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Retinal Nerve Fibre Layer  
Thinning in Alzheimer Disease 

Panitha Jindahra and Gordon T Plant 
Neuro-Ophthalmology Department 

The National Hospital for Neurology and Neurosurgery 
UK 

1. Introduction 

Alzheimer disease (AD) is a progressive neurodegenerative disorder characterised by 
impaired memory and cognitive function. A proportion of patients present with visual 
symptoms which could result from either anterior or posterior visual pathway dysfunction. 
Retinal and optic nerve abnormalities have in recent years been studied intensively in 
Alzheimer disease (AD) and are reviewed in this chapter. 

2. Evidence of retinal nerve fibre layer thinning in AD 

2.1 Histological evidence  

Retinal ganglion cell (RGC) degeneration or optic neuropathy is one of the features of AD that 
has been identified in several histological, imaging, and electroretinogram (ERG) studies. 
Analyses of neuronal numbers in the RGC layer of severe AD patients and age-matched 
control subjects have revealed extensive neuronal loss throughout the entire retina in AD 
when compared with control eyes: the mean (RGC) number is 696,871 in AD which is 
significantly less than that of the controls (1,095,904) representing a loss of 36% (p<0.004) 
(Blanks et al., 1996b). The findings are in good agreement with other histological studies 
(Hinton et al., 1986; Sadun & Bassi, 1990; Trick et al., 1989) and compatible with diminished 
contrast sensitivity which may be secondary to afferent visual pathway dysfunction in AD 
patients (Crow et al., 2003). A post-mortem study revealed widespread optic nerve fibre 
degeneration with thinning of the retinal nerve fibre layer and reduced ganglion cell numbers 
in AD patients aged 76-89 years (Hinton et al., 1986), any potential correlation with the degree 
of cognitive impairment was not studied. In one study the axonal loss was prominent in the 
posterior part of the optic nerve suggesting that the process involved may be one of retrograde 
degeneration of the retinal ganglion cell axons (Sadun & Bassi, 1990). Neurons in the ganglion 
cell layer (GCL) in AD patients are reduced by 25-40% throughout the entire retina (Blanks et 
al., 1996b). The greatest density of RGCs is located in the macular region and the total numbers 
of ganglion cell fibres in the fovea/parafovea are reduced by 25% (p < 0.001) in AD as 
compared to normal eyes (Blanks et al., 1996a). The loss in the central retina is greatest in the 
temporal area, which is surprisingly different from that found in the periphery (Blanks et al., 
1996a). The neuronal loss reaches its peak in the superior and inferior quadrants of the 
peripheral retina (Blanks et al., 1996b). Unlike what is found in normal ageing, the RGC loss in 
AD is not related to age (Blanks et al., 1996a, 1996b). It was also found that both small- and 
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large-diameter RGC fibres are affected equally throughout the retina in AD eyes in some 
studies (Blanks et al., 1996b; Curcio & Drucker, 1993) but only large M-cell degeneration has 
been identified by the others (Sadun & Bassi, 1990; Trick et al., 1989; Blanks et al., 1989, Miller, 
1990). The total number of astrocytes in the GCL was found to be 16% greater in the AD 
patients than in controls but the increase did not reach statistical significance (Blanks et al., 
1996b). The ratio of astrocytes to neurons in the GCL is significantly raised in the AD retinas, 
resulting from both an increase in astrocytes and the decrease in neurons (Blanks et al., 1996b). 
A study comparing patients with at least a 4 year history of severe AD aged 67-86 years and 
age-matched controls revealed no significant difference in the number of RGCs (Curcio & 
Drucker, 1993). This is not the only study to find no significant difference in RGC number 
between AD patients and controls (Davies et al., 1995). It is notable that there is no data 
whether AD patients in this review are familial or sporadic type. 

