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PI/PID Control for Nonlinear Systems
via Singular Perturbation Technique

Valery D. Yurkevich
Novosibirsk State Technical University

Russia

1. Introduction

The problem of output regulation for nonlinear time-varying control systems under
uncertainties is one of particular interest for real-time control system design. There is a broad
set of practical problems in the control of aircraft, robotics, mechatronics, chemical industry,
electrical and electro-mechanical systems where control systems are designed to provide the
following objectives: (i) robust zero steady-state error of the reference input realization; (ii)
desired output performance specifications such as overshoot, settling time, and system type of
reference model for desired output behavior; (iii) insensitivity of the output transient behavior
with respect to unknown external disturbances and varying parameters of the system.
In spite of considerable advances in the recent control theory, it is common knowledge that
PI and PID controllers are most widely and successfully used in industrial applications
(Morari & Zafiriou, 1999). A great attention of numerous researchers during the last
few decades was devoted to turning rules (Åström & Hägglund, 1995; O’Dwyer, 2003;
Ziegel & Nichols, 1942), identification and adaptation schemes (Li et al., 2006) in order to
fetch out the best PI and PID controllers in accordance with the assigned design objectives.
The most recent results have concern with the problem of PI and PID controller design
for linear systems. However, various design technics of integral controllers for nonlinear
systems were discussed as well (Huang & Rugh, 1990; Isidori & Byrnes, 1990; Khalil, 2000;
Mahmoud & Khalil, 1996). The main disadvantage of existence design procedures of PI or
PID controllers is that the desired transient performances in the closed-loop system can not
be guaranteed in the presence of nonlinear plant parameter variations and unknown external
disturbances. The lack of clarity with regard to selection of sampling period and parameters
of discrete-time counterparts for PI or PID controllers is the other disadvantage of the current
state of this question.
The output regulation problem under uncertainties can be successfully solved via such
advanced technics as control systems with sliding motions (Utkin, 1992; Young & Özgüner,
1999), control systems with high gain in feedback (Meerov, 1965; Young et al., 1977). A set
of examples can be found from mechanical applications and robotics where acceleration
feedback control is successfully used (Krutko, 1988; 1991; 1995; Lun et al., 1980; Luo et al.,
1985; Studenny & Belanger, 1984; 1986). The generalized approach to nonlinear control system
design based on control law with output derivatives and high gain in feedback, where
integral action can be incorporated in the controller, is developed as well and one is used
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effectively under uncertainties (Błachuta et al., 1997; 1999; Czyba & Błachuta, 2003; Yurkevich,
1995; 2004). The distinctive feature of such advanced technics of control system design is
the presence of two-time-scale motions in the closed-loop system. Therefore, a singular
perturbation method (Kokotović et al., 1976; 1999; Kokotović & Khalil, 1986; Naidu & Calise,
2001; Naidu, 2002; Saksena et al., 1984; Tikhonov, 1948; 1952) should be used for analysis of
closed-loop system properties in such systems.
The goal of the chapter is to give an overview in tutorial manner of the newest unified design
methodology of PI and PID controllers for continuous-time or discrete-time nonlinear control
systems which guarantees desired transient performances in the presence of plant parameter
variations and unknown external disturbances. The chapter presents the up-to-date coverage
of fundamental issues and recent research developments in singular perturbation technique
of nonlinear control system design. The discussed control law structures are an extension
of PI/PID control scheme. The proposed design methodology allows to provide effective
control of nonlinear systems on the assumption of uncertainty, where a distinctive feature
of the designed control systems is that two-time-scale motions are artificially forced in
the closed-loop system. Stability conditions imposed on the fast and slow modes, and a
sufficiently large mode separation rate, can ensure that the full-order closed-loop system
achieves desired properties: the output transient performances are as desired, and they
are insensitive to parameter variations and external disturbances. PI/PID control design
methodology for continuous-time control systems, as well as corresponding discrete-time
counterpart, is discussed in the paper. The method of singular perturbations is used to analyze
the closed-loop system properties throughout the chapter.
The chapter is organized as follows. First, some preliminary results concern with properties of
singularly perturbed systems are discussed. Second, the application of the discussed design
methodology for a simple model of continuous-time single-input single-output nonlinear
system is presented and main steps of the design method are explained. The relationship
of the presented design methodology with problem of PI and PID controllers design for
nonlinear systems is explained. Third, the discrete-time counterpart of the discussed design
methodology for sampled-data control systems design is highlighted. Numerical examples
with simulation results are included as well.
The main impact of the chapter is the presentation of the unified approach to continuous
as well as digital control system design that allows to guarantee the desired output
transient performances in the presence of plant parameter variations and unknown external
disturbances. The discussed design methodology may be used for a broad class of nonlinear
time-varying systems on the assumption of incomplete information about varying parameters
of the plant model and unknown external disturbances. The advantage of the discussed
singular perturbation technique for closed-loop system analysis is that analytical expressions
for parameters of PI, PID, or PID controller with additional lowpass filtering can be found for
nonlinear systems, where controller parameters depend explicitly on the specifications of the
desired output behavior.

