2 (8) 
Integron 34 (31) 12 (35) 1 (3) 12 (35) 9 (26) 

Colicinogenity 42 (38) 12 (29) 3 (7) 20 (48) 7 (17) 

Table 1. Characterized traits in studied UPEC isolates – prevalence and distribution among 
phylogenetic groups. 
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4.3 Iron uptake systems 
Iron is an essential cofactor for many basic metabolic pathways and bacteria have developed 
specialized iron uptake systems to capture iron. The most prominent are the siderophores, 
iron-binding molecules that are taken up by special siderophore receptors and ATP-
consuming porin-like transporters in the bacterial outer membrane (Schaible & Kaufmann, 
2004). Siderophores can be classified into three groups: (i) the catecholate type (enterobactin, 
salmochelin = enterochelin), (ii) hydroxamate type (aerobactin) and (iii) a mixed type - a 
combination of both (yersiniabactin) (Grass, 2006; Schaible & Kaufmann, 2004). In addition 
to siderophore synthesis strains can use siderophores produced and released into the 
extracellular medium by other bacteria and even fungi. In the host, bacteria may use iron 
sources such as heme, hemoglobin, hemopexin, and iron bound to transferrin and 
lactoferrin (Braun & Braun, 2002). Apart from the siderophores and their receptors, 
autotransporters, virulence-associated proteins in gram-negative bacteria, can also play a 
role in obtaining iron for example, the hemoglobin protease Hbp (Otto et al., 2002). All 
autotransporter proteins are energy-independent secreted via a type 5 secretion system and 
possess an overall unifying structure, comprising (i) an amino-terminal leader peptide (for 
secretion across the inner membrane), (ii) the secreted mature protein (or passenger 
domain), and (iii) a dedicated C-terminal domain, which forms a pore in the outer 
membrane through which the passenger domain passes to the cell surface (Henderson & 
Nataro, 2001).  
In our study the following iron uptake systems genes were investigated (Table 1): iucD for 
aerobactin, iroCD and iroN for salmochelin, fyuA for yersiniabactin and ireA of a putative 
TonB-dependent siderophore receptor. The iron uptake system with the highest prevalence 
was yersiniabactin, the fyuA gene coding for the ferric yersiniabactin receptor was found in 
84 strains (76%). The salmochelin uptake system genes iroN, coding for the catecholate 
siderophore receptor, and iroCD coding for proteins needed in salmochelin transport, were 
found in 51 (46%) of studied strains. The aerobactin iron uptake system gene iucD, coding 
for lysine:N6-hydroxylase needed in aerobactin biosynthesis, was detected in 46 strains 
(42%) and the ireA gene was harboured by 22 studied strains (20%) (our unpublished data). 
Analysis of the distribution of iron uptake systems encoding genes among the determined 
phylogenetic groups of studied strains (Table 1) revealed that all of the studied iron uptake 
systems were mostly harboured by UPEC strains belonging to the B2 phylogenetic group, as 
41 (80%) of the strains harbouring iroCD and iroN belonged to the B2 group, 49 (58%) 
harbouring fyuA, 27 (59%) harbouring iucD and 12 (55%) harbouring ireA belonged to the B2 
phylogenetic group (our unpublished data). 

4.4 Host immunity evading systems 
Pathogenic microbes avoid host defences using a wide array of virulence factors, ranging 
from polysaccharide capsules, serum resistance proteins to immune system modulating 
agents (Kaper et al., 2004).  
Capsules are the discrete structural layers of extracellular polysaccharides that envelope the 
cell and allow the bacteria to evade or counteract the host immune system (Roberts, 1996). 
Capsules protect pathogens from assaults such as opsonophagocytosis and complement-
mediated killing (Roberts, 1995); and in case of acidic capsules they can act as “sponges” to 
sequester and neutralize antimicrobial peptides (Llobet et al., 2008). Virtually all UPEC have 
a K-type polysaccharide capsule. Most UPEC express Group 2 or 3 capsules on their 
surfaces (Goller and Seed, 2010) and the K-antigens K1, K5, K30 and K92 are the most 
prevalent among UPEC (Johnson, 1991). 
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TraT, the surface exclusion protein of the plasmid transfer system, has been implicated in 
increased serum resistance (Binns et al., 1979). TraT is one of the most prevalent virulence 
factors in pathogenic E. coli isolates, as traT sequences have been found in 50% of E. coli 
isolates from sepsis (Ananias & Yano, 2008), in 68% of uroseptic E. coli (Johnson & Stell, 
2000), and in 65% of UPEC isolates from cystitis, pyelonephritis, prostatitis (Johnsons et al., 
2005a). 
Recently, TcpC, a Toll/interleukin-1 receptor (TIR) domain–containing protein of 
uropathogenic E. coli inhibiting Toll-like receptor (TIR) and MyD88-specific signaling, 
impairing the innate immune response was described (Cirl et al, 2008). The tcpC 
homologous sequences were found in about 40% of E. coli isolates from individuals with 
pyelonephritis, in 21% cystitis isolates, in 16% asymptomatic bacteriuria and in only 8% of 
commensal isolates therefore, TcpC is implicated in the severity of urinary tract infections 
(UTI) in humans (Cirl et al., 2008). 
Among the 110 studied UPEC isolates (Table 1) 6 (5%) had the K1-capsule and 11 (10%) had 
the K5-capsule (Starčič Erjavec et al., 2007). The traT sequences were found in 63 (57%) 
(Rijavec et al., 2006) and the tcpC sequences were found in 23 (21%) (Starčič Erjavec et al., 
2010) of studied UPEC isolates. 
Analysis of the distribution of the studied immune system evading characteristics among 
the determined phylogenetic groups (Table 1) showed that, isolates with K1- and K5-
capsules were the most prevalent in the B2 group, 4 (67%) and 8 (73%), respectively 
however, capsule possessing isolates also belonged to the A and B1 group, albeit at low 
prevalence. One (17%) K1-capsule coated strain was found in the A and one in the B1 group 
and 2 (18%) K5-capsule coated strains in the A group and one (9%) in the B1 group. The traT 
sequence was more evenly distributed among all four phylogenetic groups A, B1, B2 and D 
– the prevalence was 20 (32%), 4 (6%), 29 (46%) and 10 (16%), respectively. On the other 
hand, the tcpC-encoding strains were found only in the B2 group.  