2.2 Imaging evidence  

By employing fundus photography, RNFL degeneration was observed in AD patients as 
compared to age-matched control subjects (Hedges et al., 1996; Tsai et  al., 1991). A study 
utilizing scanning laser ophthalmoscopy (SLO) has demonstrated a reduction of optic nerve 
fibres in AD patients when compared to age-matched controls (Danesh-Meyer et al., 2006). 
However, another SLO study showed no difference (Kergoat et al., 2001). It was shown that 
there was no significant difference in mean overall RNFL thickness and RNFL thickness in 
each quadrant between the AD and age-matched controls. The patients selected for this 
study were classed as mild to moderate dementia with a range of mini mental-state 
examination of 11-29 (mean 21.57) and a mean duration of 3 years. Optical coherence 
tomography (OCT) has been recently developed and has found wide application in 
neurology and ophthalmology both in the clinic and in research (Jindahra et al., 2009). It has 
been employed to measure RNFL thickness in several AD studies. In AD eyes, the mean of 
overall peripapillary (Parisi et al., 2001, 2003; Iseri, et a., 2006; Paquet et al., 2007; Lu et al., 
2010; Valenti, 2007) and macular RNFL thickness (Paquet et al., 2007) as well as the mean of 
total macular volume (Paquet et al.,2007) measured by OCT are lower when compared with 
age-matched control subjects. It has been proposed that the retinal involvement might have 
occurred early in the course of the disease as the peripapillary RNFL loss is identified in 
mild cognitive impairment (MCI) (Paquet et al., 2007). The reduction of RNFL thickness is 
statistically significant in MCI (Paquet et al., 2007), mild AD (Parisi, 2003; Iseri et al., 2006; 
Paquet et al., 2007), and moderate to severe AD (Parisi, 2003; Iseri et al., 2006; Paquet et al., 
2007), compared to controls. No difference was found between the results observed in MCI 
and mild AD patients (Paquet et al., 2007) but the measurements of RNFL thickness seen in 
moderate to severe cases are significantly thinner than those in MCI cases (Paquet et al., 
2007). The RNFL thickness was found to be thinner than the controls in all four quadrants in 
MCI (Paquet et al., 2007) and AD cases (Parisi et al, 2001, 2003; Paquet et al., 2007). However 
in one study the temporal quadrant was unaffected (Iseri et al., 2006) and significant 
thinning was found only in the superior quadrant in mild to moderate AD cases compared 
with controls in a study and a case report (Berisha et al., 2007; Valenti, 2007). Yet another 
study, the RNFL was found to be significantly thinner than in normal subjects in the 
superior and inferior quadrants in AD patients and hence the patients no longer showed the 
double peak RNFL pattern (Lu et al., 2010). The thinning in the nasal and temporal 
quadrants did not reach statistical significance (Lu et al., 2010). It seems that the retinal 
damage due to AD may be localized preferentially to the vertical quadrants (Lu et al., 2010) 
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and as such may be considered to mimic the pattern seen in glaucoma (Figure 1, Table 1 & 
2). By using OCT it has been shown that the reduction in total macular volume is highly 
related to the severity of cognitive impairment (MMSE) (Iseri et al., 2006).  

 

Study n Country OCT
Age

Mean (± SD)
MMSE

mean (± SD)

AD(Berisha 07) 9 subjects USA 0CT 3000 74.3(±3.3) 23.8(± 5.1)

AD(Parisi 01) 17 eyes Italy Stratus 0CT  70.37(±6.1) 16.4 (11.27‐19.05)

AD (Iseri 06) 28 eyes Turkey 0CT 3000 70.1(±9.7) 18.5(±6.3)

AD (Lu 10) 22 subjects China 0CT 3000 73(±8) N/A

Healthy (Savini 10) 8 eyes Italy
Stratus OCT 
version 4.0 N/A N/A

Healthy (Berisha 07) 8 subjects USA 0CT 3000 74.3(±5.8) 29.5(±0.5)