2. Singularly perturbed systems

2.1 Continuous-time singularly perturbed systems

The singularly perturbed dynamical control systems arise in various applications mainly due
to two reasons. The first one is that fast dynamics of actuators or sensors leads to the plant
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model in the form of singularly perturbed system (Kokotović et al., 1976; Naidu & Calise,
2001; Naidu, 2002; Saksena et al., 1984). The second one is that the singularly perturbed
dynamical systems can also appear as the result of a high gain in feedback (Meerov, 1965;
Young et al., 1977). In accordance with the second one, a distinctive feature of the discussed
control systems in this chapter is that two-time-scale motions are artificially forced in the
closed-loop control system due to an application of a fast dynamical control law or high gain
parameters in feedback.
The main notions of singularly perturbed systems can be considered based on the following
continuous-time system:

Ẋ = f (X, Z), (1)

µŻ = g(X, Z), (2)

where µ is a small positive parameter, X ∈ R
n, Z ∈ R

m, and f and g are continuously
differentiable functions of X and Z. The system (1)–(2) is called the standard singularly
perturbed system (Khalil , 2002; Kokotović et al., 1976; 1999; Kokotović & Khalil, 1986).
From (1)–(2) we can get the fast motion subsystem (FMS) given by

µ
dZ

dt
= g(X, Z) (3)

as µ → 0 where X(t) is the frozen variable. Assume that

det
{

∂g(X, Z)

∂Z

}

�= 0 (4)

for all Z ∈ ΩZ where ΩZ is the specified bounded set ΩZ ⊂ R
m.

From (4) it follows that the function Z̄ = ψ(X) exists such that g(X(t), Z̄(t)) = 0 ∀ t holds
where Z̄ is an isolated equilibrium point of (3). Assume that the equilibrium point Z̄ is unique
and one is stable (exponentially stable).
After the fast damping of transients in the FMS (3), the state space vector of the system (1)–(2)
belong to slow-motion manifold (SMM) given by

Msmm = {(X, Z) : g(X, Z) = 0}.

By taking µ = 0, from (1)–(2), the slow motion subsystem (SMS) (or a so-called reduced
system) follows in the form

Ẋ = f (X, ψ(X)).

2.2 Discrete-time singularly perturbed systems

Let us consider the system of difference equations given by

Xk+1 = {In + µA11}Xk + µA12Yk, (5)

Yk+1 = A21Xk + A22Yk, (6)

where µ is the small positive parameter, X ∈ R
n, Y ∈ R

m, and the Aij are matrices with
appropriate dimensions.
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If µ is sufficiently small, then from (5)–(6) the FMS equation

Yk+1 = A21Xk + A22Yk (7)

results, where Xk+1 − Xk ≈ 0 (that is Xk ≈ const) during the transients in the system (7).
Assume that the FMS (7) is stable. Then the steady-state of the FMS is given by

Yk = {Im − A22}
−1A21Xk. (8)

Substitution of (8) into (5) yields the SMS

Xk+1 = {In + µ[A11 + A12(Im − A22)
−1 A21]}Xk.

The main qualitative property of the singularly perturbed systems is that: if the equilibrium
point of the FMS is stable (exponentially stable), then there exists µ⋆

> 0 such that for all
µ ∈ (0, µ⋆), the trajectories of the singularly perturbed system approximate to the trajectories
of the SMS (Hoppensteadt, 1966; Klimushchev & Krasovskii, 1962; Litkouhi & Khalil, 1985;
Tikhonov, 1948; 1952). This property is important both from a theoretical viewpoint and for
practical applications in control system analysis and design, in particular, that will be used
throughout the discussed below design methodology for continuous-time or sampled-data
nonlinear control systems.

3. PI controller of the 1-st order nonlinear system

3.1 Control problem statement

Consider a nonlinear system of the form

dx

dt
= f (x, w) + g(x, w)u, (9)

where t denotes time, t ∈ [0, ∞), y = x is the measurable output of the system (9), x ∈ R
1,

u is the control, u ∈ Ωu ⊂ R
1, w is the vector of unknown bounded external disturbances or

varying parameters, w ∈ Ωw ⊂ R
l , ‖w(t)‖ ≤ wmax < ∞, and wmax > 0.

