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1. Introduction 

Each mitochondrion consists of 16,569 base pairs which encodes 37 genes, all of which are 
essential for normal mitochondrial function (Anderson et al., 1981). Each human cell 
contains several hundred copies of mitochondrial DNA, encoding 13 genes that are required 
for oxidative phosphorylation, 22 transfer RNAs and 2 ribosomal RNAs (Anderson et al., 
1981). Mitochondria are vital organelles, which generate the majority of the cells energy 
through oxidative phosphorylation (Wallace, 2005). During this process, reactive oxygen 
species (ROS) are produced, that can leak out and react with a range of cellular components, 
including the mitochondrial genome (Richter et al., 1988). Therefore, it has been suggested 
that levels of oxidative DNA damage are higher in mitochondrial DNA than in nuclear 
DNA, with mitochondrial DNA accumulating mutations at a 10- to 50- fold higher rate 
(Hudson et al., 1998; Michikawa et al., 1999; Pakendorf and Stoneking, 2005; Yakes and Van 
Houten, 1997). If this mitochondrial DNA damage is not repaired, it can lead to disruption 
of the electron transport chain and increased generation of ROS, possibly resulting in 
vicious cycle of ROS production and mitochondrial DNA damage, leading to energy 
depletion and ultimately cell death (Harman, 1972; Miquel et al., 1980). Therefore suggesting 
that mitochondria must employ some form of repair or defence mechanism against such 
forms of deleterious damage. 
The integrity of mitochondrial DNA repair plays a central role in maintaining homeostasis 
in the cell and thus the efficient repair of mitochondrial DNA damage serves as an essential 
function in cellular survival. In comparison to nuclear DNA repair, our knowledge 
regarding mitochondrial DNA repair is limited. In fact, it was originally believed that 
mitochondria employed no repair mechanisms and damaged DNA was not repaired, but 
was merely degraded. This was primarily based on a study published in 1974, which 
demonstrated the inability of mitochondria to remove cyclobutyl pyrimidine dimers after 
exposure to ultraviolet light (Clayton et al., 1974). This theory remained for many years, but 
now it is abundantly clear that multiple DNA repair pathways and the controlled 
degradation of mitochondrial DNA, work together to maintain the integrity of the 
mitochondrial genome (Berneburg et al., 2006; Liu and Demple, 2010). Initially the repair of 
most mitochondrial DNA damage was thought to be limited to short-patch base excision 
repair (BER) (Stierum et al., 1999). However, the complex range of DNA lesions inflicted on 
mitochondrial DNA by ROS and potential replication errors indicated that such a restricted 
repair mechanism would be insufficient. Our knowledge of mitochondrial DNA repair has 
recently witnessed a rapid expansion and it is now evident that mitochondria also employ 
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long-patch BER (Akbari et al., 2008; Liu et al., 2008; Szczesny et al., 2008; Zheng et al., 2008), 
mismatch repair (de Souza-Pinto et al., 2009; Mason et al., 2003), homologous recombination 
and non-homologous end-joining (Bacman et al., 2009; Fukui and Moraes, 2009; Thyagarajan 
et al., 1996). In addition, sanitation of the mitochondrial deoxynucleotide triphosphate 
(dNTP) pool and selective degradation of heavily damaged mitochondrial DNA play 
important roles in maintaining mitochondrial DNA integrity and preventing cell death 
(Bacman et al., 2009; Ichikawa et al., 2008; Shokolenko et al., 2009). The majority of the 
proteins dedicated to DNA repair have to be transcribed and translated from nuclear DNA 
where they are encoded and imported into the mitochondrion (Bohr, 2002).  
Many inherited diseases result from mutations in the mitochondrial genome or due to 
mutations in nuclear genes that encode mitochondrial components (Chan and Copeland, 
2009; Horvath et al., 2009; Tuppen et al., 2010). Somatic mutations in mitochondrial DNA are 
increasingly linked to common diseases, including age-related degenerative disorders and 
cancers. Specifically, mitochondrial DNA mutations have been detected in colorectal 
(Habano et al., 1998; Polyak et al., 1998), breast (Parrella et al., 2001; Radpour et al., 2009) 
bladder (Copeland et al., 2002; Dasgupta et al., 2008; Wada et al., 2006), lung (Dai et al., 2006; 
Jin et al., 2007; Suzuki et al., 2003), head and neck cancers (Dasgupta et al., 2010) (Allegra et 
al., 2006; Mithani et al., 2007), amongst others. Furthermore, some evidence also exists 
suggesting that mutations in mitochondrial DNA can even accelerate disease progression 
(Ishikawa and Hayashi, 2010; Lee et al., 2010). Although many associations between 
mitochondrial DNA mutations and cancer have been shown, a functional link to 
mitochondrial DNA repair still requires further investigation. Increasing evidence also 
suggests that mitochondrial DNA damage accumulates with age. However conflicting 
reports argue whether aging is due to the accumulation of mitochondrial DNA damage or 
perhaps modifications in mitochondrial DNA repair mechanisms may cause accumulation 
of DNA damage associated with aging (Boesch et al., 2011; Gruber et al., 2008; Obulesu and 
Rao, 2010).  