Healthy (Parisi 01) 14 eyes Italy Stratus 0CT  N/A N/A

Healthy ((Iseri 06) 30 eyes  Turkey 0CT 3000 65.1(±9.8) 29.4(±0.6)

Healthy (Lu 10) 22 subjects China 0CT 3000 68 (±9) N/A

Healthy (Bowd 00) 30 eyes/subjects USA 0CT 2000 N/A N/A

Healthy  (Bock 10) 405 eyes/203 subjects Germany 0CT 3000 N/A N/A

Glaucoma (Bowd 00) 29 eyes/subjects USA 0CT 2000 N/A N/A

OHT (Bowd 00) 28 eyes/subjects USA 0CT 2000 N/A N/A

Glaucoma (Bock 10) 39 eyes/22 subjectsGermany 0CT 3000 N/A N/A  

Table 1. Demographic data of subjects in the studies shown in Figure 1 (N/A = not available). 

Study

refractive 
error best VA IOP (mmHg)perimetrydisc appearance

AD(Berisha 07) (‐6) to (+6) >=20/60 14.4± SD 4.2 N/A vertical CDR 0.5±0.2

AD(Parisi 01) (‐3) to (+3) >=8/10 <18 N/A N/A

AD (Iseri 06) (‐3) to (+3) >= 5/10  <22 normal normal

AD (Lu 10) N/A logMar 0.4±0.2 LE 15.4±1.2 LE N/A CDR 0.53±0.2 (LE)

0.33±0.19 RE 15.5±1.3 RE 0.5±0.16 (RE)

Healthy (Savini 10) (‐3) to (+3) >20/25 <21 N/A normal

Healthy (Berisha 07) (‐6) to (+6) >=20/60 13.3±SD 3.5 N/A vertical CDR 0.49±0.13

Healthy (Parisi 01) N/A N/A N/A N/A N/A

Healthy ((Iseri 06) (‐3) to (+3) >= 5/10  <22 normal normal

Healthy (Lu 10) N/A logMar 0.65±0.3LE 15.4±1.4 LE N/A CDR 0.38±0.1 (LE)

0.66±0.22 RE 15.3±1.3 RE 0.35±0.1(RE)

Healthy (Bowd 00) N/A >=20/40 <=22 normal normal

Healthy  (Bock 10) N/A N/A N/A N/A N/A

Glaucoma (Bowd 00) N/A >=20/40 >=24 abnormal glaucomatous changes

OHT (Bowd 00) N/A >=20/40 >=24 normal normal

Glaucoma (Bock 10) (‐10) to (+6) N/A <22  N/A N/A  

Table 2. Ophthalmic examination of subjects in the studies shown in Figure 1 
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Fig. 1. A comparison of mean peripapillary RNFL thickness in each quadrant of AD, 
glaucoma, ocular hypertension (OHT) and normal eyes. See Tables 1 and 2 for details of the 
cohorts in each study. 

2.3 Electrodiagnostic evidence  

The results of electrodiagnostic testing are conflicting. ERG studies have failed to 

demonstrate changes in AD patients (Justino et al., 2001; Kergoat et al., 2001, 2002; Davies et 

al., 1995). Scotopic and photopic electroretinograms and oscillatory potentials in patients 

with mild Alzheimer disease were compared with normal individuals in one study (Justino 

et al., 2001). The amplitude and latency of a and b waves in mild AD patients were normal, 

reflecting intact function of the outer retina. The oscillatory potentials were also 

unremarkable in this study. Pattern electroretinogram (PERG) recordings have shown a 

significant delay in P50 and N95 implicit times and reduction in both P50 and N95 

amplitudes in mild to severe AD when compared with the results obtained in control eyes 

(Parisi et al, 2001, 2003). This might indicate that the dysfunction lies in both ganglionic and 

preganglionic elements (Parisi et al, 2001, 2003). The delayed P50 and N95 implicit times and 

the reduced P50 and N95 amplitudes are significantly correlated with the reduced overall 
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mean of the RNFL thickness measured by OCT (Parisi et al., 2001, 2003). No significant 

difference was found in the latency of the pattern visually evoked potential (PVEP) P100 of 