We assume that dw/dt is bounded for all its components,

‖dw/dt‖ ≤ w̄max < ∞,

and that the conditions

0 < gmin ≤ g(x, w) ≤ gmax < ∞, | f (x, w)| ≤ fmax < ∞ (10)

are satisfied for all (x, w) ∈ Ωx,w, where f (x, w), g(x, w) are unknown continuous bounded
functions of x(t), w(t) on the bounded set Ωx,w and w̄max > 0, gmin > 0, gmax > 0, fmax > 0.
Note, g(x, w) is the so called a high-frequency gain of the system (9).
A control system is being designed so that

lim
t→∞

e(t) = 0, (11)
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where e(t) is an error of the reference input realization, e(t) := r(t)− y(t), r(t) is the reference
input, and y = x. Moreover, the output transients should have the desired performance
indices. These transients should not depend on the external disturbances and varying
parameters of the system (9).
Throughout the chapter a controller is designed in such a way that the closed-loop system is
required to be close to some given reference model, despite the effects of varying parameters
and unknown external disturbances w(t) in the plant model. So, the destiny of the controller is
to provide an appropriate reference input-controlled output map of the closed-loop system as
shown in Fig. 1, where the reference model is selected based on the required output transient
performance indices.

Fig. 1. Block diagram of the closed-loop control system

3.2 Insensitivity condition

Let us consider the reference equation of the desired behavior for (9) in the form of the 1st
order stable differential equation given by

dx

dt
=

1
T
(r − x), (12)

which corresponds to the desired transfer function

Gd(s) =
1

Ts + 1
,

where y = x = r at the equilibrium point for r = const and the time constant T is selected in
accordance with the desired settling time of output transients.
Let us denote F(x, r) := (r − x)/T and rewrite (12) as

dx

dt
= F(x, r), (13)

where F(x, r) is the desired value of ẋ for (9), ẋ := dx/dt. Hence, the deviation of the actual
behavior of (9) from the desired behavior prescribed by (12) can be defined as the difference

eF := F(x, r)−
dx

dt
. (14)

Accordingly, if the condition
eF = 0 (15)

holds, then the behavior of x(t) with prescribed dynamics of (13) is fulfilled. The expression
(15) is an insensitivity condition for the behavior of the output x(t) with respect to the external
disturbances and varying parameters of the system (9).
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Substitution of (9), (13), and (14) into (15) yields

F(x, r)− f (x, w)− g(x, w)u = 0. (16)

So, the requirement (11) has been reformulated as a problem of finding a solution of the
equation eF (u) = 0 when its varying parameters are unknown. From (16) we get u = uid,
where

uid = [g(x, w)]−1[F(x, r)− f (x, w)] (17)

and uid(t) is the analytical solution of (16). The control function u(t) = uid(t) is called a
solution of the nonlinear inverse dynamics (id) (Boychuk, 1966; Porter, 1970; Slotine & Li,
1991). It is clear that the control law in the form of (17) is useless in practice under
uncertainties, as far as one may be used only if complete information is available about the
disturbances, model parameters, and state of the system (9).
Note, the nonlinear inverse dynamics solution is used in such known control design
methodologies as exact state linearization method, dynamic inversion, the computed torque
control in robotics, etc (Qu et al., 1991; Slotine & Li, 1991).

3.3 PI controller

The subject of our consideration is the problem of control system design given that the
functions f (x, w), g(x, w) are unknown and the vector w(t) of bounded external disturbances
or varying parameters is unavailable for measurement. In order to reach the discussed control
goal and, as a result, to provide desired dynamical properties of x(t) in the specified region of
the state space of the uncertain nonlinear system (9), consider the following control law:

µ
du

dt
= k0

{
1
T
(r − x)−

dx

dt

}

, (18)

where µ is a small positive parameter. The discussed control law (18) may be expressed in
terms of transfer functions, that is the structure of the conventional PI controller

u(s) =
k0

µTs
[r(s)− x(s)]−

k0

µ
x(s). (19)

For purposes of numerical simulation or practical implementation, let us rewrite the control
law (18) in the state-space form. Denote

b1 = −
k0

µ
, b0 = −

k0

µT
, c0 =

k0

µT
.

Then, (18) can be rewritten as u(1) = b1x(1) + b0x + c0r. Hence, the following expression

u(1) − b1x(1) = b0x + c0r results. Denote u
(1)
1 = b0x + c0r. Finally, we obtain the equations of

the controller given by

u̇1 = b0x + c0r, (20)

u = u1 + b1x.