2. Mitochondrial DNA repair pathways 

Our DNA, both nuclear and mitochondrial, is constantly exposed to endogenous and 
exogenous agents that induce DNA lesions and genomic instability (De Bont and van 
Larebeke, 2004; Sander et al., 2005). In the absence of DNA repair, the genome would be 
unable to survive the multitude of lesions that form throughout the cell cycle. Therefore, a 
range of molecular mechanisms has evolved that ensures that damaged DNA is effectively 
repaired. These pathways coordinate the repair of DNA lesions and the stalling of the cell 
cycle to allow repair to occur (Harper and Elledge, 2007). DNA repair mechanisms have 
been extensively studied in the nucleus and increasing data demonstrates how distinct DNA 
lesions are repaired by different DNA repair pathways including homologous 
recombination, non-homologous end joining, base excision repair, nucleotide excision 
repair, mismatch repair, and translesion synthesis (Hoeijmakers, 2009). The relevance of the 
DNA repair pathways in the maintenance of genome integrity and cellular survival is 
evidenced by the critical consequences in the survival of organisms when deficiencies in key 
enzymes of the DNA repair pathways occur (Martin et al., 2008).  
In contrast to the repertoire of nuclear DNA repair pathways, for many years, the repair of 

mitochondrial DNA damage was thought to be limited to short-patch BER (Stierum et al., 

1999). However more recently with increasing knowledge of the likely array of lesions 
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inflicted on mitochondrial DNA, it was suggested that such a limited repair repertoire 

would be insufficient. Studies have identified an expanded range of mitochondrial DNA 

repair processes including long-patch base excision repair, mismatch repair, homologous 

recombination and nonhomologous end-joining (Boesch et al., 2011; Liu and Demple, 2010; 

Yang et al., 2008). It is still generally considered that there is no nucleotide excision repair 

(NER) in the mitochondria. However, it has been shown that the NER gene, Cockayne 

syndrome B (CSB) is involved in the removal of oxidative DNA damage from the nucleus, 

such that CSB-deficient cells demonstrated reduced repair rates of 8-oxoG DNA lesions and 

extracts from CSB-deficient cells fail to incise oligonucleotides containing 8-oxoG (Balajee et 

al., 1999) (Dianov et al., 1999; Le Page et al., 2000; Selzer et al., 2002). CSB has also been 

shown to act in concert with OGG1 in the repair of these lesions (Tuo et al., 2002; Tuo et al., 

2001). Due to the generation of ROS in the mitochondria and the increased levels of 

oxidative damage it was hypothesized that mitochondria-targeted CSB could have a role in 

repair of mitochondrial DNA. To this end, Stevnsner et al. demonstrated that CSB-deficient 

cells exhibited a reduced ability to repair 8-oxoG in the mitochondria, suggesting possible 

NER activity (Stevnsner et al., 2002a). Similarly, the presence of translesion synthesis (TLS) 

in mitochondria has not been fully elucidated. In the nucleus, TLS is carried out by 

specialized polymerases, which have the ability to copy defective DNA templates. The 

possibility of mitochondrial TLS has been suggested due to the fact that the mitochondrial 

polymerase POLG is capable of mutagenic bypass through DNA lesions introducing dA 

opposite an AP site or an 8-oxodG (Graziewicz et al., 2007; Pinz et al., 1995) and also 

opposite benzo[a]pyrene and benzo[c]phenanthrene diol epoxide adducts of 

deoxyguanosine and deoxyadenosine (Graziewicz et al., 2004). To date, the presence of TLS 

activity in vivo in mitochondria remains to be shown. For both NER and TLS, further 

research is necessary to define the precise mechanisms of these processes in the 

mitochondria.  

2.1 Base excision repair 

The mitochondrial DNA sits on the inner side of the mitochondrial inner membrane, where 
most reactive oxygen species (ROS) are generated, rendering it highly susceptible to 
oxidative damage. BER is one of the main pathways for the repair of oxidized modifications 
both in nuclear and mitochondrial DNA (Slupphaug et al., 2003). As mentioned above, 
previously the repair of mitochondrial DNA damage and in particular oxidative DNA 
damage was thought to be limited to short-patch BER (Stierum et al., 1999), which replaces a 
single nucleotide by the sequential action of DNA glycosylases, an apurinic/apyrimidinic 
(AP) endonuclease, a DNA polymerase, an abasic lyase activity and DNA ligase (Dianov et 
al., 2001)(Figure 1). In addition to oxidative DNA damage, BER is the primary pathway 
required for repair of small DNA modifications induced by alkylaltion and deamination. As 
in nuclear BER, mitochondrial BER is initiated with recognition of the modified base and its 
removal is followed by processing of the apurinic/apyrimidinic (AP) site, incorporation of 
the correct nucleotide and finally strand ligation (Chan et al., 2006; Dianov et al., 2001). A 
schematic representation of the BER pathway in mitochondria is illustrated in Figure 1. 
The 1st step of BER is initiated by DNA glycosylases, which recognize the modified base and 

cleave the N-glycosidic bond, resulting in an abasic site. It has been shown that a number of 

glycosylases are bi-functional DNA glycosylases such that they also have AP lyase activity, 

which enables the cleavage of the DNA backbone (Robertson et al., 2009). Mitochondrial and  
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Fig. 1. Schematic representation of the BER pathway in mitochondria. 