AD patients and control subjects (Iseri et al., 2006). The normal PVEP responses revealed no 

evidence for any abnormality of primary visual cortex or of optic nerve function despite 

considerable RNFL loss (Iseri et al., 2006). However, some earlier studies did find 

abnormalities of the flash VEP (Wright et al., 1986; Norman et al., 1995) but probably not 

useful clinically (Coburn et al., 2003). However using PERG and PVEP, another study 

revealed a reduction in amplitude of N95 and increased latency of P100 wave in most AD 

eyes (Krasodomska et al., 2010). 

2.4 Optic disc morphology in AD eyes 

A large cup-to-disc ratio, thin rim area and volume are identified in AD eyes compared to 

age-matched normal eyes (Tsai et al., 1991; Danesh-Meyer et al., 2006). In one of these 

studies, the patients had a MMSE result of 21±4 taking an upper limit of the vertical cup-to-

disc ratio as 0.42 gives a sensitivity of 0.45 and specificity of 0.84 (Danesh-Meyer et al., 2006). 

Pallor area to disc area ratio did not significantly differ between AD patients and normal 

subjects in one study (Tsai et al., 1991). However patients with a higher ratio had a higher 

Alzheimer disease assessment scale and longer duration of illness (Tsai et al., 1991). The 

changes are not in a uniform pattern for all AD patients (Berisha et al., 2007). 

2.5 Information from Down syndrome 

It has been shown that all adults with Down syndrome (DS) over 35-40 years old who had 

autopsies performed have AD pathology in their brains i.e., beta amyloid plaques and 

neurofibrillary tangles (Malamud, 1972). Amyloid precursor protein gene on the locus of the 

proximal part of the long arm of chromosome 21 is over-expressed in DS patients 

(Goldgaber et al., 1987), leading to AD development (Prasher et al., 1998). The DS brain 

pathology is comparable to AD brain and may be useful in further AD studies (Hof et al., 

1995). Regarding visual functions, DS patients have impaired colour discrimination, 

stereoacuity, and contrast sensitivity, similarly to AD patients (Rocco et al., 1997). Moreover 

abnormal spatial vision in DS children has been detected without other ophthalmologic 

abnormalities (Suttle & Turner, 2004). A literature review of children with Down syndrome 

age 0-16 years revealed that refractive error, strabismus, poor acuity, nystagmus, and 

blepharitis were common ophthalmologic findings whereas cataract and glaucoma were less 

common (Creavin & Brown, 2009). A pattern reversal VEP study demonstrated significantly 

longer P100 latency and smaller amplitude in DS patients (16/36 cases) as compared to age-

matched controls (Kakigi et al., 1993). By employing achromatic transient VEP, children 

with DS had small or undetectable N75 but normal latency as compared to normal 

developing children (Suttle & Turner, 2004). Patients with DS also responded abnormally to 

chromatic transient VEP (Suttle & Lloyd, 2005). As far as we are aware, there has been no 

current report about RNFL measurement in DS eyes.  

3. Hypotheses to explain RNFL thinning in AD  

Three hypotheses to explain retinal ganglion cell fibre damage in AD have been  

proposed.  
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3.1 Is the retina affected by AD pathology directly?  

AD pathology might develop not only in the cortex but also in the retina, perhaps in the 

ganglion cell layer (Lu et al., 2010). Beta amyloid, amyloid associated proteins, tau and 

amyloid precursor protein are expressed in the human retina at the level of ganglion cells 

and fibres in older eyes and in the retinal pigment epithelium in retinitis pigmentosa and 

age-related macular degeneration (Löffler et al., 1995). However neurofibrillary tangles, 

senile plaques, and amyloid angiopathy have not been identified in the retina even in 

association with extensive neuronal loss (Leuba & Kraftsik, 1994; Blanks et al., 1989, 1996b). 