5. Antimicrobial susceptibility 

An important task in clinical microbiology is the performance of antimicrobial susceptibility 
testing in order to detect possible drug resistance in common pathogens and to assure 
susceptibility to drugs of choice for particular infections (Jorgensen & Ferraro, 2009). 
Therefore, several studies on the subject of antimicrobial susceptibility and E. coli isolates 
from UTI have been performed (e. g. Karlowsky et al., 2003; Kahlmeter & Menday, 2003; 
Yilmaz et al., 2009). 
In the year 2002, when the studied isolates were collected, treatment of UTI in outpatients in 
Slovenia was as follows: a course of antibiotics (therapy of choice - trimethoprim 160 mg or 
trimethoprim/sulfamethoxazole 160 mg/800 mg twice daily for 3 days) and advice to 
consume sufficient quantities of liquids (2–3 l per day) (Car et al., 2003).  
The studied uropathogenic strains were screened for susceptibility to the following 
antibiotics: ampicillin, chloramphenicol, kanamycin, streptomycin, tetracycline, 
trimethoprim, trimethoprim-sulfamethoxazole, ciprofloxacin, norfloxacin, nalidixic acid, 
mezlocillin, amikacin, cefotaxime, cefotiame, cefoxitin, ceftazidime, and gentamicin. 
Susceptibilities to the tested antibiotics ranged from 109 (99%) susceptible to amikacin, 
cefotaxime, ceftazidime, to 47 (43%) susceptible to tetracycline. Antibiotics with the highest 
prevalence of susceptibility, apart from amikacin, cefotaxime, ceftazidime, were to 
cefotiame, cefoxitin, and gentamicin as 108 (98%), 103 (94%), and 101 (92%) of the studied 
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strains, respectively, were susceptible. Antibiotics with the lowest prevalence of 
susceptibility, apart from tetracycline, were to chloramphenicol, ampicilin, mezlocillin and 
nalidixic acid, as 50 (45%), 57 (52%), 59 (54%) and 64 (58%), respectively, were susceptible 
(Rijavec et al., 2006). 
Forty-six (42%) of the studied strains were resistant to more than three classes of the tested 
antimicrobial agents—beta lactams, quinolone/fluoroquinolone, trimethoprim/ 
trimethoprim-sulfamethoxazole, tetracycline, chloramphenicol, aminoglycosides 
(streptomycin, kanamycin)—and were designated as multidrug resistant (MDR). 
Subsequently, the association between MDR and the phylogenetic group was examined. A 
statistically significant correlation between non-MDR and the B2 group was determined and 
a significant correlation between MDR and the D phylogenetic group was found. On the 
other hand, there were no statistically significant correlations between MDR or non-MDR 
strains and the A or B1 groups (Rijavec et al., 2006). 