nuclear glycosylases are encoded by the same nuclear gene, however isoforms are generated 
by alternative transcription initiation sites and alternative splicing (Bohr, 2002; Nilsen et al., 
1997). The mitochondrial DNA glycosylases include the 8-oxoguanine DNA glycosylase-1 
(OGG1), the uracil DNA glycosylase (UNG), MYH, endonuclease III homolog (NTH1) and 
the NEIL glycosylases. OGG1 is a bi-functional glycosylase that is required for the 
recognition and cleavage of 8-hydroxy-guanine (8-oxoG) oxidative DNA lesions from 
double-stranded DNA (Kuznetsov et al., 2005). UNG was the 1st glycosylase to be identified 
and is involved in the removal of uracil from DNA, generated by deamination of cytosine or 
by misincorporation of dUMP (Lindahl, 1974). The removal of uracil is vital, because of its 
ability to pair with adenine resulting in GC to AT transition mutations upon replication 
(Darwanto et al., 2009). MYH is involved in the removal of adenine misinserted opposite 8-
oxoG (Takao et al., 1999). NTH1 is also involved in the removal of oxidized DNA lesions 
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(Takao et al., 2002). The NEIL glycosylases are responsible for excising oxidative DNA 
lesions such as 2,6-diamino-5-foramidopyrimidine (FapyG) and 4,6-diamino-5-
formamidopyrimidine (FapyA) (Doublie et al., 2004). There are three main isoforms, NEIL1, 
NEIL2 and NEIL3, which are present in both the nucleus and the mitochondria (Gredilla et 
al., 2010b; Hazra et al., 2002a; Hazra et al., 2002b). Whilst partial redundancy has been 
described for these glycosylases, NEIL1 knock-out mice accumulate mitochondrial DNA 
deletions to a greater extent than wild-type mice and also develop symptoms associated 
with metabolic syndrome (Vartanian et al., 2006).  
After recognition and cleavage of the modified base by the specific DNA glycosylase, an 
abasic site is formed. The AP endonuclease (APE1) is involved in this step of repair. APE1 
cleaves on the immediate 5’ side of the AP site, leaving a 3’ hydroxyl and 5’-deoxyribose-5-
phosphate (5’-dRP) residue (Masuda et al., 1998). APE1 is the major endonuclease in 
mammalian cells in both the nucleus and the mitochondria (Tell et al., 2005). The functional 
importance of APE1 is highlighted by the findings that knockout mice for the APE1 gene are 
embryonic lethal at very early stages (6–8 days) suggesting that cell survival is critically 
compromised in the absence of APE1 (Ludwig et al., 1998; Xanthoudakis et al., 1996). 
Heterologous expression of APE1 restores resistance to DNA-damaging agents in AP 
endonuclease-deficient cells (Li et al., 2008). APE1 is the only AP endonuclease in 
mitochondrion, and loss of mitochondrial APE1, not of the nuclear APE1 (Chattopadhyay et 
al., 2006), is believed to be responsible for triggering apoptosis, therefore highlighting APE1 
as a potential therapeutic target. (Li et al., 2008). 
Once the AP site has been processed by APE1, the only known mitochondrial DNA 
polymerase, POLG is required to insert the correct nucleotide in the generated gap (Ropp 
and Copeland, 1996). Two different BER pathways exist depending on the number of 
nucleotides that is incorporated by POLG. Short-patch BER involves the incorporation of 
one single nucleotide into the gap, while long-patch BER involves the incorporation of 
several nucleotides, usually in the range of 2 to 7 (Robertson et al., 2009). During the long-
patch BER process, this incorporation of multiple nucleotides results in the exposure of the 
original DNA strand as a single-stranded overhang or a flap structure (Xu et al., 2008). 
Therefore increasing the complexity of long-patch BER, as additional enzymatic activities 
are required to process this flap. Increasing evidence suggests that in both the nucleus and 
the mitochondria, this structure is recognized and cleaved by the flap endonuclease, FEN1 
(Kalifa et al., 2009; Klungland and Lindahl, 1997). Although FEN1 is clearly involved in 
mitochondrial BER, studies have suggested the existence of additional activities involving 
the enzyme Dna2 can also enable the process. Dna2 was originally identified in yeast as a 
nuclear DNA helicase with an endonuclease activity required for removing part of an RNA 
or DNA flap structure (Zheng et al., 2008) and yeast Dna2 has been known for some time to 
function in the nucleus along with FEN1 to process 5′ flaps (Budd and Campbell, 1997). 
Significantly, the major isoform of Dna2 is localized to the mitochondria. (Copeland and 
Longley, 2008; Duxin et al., 2009). Current work implies that mammals have evolved to 
utilize FEN1 as the only nuclear flap endonuclease, whereas both FEN1 and DNA2 appear 
to function together in mitochondria (Duxin et al., 2009). 
The final process in the mitochondrial BER pathway involves sealing of the nick, which 
requires the mitochondrial DNA ligase, Ligase III. It was shown to be an ATP independent 
enzyme, similar to the nuclear DNA ligase (Lakshmipathy and Campbell, 1999b). It is 
involved in both mitochondrial replication and repair. Recently it has been demonstrated 
that Ligase III is critical for mitochondrial DNA maintenance and viability, but is 
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dispensable for Xrcc1-mediated nuclear BER (Gao et al., 2011; Simsek et al., 2011). Depletion 
of DNA ligase III in the mitochondria by antisense DNA ligase III mRNA expression led to a 
decrease in cellular mitochondrial DNA copy number and increased levels of single-strand 
DNA breaks within the mitochondrial genome (Lakshmipathy and Campbell, 2001). 
Ongoing investigations on how the organization of mitochondrial DNA affects BER 
suggests that mitochondrial DNA association to the inner mitochondrial membrane may be 
critical for efficient BER (Boesch et al., 2010).  