A further study identified neither neurofibrillary degeneration nor amyloid angiopathy in 

AD patients’ retinas (Hinton et al., 1986). Glial fibrillary acidic protein (GFAP) localized to 

Muller cells and astrocytes in the GCL is increased in AD eyes; as is found in retinal injuries 

and in the AD brain (Blanks et al., 1996b). It indicates that the retinal degeneration is 

accompanied by a glial response as GFAP is a major cytoskeletal component of astrocytes 

(Blanks et al., 1996b). Amyloid beta or Abeta deposition was found mainly in the outer and 

inner plexiform layer in the retina of the APPswe/PS1DeltaE9 transgenic (tg) mouse model of 

Alzheimer disease (Perez et al., 2009). Likewise, Abeta plaques with increased retinal 

microvascular deposition of Abeta and neuroinflammation in Tg2576 mouse retinas were 

detected chiefly from the GCL to the inner plexiform layer and some plaques were also 

identified in the outer nuclear layer, the photoreceptor layer, and the optic nerve (Liu et al., 

2009). Abeta deposits reduced with abeta vaccinations (Liu et al., 2009). Hyperphosphorylated 

tau was demonstrated in areas adjacent to the plaques (Liu et al., 2009). Furthermore, abeta 

deposition was observed in the cytosol of lens fibre cells along with equatorial supranuclear 

cataracts in AD patients as compared to age-matched controls (Goldstein et al., 2003).  

No supranuclear cataracts were identified in any normal individual in this study (Goldstein et 

al., 2003). Like AD, an evaluation of lens in patients with Down syndrome revealed 

supranuclear opacification with accelerated supranuclear abeta accumulation (Moncaster et 

al., 2010). 

3.2 AD and glaucoma  

Wostyn has proposed a link between glaucoma and AD suggesting that an abnormal high 

trans-lamina cribrosa pressure difference in AD eyes has led to glaucomatous optic 

neuropathy (Wostyn et al., 2009). Glaucoma is characterized by a progressive loss of RNFL 

and a resulting visual field defect. Elevated IOP is a strong risk factor but not all patients 

with glaucoma have high IOP (Johanson et al., 2008; Berdahl et al., 2008b). The subgroup is 

classified as normal tension glaucoma (NTG) (Johanson et al., 2008). The retinal ganglion cell 

fibres in NTG eyes might be vulnerable to normal IOP as it is relatively high in the NTG 

eyes. The cause of NTG is still unknown. Recent studies have revealed that AD patients may 

have a higher risk of developing glaucoma than normal subjects (Bayer et al., 2002a; 

Tamura, 2006) and that glaucoma in AD patients tends to be more progressive than 

glaucoma in non-AD cases (Bayer & Ferrari, 2002b). A case control study (Chandra et al., 

1986), investigating all death certificates (1,930,627) for the United States in 1978, compared 

7195 cases who had senile and presenile dementia as the cause of death with other patients 

who died from other conditions. Gluacoma was associated with these demented patients 

with odd ratio of 2.6. Early RNFL loss in glaucoma occurs in the temporal inferior and 

temporal superior regions (Hoyt et al., 1973; Pederson & Anderson, 1980; Tuulonen & 
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Airaksinen, 1991; Jonas et al., 1993) as found in some of the AD studies described above. 

Trans-lamina cribrosa pressure differences may have resulted in the glaucomatous like 

RNFL changes. A study (Jonas et al., 2003) revealed that lamina cribrosa forms a barrier 

between the intraocular space and retrobulbar space. The lamina cribrosa has been found to 

be thinner in glaucomatous eyes than in control eyes (Fig.2). The outer part of the cribrosa 

that is directly in contact with pia mater or indirectly with cerebrospinal fluid (CSF) was 

significantly thinner in the glaucomatous eyes as compared to the controls, and the shortest 

distance between the intraocular space and the CSF space was significantly less in the 

glaucoma patients. The optic disc is situated close to this area. Trans-lamina cribrosa 

pressure (the pressure gradient across the lamina cribrosa) is derived from the intraocular 

pressure minus the retrobulbar CSF pressure (Jonas et al., 2003). Normally the intraocular 

pressure is higher than that in the CSF. Abnormal pressure from either side of the lamina 

cribrosa may be involved in the pathogenesis of several ocular and neurological conditions. 