6. Mobile genetic elements 

The loss and gain of mobile genetic elements has a pivotal role in shaping the genomes of 
pathogenic bacteria. Horizontal gene transfer is an important mechanism that rapidly 
disseminates new traits to recipient organisms. Acquiring these new traits is crucial in 
promoting the fitness and survival of a pathogen while it coevolves with its host (Croxen & 
Finlay, 2010).  
Bacterial plasmids, self-replicating, extrachromosomal elements are key agents of change in 
microbial populations. They promote the dissemination of a variety of traits, including 
virulence, enhanced fitness, resistance to antimicrobial agents, and metabolism of rare 
substances (Johnson & Nolan, 2009). E. coli strains possess a variety of plasmid types, of 
different sizes, usually ranging in size from approximately 300 bp to 2400 kbp nevertheless, 
each plasmid must harbour a replication region (Kado, 1998). Plasmids are classified into 
incompatibility groups mostly on the basis of the replication region (Couturier et al., 1988).  
Integrons are assembly platforms that incorporate exogenous open reading frames by site-
specific recombination and convert them to functional genes by ensuring their correct 
expression. Integrons are composed of three key elements necessary for the capture of 
exogenous genes: a gene (intI) encoding an integrase belonging to the tyrosine-recombinase 
family; a primary recombination site (attI); and an outward-orientated promoter (Pc) that 
directs transcription of the captured genes. At present, five classes of mobile integrons are 
distinguished. These classes have been historically defined based on the sequence of the 
encoded integrases, which show 40–58% identity. All five classes are physically linked to 
mobile DNA elements, such as insertion sequences, transposons and conjugative plasmids, 
all of which can serve as vehicles for intraspecies and interspecies transmission of genetic 
material. Class 1 integrons are associated with functional and non-functional transposons 
derived from Tn402 that can be embedded in larger transposons, such as Tn21. Class 2 
integrons are exclusively associated with Tn7 derivatives and class 3 integrons are thought 
to be located in a transposon inserted in a plasmid. The other two classes of mobile 
integrons, class 4 and class 5, have been associated only with Vibrio species; class 4 is a 
component of a subset of SXT elements found in Vibrio cholerae, and class 5 is located in a 
compound transposon carried on a plasmid in Vibrio salmonicida (Mazel, 2006). 
The studied UTI strains were screened for replication regions of IncFI and IncFII plasmids. 
We found (Table 1) a high (62 strains, 56%) incidence of rep IncF sequences among the 
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examined UPEC strains. Particularly prevalent were RepFIB sequences that were detected in 
57 (52%) of the strains while RepFIA and RepFIIA were found in 20 (18%) and 24 (22%) 
strains, respectively. rep sequences were found in all four phylogenetic groups. Of the 62 
isolates harbouring at least one of the tested IncF replicons, 20 belonged to group A, 2 to B1, 
27 to B2, and 13 to group D (Rijavec et al., 2006). 
Since only class 1, 2 and 3 of integrons were shown to be associated with pathogenic E. coli 
in our study we focused only on these three classes. Analysis (Table 1) revealed that 29 
(26%) of the strains harboured a class 1 integron, 1 strain (1%) contained a class 1 and a class 
2 integron, and 4 strains (4%) a class 2 integron. Analysis of the distribution of integrons 
with regard to the phylogenetic group showed that integron sequences were found in all 
four groups. Of the 34 isolates harbouring integron sequences, 12 belonged to group A, 1 to 
B1, 12 to B2, and 9 to group D (Rijavec et al., 2006). 

7. Colicins 

Colicins are bacteriocins produced by E. coli strains. As other bacteriocins, colicins are 
extracellular bacterial toxic proteins that are active against the same, or closely related 
species as the producer cell (Daw & Falkiner, 1996). The mechanism of action of these 
compounds involves adsorption to specific receptors located on the external surface of 
sensitive bacteria followed by killing via one of three primary mechanisms: i) formation of 
channels in the cytoplasmic membrane, ii) degradation of cellular DNA or iii) inhibition of 
protein synthesis (Riley & Gordon, 1999). Because of their narrow range of activity, it has 
been proposed that the primary role of bacteriocins is to mediate intraspecific, or population 
level, interactions (Riley, 1998) however, bacteriocins have also been implicated in virulence 
determination, since many pathogenic strains harbour plasmid-encoded bacteriocins, for 
example the ColV plasmid of UPEC isolates (Johnson & Nolan, 2009). Typically, 25–50% of 
E. coli isolates are colicinogenic and usually, the percentages are higher among pathogenic 
than commensal strains (Riley & Gordon, 1996). Due to high levels of colicinogenity in 
natural E. coli populations, high levels of colicin resistance are known to occur (Feldgarden 
& Riley, 1998). 
 

 
Fig. 2. A colicinogenic uropathogenic strain was stab inoculated on 4 points on an agar plate 
and overlaid with a sensitive E. coli strain. 
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Among the studied UPEC isolates 42 (38%) exhibited colicinogenic activity (Starčič Erjavec 
et al., 2006). Each of the 110 UPEC strains was resistant to at least 3 colicinogenic strains 
from Pugsley's collection of colicinogenic strains (Pugsley & Oudega, 1987), 23 UPEC strains 
(21%) were resistant to all 20 tested Pugsley's strains (our unpublished data). Colicinogenic 
strains were found in all four phylogenetic groups (Table 1) however, most colicinogenic 
strains, 20 (48%) belonged to the B2 group (our unpublished data). 

8. Conclusion 

Our investigation of UPEC isolates from Slovenia revealed a high prevalence of drug 
resistance and multidrug resistance. The virulence profile of the examined strains was 
comparable to that of strains from other geographic regions. 
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approach. Topics are organized to address all of the major complicated conditions frequently seen in urinary

tract infection. The authors have paid particular attention to urological problems like the outcome of patients

with vesicoureteric reflux, the factors affecting renal scarring, obstructive uropathy, voiding dysfunction and

catheter associated problems. This book will be indispensable for all professionals involved in the medical care

of patients with urinary tract infection.
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