2.2 Mismatch repair 

The presence of mismatch repair (MMR) activity in the mitochondria is a controversial area. 
In 2003, Mason et al. demonstrated that mitochondrial extracts from rat liver exhibited a low 
but significant MMR activity and that this activity was independent, of one of the main 
nuclear MMR proteins, MSH2 (Mason et al., 2003). Therefore suggesting that the 
mitochondrial MMR pathway may be distinct from nuclear MMR. To date, data suggesting 
the presence of the nuclear MMR proteins in the mitochondria has been conflicting. In 2009, 
de Souza-Pinto et al. detected the classical MMR proteins MSH3, MSH6 and MLH1 in the 
nuclei but not in mitochondria (de Souza-Pinto et al., 2009). However we and others, have 
detected the presence of MLH1, but not MSH2, in the mitochondria of human tumor cells 
and mouse liver, respectively (Martin et al., 2010; Mootha et al., 2003). Furthermore, our 
recent data suggests a role for MLH1 in mitochondrial oxidative DNA repair, such that 
MLH1 deficiency in combination with silencing of the mitochondrial genes, POLG and 
PINK1, amongst others results in an accumulation in mitochondrial 8-oxoG lesions, 
incompatible with cell viability (Martin et al., 2011; Martin et al., 2010). Studies have also 
suggested that mitochondrial DNA mismatch-binding activity is due to the Y-box-binding 
protein, YB-1 (de Souza-Pinto et al., 2009). Mitochondrial extracts depleted of YB-1 
demonstrated a significantly reduced mismatch-binding and repair activity and also a 
reduced rate of cellular respiration, suggestive of mitochondrial dysfunction. Significantly, 
silencing of YB-1 by RNA interference (RNAi) also resulted in increased mitochondrial DNA 
mutagenesis, therefore suggesting that mitochondria do have a MMR pathway, which 
involves YB-1. The YB-1 mediated mitochondrial mismatch-binding activity was shown to 
have no bias in favor of the matrix strand and is therefore prone to the introduction of 
mutations. Recent data has suggested that it can specifically recognize and bind base 
mismatches and small insertion/deletion loops. In S. cerevisiae, Msh1 which is a homologue 
of the bacterial MutS component, can repair G:A mispairs in mitochondrial DNA, which are 
generated by replication past 8-oxodG, as well as other mismatches (Chi and Kolodner, 
1994). Msh1 is also thought to be involved in mitochondrial DNA recombination, which 
may help prevent oxidative lesion-induced instability of the mitochondrial genome 
(Dzierzbicki et al., 2004; Kaniak et al., 2009; Mookerjee et al., 2005). To date the full extent of 
mismatch repair activity in mammalian mitochondria remains to be elucidated. BER may 
also be involved in repairing mitochondrial mismatches and therefore it is possible that 
proteins that participate in mitochondrial BER may have a role in the downstream activities 
of the mitochondrial MMR pathway.  

2.3 Homologous recombination 
Double-strand breaks (DSBs) represent one of the most lethal forms of DNA damage. In the 
nucleus, even one DSB can be lethal whilst in contrast because the mitochondria possess 
multiple copies of wild type mitochondrial DNA, this can compensate resulting in a less 
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critical presence of a DSB. Even so, DSB repair has been identified in the mitochondria. In 
general, homologous recombination (HR) is the primary mechanism for error-free repair of 
DSBs. HR also plays a critical role in facilitating replication fork progression when the 
polymerase complex encounters a blocking DNA lesion. In 1995, Ling et al identified the 
presence of HR in mitochondria in yeast (Ling et al., 1995). It has also been shown that 
mitochondria are able to repair DSBs in Chinese hamster ovary cells (LeDoux et al., 1992). 
Rad51, the central mediator of nuclear HR, Rad51C and XRCC3, have all been shown to 
localize to the mitochondria in human cells (Sage et al., 2010). Rad51 has been shown to bind 
mitochondrial DNA following exposure to cells upon oxidative stress. Rad51-mediated 
activity is necessary for regulating mitochondrial DNA copy number under conditions of 
oxidative stress and this activity requires the functions of Rad51C and XRCC3. In the 
nucleus, Rad51 and XRCC3 have been shown to cooperate in regulating replication fork 
progression on damaged chromosomes, therefore it has been suggested that mitochondrial 
Rad51, Rad51C and XRCC3 ensure faithful completion of mitochondrial DNA replication as 
the fork encounters blocking lesions. In addition, a study by Thyagarajan et al., have 
demonstrated that human mitochondrial extracts have the ability to catalyze HR of different 
DNA substrates (Thyagarajan et al., 1996). Further evidence of mitochondrial HR analyzed 
segregated mitochondrial DNA mutations in a heteroplasmic mitochondrial DNA 
population and identified combinations of these two mutations in different mitochondrial 
DNA molecules indicating HR and crossing over events between mitochondrial DNA 
molecules with segregated mutations (Zsurka et al., 2004). BRCA1, the breast and ovarian 
cancer susceptibility gene, which plays a role in the HR pathway, has also been shown to 
localize to the mitochondria and was found to colocalize with mitochondrial DNA clusters 
(Coene et al., 2005). 

2.4 Non-homologous end joining 

Studies have shown that mitochondrial protein extracts possess non-homologous end-
joining (NHEJ) activity. NHEJ is highly precise in the case of DNA with cohesive ends while 
blunt-ended DNA are rejoined with less efficiency and precision (Roth et al., 1985). In 
mitochondrial extracts, it has been demonstrated that both cohesive and blunt-ended DNA 
substrates can be rejoined, although the latter with much lower efficiency (Lakshmipathy 
and Campbell, 1999a). Irrespective of which DNA substrate was used, the majority of 
recovered products were precisely repaired. Analysis of imprecisely repaired products 
revealed the presence of deletions that spanned direct repeat sequences. These deletions 
were similar to those observed in the mitochondrial DNA of certain pathological states as 
well as in aging cells. Ku80 is required for nuclear NHEJ due to its DNA end-joining 
activity. Mammalian mitochondrial DNA end-joining activity was reported to be practically 
indistinguishable from that of the nuclear activity. This observation led to the investigation 
and subsequent demonstration that Ku80 is also required for mammalian mitochondrial 
DNA end-joining activity (Feldmann et al., 2000). 