In vivo, high IOP glaucoma can damage the optic nerve head and very low IOP can cause 

swollen discs.  

Reduced ICP in patients with normal tension glaucoma (NTG) could cause abnormal trans-

lamina cribrosa pressure (Berdahl et al., 2008a). Trans-lamina cribrosa pressure was 

significantly greater in patients with primary open angle glaucoma (POAG) and NTG than 

in normal individuals (Ren et al., 2010). CSF pressure in severe AD patients tends to be 

disproportionately low (Silverberg et al., 2006) and therefore may create a situation where 

there is relatively high IOP in their eyes (still within a normal reference range). 

Glaucomatous-like RNFL changes may then be expected to occur. There is evidence of 

choroid plexus (CP) degeneration in AD brains and their CSF production is affected (Serot et 

al., 2003). The choroid plexus consists of villi covered by a single layer of ciliated cuboidal 

epithelium and extends through the lateral, 3rd, and 4th ventricles, acting as a blood-CSF 

barrier (Serot et al., 2003). It is contiguous with ependyma; produces CSF; synthesizes 

several molecules; and carries nutrients from blood to the CSF (Serot et al., 2003; Silverberg, 

et al., 2001). Two-thirds of the CSF secretion is derived from the CPs, the remainder coming 

from brain interstitial fluid drainage, which is produced by the capillary-astrocyte complex 

found in the blood brain barrier (Johanson et al., 2008). The production rate of the blood-CSF 

barrier is substantially greater than that of the blood brain barrier (Johanson et al., 2008). 

Another source of CSF production is likely to be ependyma lining the ventricles (Pollay & 

Curl, 1967). CSF reabsorption (Johanson et al., 2008) occurs along sleeves of subarachnoid 

spaces surrounding cranial nerves that enter the nose and eyes; through the cribriform plate, 

nasal mucosa, and cervical lymphatic system eventually. CSF is also drained along spinal 

nerve arachnoid pathways. Arachnoid villi in the dural sinuses absorb the CSF when ICP is 

elevated. CSF pressure (Johanson et al., 2008) is normally higher than venous pressure in the 

dural sinuses. It is steady when CSF formation and reabsorption are balanced. CSF pressure 

measured by lumbar puncture in a lateral recumbent position is directly proportional to CSF 

production rate and outflow resistance. CSF pressure is determined by hydrodynamic and 

haemodynamic parameters. Regarding hydrodynamic factors, reduced CSF production or 

increased outflow resistance will decrease CSF pressure. In ageing the CP epithelium 

becomes atrophic; its basement membrane thickens; and CSF secretion decreases by 50% 

(Serot et al., 2003). These changes in AD choroid plexuses appear more pronounced than in 
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Fig. 2. Top: histological section of the optic disc in a non-glaucomatous eye; bottom: 
histological section of the optic disc in a glaucomatous eye (periodic acid Schiff staining). 
Arrows: regions in the posterior lamina cribrosa in direct contact with pia mater and 
indirectly exposed to the CSF space. The lamina cribrosa is outlined in black lines and was 
thinner with greater posterior bowing in the glaucoma than the controls (Jonas, Berenshtein, 
& Holbach, Anatomic Relationship between Lamina Cribrosa, Intraocular Space, and 
Cerebrospinal Fluid Space, 2003). Permission to reproduce the figures has been granted by 
Investigative Ophthalmology and Visual Science. 
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normal ageing and additionally stroma fibrosis has also been demonstrated in AD (Serot et 

al., 2003). Abeta proteins have been detected in the choroid plexus in AD brain (Kalaria et 

al., 1996). Ig and C1q depositions are frequently found along the basement membrane of the 

plexus in AD brains, suggestive of immunological processes in this location (Serot et al., 