3. Mitochondrial DNA degradation 

The possibility of mitochondrial degradation was first proposed because of early studies 

suggesting that UV-induced pyrimidine dimmers were not repaired in mammalian 

mitochondria (Clayton et al., 1974). Furthermore, in response to treatment with mutagenic 

agents such as ethylmethane sulfonate, N-methyl-N’-nitrosoguanidine and benzo(a)pyrene, 

mitochondrial DNA from HeLa cells only accumulated few mutations suggesting that 
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mitochondrial DNA accumulating excessive amounts of damage or irreparable lesions, is 

not replicated (Mita et al., 1988). More recently, further investigation into this process has 

revealed that extensive or persistent DSBs result in mitochondrial DNA degradation 

(Alexeyev et al., 2008; Bacman et al., 2009; Fukui and Moraes, 2009). Such that the signal that 

triggers mitochondrial DNA degradation has been attributed to DSBs, generated by stalled 

DNA or RNA polymerases on the damaged mitochondrial DNA template. Degradation of 

these molecules prevents mutagenesis and maintains mitochondrial DNA integrity. In the 

case of UV-induced pyrimidine dimers and benzo(a)pyrene-induced adducts, the stalled 

RNA or DNA polymerase would trigger the degradation process. More recently, studies 

have suggested that oxidative stress can lead to the degradation of mitochondrial DNA and 

that strand breaks and abasic sites prevail over mutagenic base lesions in ROS-damaged 

mitochondrial DNA (Shokolenko et al., 2009). Furthermore, inhibition of abasic site 

processing by APE1 and inhibition of BER by methoxyamine treatment enhanced this 

degradation in response to oxidative damage, suggesting that the inability to repair 

mitochondrial DNA damage may be the signal for its degradation (Shokolenko et al., 2009). 

The elimination of damaged mitochondrial DNA was preceded by the accumulation of 

linear mitochondrial DNA molecules, which potentially represent degradation 

intermediates. These intermediates, unlike undamaged circular mitochondrial DNA 

molecules, are susceptible to exonucleolitic degradation thus ensuring the specificity of the 

process. Therefore supporting the observation by Suter and Richter who demonstrated that 

8-oxoG content of circular mitochondrial DNA is low and does not increase in response to 

oxidative insult in contrast to fragmented mitochondrial DNA which had very high 8-oxoG 

content, that further increased after oxidative stress (Suter and Richter, 1999). 

3.1 Mitochondrial DNA degradation nuclease 

The Endonuclease G (EndoG) was initially proposed to be the nuclease responsible for 

selectively degrading non-replicable mitochondrial DNA. Such that Ikeda and Ozaki 

showed that mitochondrial EndoG is more active in vitro on oxidatively modified DNA 

compared to undamaged DNA suggesting that it may be involved in the degradation of 

oxidatively damaged mitochondrial DNA (Ikeda and Ozaki, 1997). However, more recent 

studies illustrated that EndoG-deficient cells or EndoG null mice showed no accumulation 

in mitochondria DNA mutation rate or defects in mitochondrial structure, therefore 

suggesting that EndoG may not be the exclusive nuclease involved (Irvine et al., 2005). 

Davies et al. reported that upon removal of EndoG activity from the mitochondria, another 

nuclease activity can be detected internal to the inner mitochondrial membrane (Davies et 

al., 2003). This exonuclease causes a gradual degradation of amplified DNA and linearized 

pBR322 plasmid DNA without the site-specific cleavage seen with EndoG. However they 

also showed that when supercoiled mitochondrial DNA is used as a substrate, both endo- 

and exonuclease activities could be detected. Whether the endo- and exonucleolytic 

activities arise from the same nuclease or from separate enzymes remains under 

investigation. 

4. Sanitation of the mitochondrial deoxynucleotide triphosphate pool 

So far, we have only discussed repair and damage of mitochondrial DNA, however the free 

deoxynucleotide triphosphate (dNTP) pool is also exposed to oxidation and other stresses. 
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dNTPs are the precursors used by DNA polymerases for replication and repair of nuclear 

and mitochondrial DNA. The cell employs specialized enzymes that remove for example, 

oxidized dNTPs that otherwise may be incorrectly incorporated during DNA synthesis such 

as 8-oxo-2’-deoxyguanosine triphosphate (8-oxo-dGTP). 8-oxo-dGTP can be potentially 

incorporated opposite A by POLG, resulting in 8-oxodG:dA base pairs which are resistant to 

the proof-reading activity of POLG, ultimately resulting in AT to CG transversions (Hanes 

et al., 2006; Pursell et al., 2008). As a defense to such activities, MUTYH, present in both the 

nucleus and mitochondria, has the ability to remove the misincorporated adenine, enabling 

insertion of dCMP and removal of the 8-oxoguanine by BER (Takao et al., 1999; van Loon 

and Hubscher, 2009). Oxidation of the mitochondrial dNTP pool represents a significant 

threat to mitochondrial DNA integrity with the 8-oxo-dGTP concentrations in mitochondrial 

extracts from rat tissues ranging from 1-10% of the total dGTP (Pursell et al., 2008).  

The major defense mechanisms against 8-oxo-dGTP, is its elimination from the dNTP pool 
by the mitochondrial MTH1 (Kang et al., 1995; Nakabeppu, 2001). MTH1 can hydrolyze 8-
oxodGTP to 8-oxodGMP, which is not a substrate for DNA polymerases and therefore 
would not be incorporated into the DNA. MTH1 can also hydrolyze, 8-oxo-2’-
deoxyadenosine triphosphate and 2-hydroxy-2’-deoxtadenosine triphosphate to the 
monophosphates (Sakai et al., 2002). 8-oxoG accumulation in mitochondrial DNA was 
observed in MTH1-null mouse embryonic fibroblasts following hydrogen peroxide 
treatment and in dopaminergic neurons from MTH1-null mice following 1-methyl-4-
phenyl-1,2,3,6,-tetreadropyridine treatment (Yamaguchi et al., 2006; Yoshimura et al., 2003). 
MTH1 was also shown to protect cells from the cytotoxicity of sodium nitoprusside by 
preventing 8-oxoG accumulation in mitochondrial DNA (Ichikawa et al., 2008). Taken 
together, this strongly suggests that MTH1 plays a critical role in protecting mitochondrial 
DNA from oxidized dNTPs.  
The DUT gene, which encodes a UTPase which can remove dUTP from the nucleotide pool, 
also encodes an alternative splice variant that is located to mitochondria (Ladner and 
Caradonna, 1997). dUTP can arise from deamination of dTTP. The mitochondrial protein is 
23 kDa and is constitutively expressed, in contrast to the nuclear isoform, which is cell cycle 
regulated. If modified dNTPs are incorporated into mitochondrial DNA they must be 
removed via the BER pathway, which can repair modifications of single nucleotides already 
incorporated in DNA. 