2003). As a consequence the choroid plexus cannot function normally (Serot et al., 2003). In 

young adults, the CSF production rate is 0.4 ml/min or 500 – 600 ml per day, the CSF 

volume is 150 ml, and the CSF turnover rate is 4 volumes per day (Johanson et al., 2008). In 

AD patients, on the contrary, the CSF production rate is 0.2 ml/min, the CSF volume is 250 

ml due to brain atrophy, and the CSF turnover rate is 1.2 volumes per day (Johanson et al., 

2008). In addition to the affected CSF production, the resistance of CSF outflow in AD is 

becoming greater for there is evidence of abeta depositions in the meninges (Silverberg et 

al., 2003; Hamano et al., 1997; Kalaria et al., 1996). Further studies are needed to confirm low 

CSF pressure in AD patients; to establish a relationship between the severity of cognitive 

impairment, brain atrophy, ventricular volume, CP morphology with CSF pressure; and to 

establish whether the trans-laminar cribrosa pressure difference plays an important role in 

the pathogenesis of RNFL thinning in AD.  

3.3 Retrograde trans-synaptic degeneration secondary to cortical pathology  

Lastly, we hypothesize that the RGC loss in AD could be partly due to retrograde trans-

synaptic degeneration. RGC loss following an occipital injury, which is a consequence of 

retrograde trans-synaptic degeneration of geniculo-cortical towards retino-geniculate 

pathways; and anterograde degeneration of cortico-geniculate pathway, has been identified 

in the visual pathway (Cowey, 1974; Mehta & Plant, 2005b; Jindahra et al., 2009; Bridge et al., 

2011). Neuronal loss, neurofibrillary tangles (NFT) and senile plaques have been identified 

in several neocortex areas including primary visual cortex (Pearson et al., 1985; Leuba & 

Kraftsik, 1994). Senile plaques were also identified in the LGN (Leuba & Kraftsik, 1994; 

Leuba & Saini, 1995) along with NFTs and degenerating axons or threads in the white 

matter underlying area 17 (Leuba & Saini, 1993; Leuba & Saini, 1995), reflecting a spread of 

the degeneration along the cortico-geniculate axons (Leuba & Kraftsik, 1994; Leuba & Saini, 

1995). In a study (Leuba & Saini, 1995), senile plaques were found more in the parvocellular 

layer of the dLGN than the magnocellular layer, the interlaminar zones, and the optic 

radiation. No neuritic degeneration (NFT, neuritic plague, and thread) was demonstrated in 

the LGN in this study, suggesting mainly amyloid deposition in this area. The finding was 

in good agreement with another that showed mild tau pathology in the LGN of AD patients 

(Dugger et al., 2011). In addition, senile plaques and NFTs were detected in the pyramidal 

and non-pyramidal cells in layer 5 and 6 of the primary visual cortex (Leuba & Saini, 1995). 

The degeneration in the visual cortex varied greatly among individuals possibly due to 

different AD subtypes as presented below. Neuronal loss, glial cell proliferation, NFT, and 

neuritic plaque (NP) deposition have been demonstrated in visual cortex, area 17 in 

particular, in AD patients with mean age of 76.1 +/- 8.1 years when compared with age-

matched controls (Leuba & Kraftsik, 1994). The tangles in layer 5 are twice in number as in 

layer 3 in the occipital lobe except area 18 and the neuritic plaques are found in all layers in 

one study (Pearson et al., 1985). In a study (Hof et al., 1989), AD patients with Balint 

syndrome which is characterized by optic apraxia (impairment of target pointing under 

visual guidance), ocular apraxia (inability to shift gaze to a new visual target), and 
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simultagnosia (perception and recognition in a small part of visual field) had greater NFT 

density and NP area in all cortical layers of area 17 and 18 as compared to AD patients 

without Balint syndrome. The NFT density in the superior frontal cortex of AD with Balint 

syndrome appeared much less than that in AD without Balint syndrome. Patients with 

Balint syndrome from stroke did not show NFT or high NP numbers in the visual cortex. 