5. Mitochondrial DNA repair and disease 

Accumulating data increasingly shows the involvement of various mitochondrial DNA 
mutations in human diseases. Several disorders such as myopathy, optic atrophy and Leigh 
syndrome arise as a result of mitochondrial alterations (Edmond, 2009). In addition, a 
number of pathologies are also caused by mutations in nuclear genes that encode for 
mitochondrial proteins (Chan and Copeland, 2009; Horvath et al., 2009; Tuppen et al., 2010). 
The most common genetic defect seen in individuals with mitochondrial DNA-associated 
disease are deletions (Holt et al., 1988; Shoffner et al., 1989) or point mutations (Goto et al., 
1990; Wallace et al., 1988). Mitochondrial DNA deletions have been shown to be important 
in pathogenesis in a number of ways. Single mitochondrial DNA deletions are a common 
cause of sporadic mitochondrial disease and an identical mitochondrial DNA deletion is 
present in all cells of the affected tissue (Schaefer et al., 2008). Some individuals with 
mitochondrial disease have multiple mitochondrial DNA deletions in the affected tissues, 
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usually the muscle and the central nervous system (Taylor and Turnbull, 2005). These 
involve nuclear genes encoding proteins involved in either mitochondrial nucleotide 
metabolism or mitochondrial DNA maintenance. There are also a number of reports of 
mitochondrial deletions in aged post-mitotic tissues and individuals with 
neurodegenerative disease (Bender et al., 2006; Kraytsberg et al., 2006; Taylor and Turnbull, 
2005). These pathogenic mitochondrial DNA deletions have been suggested to be as a result 
of mitochondrial DNA repair. It has been postulated that mitochondrial deletions are 
initiated by single-stranded regions of mitochondrial DNA generated through exonuclease 
activity at DSBs (Krishnan et al., 2008). Ultimately, these single strands are free to anneal 
with microhomologous sequences such as repeat sequences on other single-stranded 
mitochondrial DNA or within the noncoding region (Haber, 2000). Once annealed, 
subsequent repair, ligation and degradation of the remaining exposed single strands would 
result in the formation of an intact mitochondrial genome harboring a deleted portion.  

5.1 Mitochondrial DNA repair and neurodegenerative disease 

Mitochondrial DNA damage is found in affected neurons in the majority of 
neurodegenerative disorders, and is often associated with oxidative DNA damage and 
mitochondrial dysfunction (de Moura et al., 2010). Accumulation of nuclear DNA and 
mitochondrial DNA lesions has been demonstrated to be a critical factor contributing to 
genomic instability and mitochondrial dysfunction in neurodegenerative diseases (Lin and 
Beal, 2006; Yang et al., 2008). DNA repair mechanisms are essential for the proper 
maintenance of the mammalian central nervous system. Therefore, deficiency in DNA 
repair, particularly in BER, is increasingly recognized as a major contributor to neuronal 
loss. Neurodegenerative diseases are increasingly associated with mutations in 
mitochondrial DNA strongly suggesting that neurons are particularly sensitive to 
mitochondrial dysfunction. Neurons in both the peripheral and central nervous systems are 
adversely affected by mitochondrial mutations (Wallace, 2001). Examples of 
neurodegenerative diseases associated with mitochondrial DNA damage and repair 
(Finsterer, 2006; Servidei, 2004) include but are not limited to: Alzheimers disease, 
Parkinsons disease and Huntingtons disease. The fact that many of these share similar 
neuropathological features with multiple neurodegenerative disorders, suggests a 
significant role for mitochondrial dysfunction in the pathogenesis of neurodegenerative 
disorders. 
Alzheimers Disease, the most common form of age-associated dementia, is a progressive 
and always fatal disorder characterized clinically by memory loss and behavioral 
abnormalities, and histopathologically by deposition of amyloid β-peptide (Aβ), cytoskeletal 
pathology, degeneration of synapses and neuronal death (Mattson, 2004). Several studies 
have shown that oxidative modification to both nuclear DNA and mitochondrial DNA are 
increased in brains of Alzheimers disease patients (Gabbita et al., 1998; Mecocci et al., 1994; 
Wang et al., 2005). An accumulation of 8-hydroxy-2-deoxyguanosine (8-OHdG) was 
observed in mitochondrial DNA isolated from cortical brain regions of Alzheimers patients 
(Mecocci et al., 1994). Furthermore significant BER dysfunction was observed in brains of 
Alzheimers patients, resulting from reduced UDG, OGG1 and POLB activities (Weissman et 
al., 2007). Parkinson's disease is the second most prevalent neurodegenerative disease, 
affecting approximately 2% of individuals over the age of 65 years (de Rijk et al., 1997; 
Mouradian, 2002). It is clinically characterized by resting tremor, postural instability, gait 
disturbance, bradykinesia and rigidity. Increasing evidence suggests that oxidative damage 
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to DNA, both nuclear and mitochondrial, contributes to the degeneration of dopaminergic 
neurons in Parkinsons disease (Alam et al., 1997). Swerdlow et al. demonstrated that 
mitochondria from Parkinsons patients exhibit increased production of ROS, decreased 
activity of complex I and increased DNA damage (Swerdlow et al., 1996). Huntington's 
disease is a dominantly inherited neurodegenerative disorder caused by expanded CAG 
trinucleotide repeats in the amino-terminal coding region of the huntingtin (Htt) gene 
(Cepeda et al., 2007). It was suggested that expansion of the CAG trinucleotide repeats in 
Huntingtons disease requires DNA break repair and involves several DNA repair enzymes 
including FEN1 (Lee and Park, 2002; Spiro et al., 1999). It was also proposed that faulty 
processing of strand breaks by FEN-1, initiates CAG repeat instability in mammalian cells 
(Spiro and McMurray, 2003). It was recently demonstrated that the accumulation of 
oxidative DNA lesions in brains and livers of Huntingtons mice, including 8-oxoG, 5-
hydroxyuracil (5-OHU), 5-hydroxycytosine (5-OHC), and formamidopyrimidine (FAPY), 
were correlated with the degree of trinucleotide expansion, suggesting that that initiation of 
CAG repeats may occur during removal of oxidative DNA lesions, and could be specifically 
associated with OGG1 activity (Kovtun et al., 2007). 

5.2 Mitochondrial DNA repair and cancer 

The extent to which cancer is caused by or is a consequence of mitochondrial genomic 
alterations is unknown, but substantial data suggest an involvement of mutations in 
mitochondrial DNA in the carcinogenic process. Mitochondrial defects have long been 
suspected to play an important role in the development and progression of cancer (Carew 
and Huang, 2002; Hockenbery, 2002; Warburg, 1956). However the majority of the existing 
data currently show an association of increased mitochondrial DNA mutations in different 
tumours with only little direct evidence for a functional role of these mutations. Tumour 
cells, in general, have increased levels of mitochondrial DNA transcripts, while both 
increases and decreases in the levels of tumour cell mitochondrial DNA have been reported. 
ROS-triggered mutagenesis of both mitochondrial DNA and nuclear DNA has been 
suggested to correlate with tumourigenesis. (Klaunig et al., 2010). Decreased nuclear and 
mitochondrial levels of the OGG1 glycosylase were observed in human lung cancers 
compared with normal cells (Karahalil et al., 2010). Furthermore, decreased OGG1 
expression was also observed in spontaneous hepatocellular carcinomas developed in 
mutant rats, in association with an accumulation of oxidative DNA damage and ROS 
generation (Choudhury et al., 2003). Colorectal cancers have been shown to exhibit 
increased somatic mitochondrial DNA mutations (Habano et al., 1998; Polyak et al., 1998). 
Significantly, all of these mutations were present in the majority of the tumour cells and 90% 
of them were detectable in all of the mitochondrial DNA present in cells, strongly 
suggesting that all mitochondrial DNA molecules in the mitochondrion contain the same 
mutation. Breast cancer also exhibit somatic mitochondrial DNA mutations (Parrella et al., 
2001; Radpour et al., 2009), in addition to kidney (Meierhofer et al., 2006) (Nagy et al., 2003), 
stomach (Hung et al., 2010; Jeong et al., 2010), prostate (Moro et al., 2009) (Parr et al., 2006) 
liver (Vivekanandan et al., 2010; Zhang et al., 2010), bladder (Dasgupta et al., 2008), head 
and neck (Allegra et al., 2006; Dasgupta et al., 2010; Mithani et al., 2007) and lung (Dai et al., 
2006; Jin et al., 2007; Suzuki et al., 2003). Furthermore increased mitochondrial DNA 
mutation frequencies were associated with hereditary paraganglioma (Muller et al., 2005; 
Taschner et al., 2001) and thyroid cancers (Abu-Amero et al., 2005; Rogounovitch et al., 
2004). Clayton and Smith further expanded studies of mitochondrial DNA structural 
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changes in leukocytes of leukemic patients and also in patients with a variety of solid 
tumors (Clayton and Smith, 1975). 
Data suggesting a role for mitochondrial DNA in cancer regression comes from studies with 
the chemotherapy drugs, bis-2-chloroethylnitrosourea (BCNU) and temozolomide. These 
drugs induce cell death by alkylation of DNA bases to form mutagenic O6 methylguanine 
and interstrand cross-links (Ludlum, 1997; Newlands et al., 1997). The repair enzyme 
O6methyloguanine DNA methyltransferase (MGMT) removes O6methylguanine DNA 
damage (Bobola et al., 1995; Bobola et al., 1996). Studies have shown that transfecting 
haematopoietic cell lines with low repair activity for alkylated DNA damage with 
mitochondrial-targeted and nuclear-targeted MGMT generated resistance against the 
cytotoxic effects of BCNU and temozolomide (Cai et al., 2005). Significantly, this effect was 
more dependent on mitochondrial MGMT in comparison to the nuclear MGMT suggesting 
the contribution of mitochondrial DNA repair in the generation of drug-resistant tumour 
cells.  