The mean number of Meynert cells in layer 5 and 6 of area 17 in AD with Balint syndrome 

was significantly lower than that in AD without Balint syndrome. This study suggested a 

disruption of occipito-parietal connections or dorsal stream in these AD with Balint 

syndrome cases. Another study used SMI32-immunoreactive staining technique which 

represented pyramidal neurons in a small subset of total neuronal population (Hof & 

Morrison, 1990). It had been shown that the Meynert cell (the largest SMI32-ir neurons) 

counts in area 17 and 18 were significantly lower in AD patients than in age-matched 

controls only in a small magnitude. The loss appeared more pronounced in temporal and 

prefrontal cortices. The neuronal loss was confined to area 4b in area 17 and layer 3, 6 in 

area 18. The findings might have indicated the degeneration of projections of Meynert cells 

in these regions to area V5 that is responsible for visuospatial skills. NFT in area 17 and 18 

were less numerous than area 9 and 20 in AD patients (Hof & Morrison, 1990). NFT were 

dominant in layer 2-3 in the visual cortices whereas in layer 5 in area 9 and 20. NP were 

numerous in layer 2-4 with the greatest density in layer 4 of area 17 in layer 2-3 in area 18.  

A study (Arnold et al., 1991) revealed the distribution of NFT and NP among 39 cortical 

regions in 11 AD patients, having mean age 80.2 years (range 63-88 years) and mean 

duration of disease 7.5 years (range 3-15 years). It had been shown that NFT in the limbic 

and temporal lobes were substantially higher than the frontal, parietal, and occipital lobes. 

NPs were evenly distributed throughout the cortex with the highest density in the temporal 

and occipital lobes. When comparing NFT among visual cortices namely area 17, 18, and 20 

(inferior temporal gyrus) in 8 AD patients aged 48-82 years, the number of NFT was low in 

area 17 but progressively increased in area 18 and 20 respectively, which paralleled to the 

hierarchical visual organization (Lewis et al., 1987). NFTs were found predominantly in 

layer 3 and 5, which contained cortico-cortical and cortico-fugal projecting fibres (Lewis et 

al., 1987). A substantial number of NPs was identified equally in all three regions. They were 

present across all cortical layers (Lewis et al., 1987). A study (Kiyosawa et al., 1989) of AD 

patients with and without impaired visual functions i.e., figure copying, colour vision tested 

by isochromatic plates, and steropsis showed no change in their primary visual cortices in 

18F-fluoro-2-deoxyglucose positron emission tomography (PET) as compared to the results 

in age-matched controls. Additionally AD cases with impaired visual functions showed 

significantly decreased glucose metabolism in visual association and inferior parietal areas 

compared with the controls. AD patients with good vision showed no significant change in 

these areas. No neuronal loss in area 17 of AD brains was demonstrated in another study 

(Mountjoy et al., 1983). 

4. Conclusion 

There is increasing evidence of RNFL thinning or RGC loss in patients with AD but the 

relationship between the degree of cognitive impairment and the degree of RNFL loss has 

not been established yet. There are a few possibilities that could explain the findings. These 
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include AD change in the retina, abnormal trans-lamina cribrosa pressure, and retrograde 

trans-synaptic degeneration. The degenerative changes in the brain and retina vary among 

AD patients because of different AD subtype, severity, and duration. It seems that the RNFL 

measurement has a good potential to be a monitoring tool in AD patients in the near future. 

Further investigations are required to understand more about AD pathology in these areas.  
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