6. Mitochondrial DNA repair and aging 

Many theories have been proposed to explain the phenomenon of aging (Kirkwood, 2005). 
Amongst these is the mitochondrial free radical theory of aging, which states that the 
accumulation of mitochondrial damage and the progressive accumulation of free radical 
damage in post-mitotic tissues, is the cause of aging (Harman, 1956). Because mitochondria 
are the main generators of ROS and consequently the main target of their DNA damaging 
effects, oxidative damage can result in increasing rates of mitochondrial DNA mutations. A 
vicious cycle can potentially occur as mitochondria encode for components of the 
respiratory chain and ATP synthase complexes, therefore mutations in the mitochondrial 
DNA may cause defects in oxidative phosphorylation resulting in an increased generation 
of ROS and further mitochondrial DNA damage (Miquel et al., 1980).  
The mitochondrial theory of ageing has been controversial, with numerous studies 
performed to elucidate the precise correlation between oxidative damage, mitochondrial 
mutations and aging. One prominent study involves the generation of a mouse model that 
illustrates an increase in mitochondrial DNA mutation and oxidative phosphorylation 
defects. This mouse model which carries an error-prone form of POLG was generated, and 
correlated with decreased life expectancy and a premature ageing phenotype (Kujoth et al., 
2005; Trifunovic et al., 2004). However there was little evidence of increased ROS or 
oxidative damage as a result of the mitochondrial DNA replication errors, suggesting the 
lack of the previously proposed “vicious cycle”. Studies of the various tissues of these mice, 
have suggested that it is the accumulation of mitochondrial DNA deletions and clonal 
expansion identified in the brain and heart that drive the premature aging phenotype 
(Vermulst et al., 2007)(Vermulst et al., 2008). More recently, an alternative study has now 
suggested that it is random point mutations occurring in mitochondrial DNA analyzed in 
the liver and heart that are the driving force behind the aging phenotype (Edgar et al., 2009). 
The discrepancies between the studies may be due to the analysis of either mitotic or post-
mitotic tissues. Such that, it has been suggested that in post-mitotic tissues, mitochondrial 
DNA deletions occur initially during repair of damaged DNA whilst in mitotic tissues it is 
thought that mitochondrial DNA point mutations are likely to be generated during 
replication (Reeve et al., 2009).  
A number of studies suggest that although oxidative damage of mitochondrial DNA does 
accumulate with age in mammalian cells, this accumulation does not regulate lifespan 
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(Arnheim and Cortopassi, 1992; Barja and Herrero, 2000). Similarly, in Drosophila, 
mitochondrial ROS production increases with age but does not influence its lifespan (Sanz et 
al., 2010). One reason has been postulated such that scavenging free radicals could increase 
life expectancy whilst increasing ROS may lead to premature cell death. To address this 
several transgenic models have been generated. Although over-expression of the 
mitochondrial Mn-superoxide dismutase (MnSOD) extends lifespan in Drosophila (Sun et 
al., 2002), it had no effect on lifespan in similarly over-expressing mice (Jang et al., 2009; 
Perez et al., 2009). An increase in ROS levels by inactivation of antioxidants does not display 
shortened lifespan, such that transgenic mice expressing only one allele of mitochondrial 
thioredoxin TRX2 do not display any decrease in life expectancy, whilst exhibiting 
significant defects in oxidative phosphorylation and increased hydrogen peroxide 
production (Jang et al., 2009). Therefore strongly suggesting that ROS generation during 
normal metabolism is unlikely to be the main or single cause of aging.  
A causative role for mitochondrial DNA damage in the development of aging remains to be 
proven, however damaged mitochondrial DNA accumulates with age suggesting a potential 
role for mitochondrial DNA repair. Mitochondrial DNA repair defects may contribute to the 
accumulation of DNA damage associated with aging (Druzhyna et al., 2008; Gredilla et al., 
2010a). Studies suggest that the 8-oxoG DNA lesion is one of the most abundant oxidative 
lesions which accumulates with age in the mitochondria. However, in apparent contrast the 
overall OGG1 8-oxoG glycosylase activity has been shown to increase with age in 
mammalian cells (Stevnsner et al., 2002b). Further studies have postulated that while the 
overall OGG1 content in the mitochondria increases with age, the amount of OGG1 in the 
mitochondrial inner compartment decreases resulting in the observed accumulation of 8-
oxoG in mitochondrial DNA with a large fraction of the enzyme remaining stuck to the 
membrane in the precursor form, which could not be translocated to and processed in the 
mitochondrial matrix. (Szczesny et al., 2003). A similar observation has been reported for the 
mitochondrial uracil DNA glycosylase, UDG, suggesting a deficiency in import in aged cells 
(Szczesny et al., 2003).  
Caloric restriction has been shown to reduce the accumulation of mitochondrial DNA 
mutations and increase lifespan (Aspnes et al., 1997; Cassano et al., 2004; Gredilla and Barja, 
2005). DNA repair in the nucleus has been shown to be enhanced by caloric restriction and 
promote genomic stability (Heydari et al., 2007). However, studies in the mitochondria have 
shown that mitochondrial BER capacity did not change in liver and actually decreased in the 
brain and kidney of caloric restricted rats (Stuart et al., 2004). This decrease in BER correlates 
with the observation that mitochondria from caloric restricted rodents generate ROS and 
accumulate oxidative DNA damage at lower rates than non-restricted animals (Gredilla and 
Barja, 2005). Therefore it has been suggested that when the levels of ROS and mitochondrial 
DNA damage are significantly reduced, it may enable the organism to require less energy 
required for mitochondrial DNA repair.  

7. Conclusion 

Originally thought to be absent, DNA repair mechanisms in the mitochondria are now well 
established. Whilst all the core enzymatic components of the BER pathway have been 
identified in the mitochondria, the precise mechanisms of the remaining pathways have 
been less well investigated. For example, identification and characterization of the key 
players in the mitochondrial MMR pathway and a potential role for NER proteins in the 
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repair of oxidative damage in the mitochondria remain unclear. Inactivation of many 
nuclear genes encoding key proteins, can impact mitochondrial DNA maintenance and 
result in an accumulation of DNA damage and ultimately mutations. Controversy 
surrounds the pathological nature of these mitochondrial DNA mutations, however 
increasing evidence links mitochondrial DNA integrity with carcinogenesis, 
neurodegenerative disease and aging. Taken together, future work requires an in dept 
analysis of the functional role of these mutations in human pathologies and aging.  
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