The block diagram of PI controller (20) is shown in Fig. 2(a).
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(a) PI controller (20) (b) PIF controller (42)

Fig. 2. Block diagrams of PI and PIF controllers

3.4 Two-time-scale motion analysis

In accordance with (9) and (18), the equations of the closed-loop system are given by

dx

dt
= f (x, w) + g(x, w)u, (21)

µ
du

dt
= k0

{
1
T
(r − x)−

dx

dt

}

. (22)

Substitution of (21) into (22) yields the closed-loop system equations in the form

dx

dt
= f (x, w) + g(x, w)u, (23)

µ
du

dt
= −k0g(x, w)u + k0

{
1
T
(r − x)− f (x, w)

}

. (24)

Since µ is the small positive parameter, the closed-loop system equations (23)–(24) have the
standard singular perturbation form given by (1)–(2). If µ → 0, then fast and slow modes are
artificially forced in the system (23)–(24) where the time-scale separation between these modes
depends on the parameter µ. Accordingly, the singular perturbation method (Kokotović et al.,
1976; 1999; Kokotović & Khalil, 1986; Naidu & Calise, 2001; Naidu, 2002; Saksena et al., 1984;
Tikhonov, 1948; 1952) may be used to analyze the closed-loop system properties.
From (23)–(24), we obtain the FMS given by

µ
du

dt
+ k0g(x, w)u = k0

[
1
T
(r − x)− f (x, w)

]

, (25)

where x(t) and w(t) are treated as the frozen variables during the transients in (25).
In accordance with the assumption (10), the gain k0 can be selected such that the condition
g(x, w)k0 > 0 holds for all (x, w) ∈ Ωx,w, then the FMS is stable and, after the rapid decay
of transients in (25), we have the steady state (more precisely, quasi-steady state) for the FMS
(25), where u(t) = uid(t) and uid(t) is given by (17). Hence, if the steady state of the FMS (25)
takes place, then the closed-loop system equations (23)–(24) imply that

dx

dt
=

1
T
(r − x)

119PI/PID Control for Nonlinear Systems via Singular Perturbation Technique
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is the equation of the SMS, which is the same as the reference equation (12).
So, if a sufficient time-scale separation between the fast and slow modes in the closed-loop
system and exponential convergence of FMS transients to equilibrium are provided, then
after the damping of fast transients the desired output behavior prescribed by (12) is fulfilled
despite that f (x, w) and g(x, w) are unknown complex functions of x(t) and w(t). Thus, the
output transient performance indices are insensitive to parameter variations of the nonlinear
system and external disturbances, by that the solution of the discussed control problem (11) is
maintained.

3.5 Selection of PI controller parameters

The time constant T of the reference equation (12) is selected in accordance with the desired
settling time of output transients. Take the gain k0 ≈ g−1(x, w). Then, in accordance with
(25), the FMS characteristic polynomial is given by µs + 1. The time constant µ is selected as
µ = T/η where η is treated as the degree of time-scale separation between the fast and slow
modes in the closed-loop system, for example, η ≥ 10.

3.6 Example 1

Consider the nonlinear system given by

ẋ = x3 − (2 + x2)u, (26)

which is accompanied by the discussed PI controller (18). Substitution of (26) into (18) yields
the singularly perturbed differential equations of the closed-loop system

ẋ = x3 − (2 + x2)u, (27)

µu̇ = k0[(r − x)/T − x3 + (2 + x2)u], (28)

where fast and slow modes are forced as µ → 0. From (27)-(28), the FMS

µu̇ − k0(2 + x2)u = k0[(r − x)/T − x3] (29)

follows, where x is treated as the frozen parameter during the transients in (29).
Take k0 = −0.5 < 0, then the transients of (29) are exponentially stable and the unique
exponentially stable isolated equilibrium point uid of the FMS (29) is given by

uid = (2 + x2)−1[(r − x)/T − x3]. (30)

Substitution of µ = 0 into (27)-(28) yields the equation of the SMS which is the same as the
reference equation (12).
Note, at the equilibrium point of the FMS (29), the state of the closed-loop system (27)-(28)
belongs to the slow-motion manifold (SMM) given by

Msmm = {(x, u) : (r − x)/T − x3 + (2 + x2)u = 0}, (31)

which is the attractive manifold when the FMS (29) is stable and the behavior of x(t) on the
SMM is described by (12).
The phase portrait of (27),(28) in case of r(t) ≡ 1 and the output response of (20),(26) are
shown in Fig. 3, where the simulation has been done for T = 1, µ = 0.05 s, k0 = −0.5. It is
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(a) The phase portrait of (27),(28) when
r(t) ≡ 1

(b) The output response of (20),(26)

Fig. 3. The phase portrait and output response of the closed-loop system in Example 1

easy to see from Fig. 3(a), there is fast transition of the closed-loop system state trajectories
on the SMM (31) where the motions along this manifold correspond to the SMS given by (12).
Hence, after the damping of fast transients, the condition x(t) → r = const holds due to
(12) for arbitrary initial conditions, that is the output stabilization of (26), where the desired
settling time is defined by selection of the parameter T. The output response of the closed-loop
system (20),(26) provided for initial conditions at origin reveals the transients behavior of the
reference equation given by (12) as shown in Fig. 3(b).

4. PIF controller of the 1-st order nonlinear system

4.1 High-frequency sensor noise attenuation

Consider the nonlinear system (9) in presence of high-frequency sensor noise ns(t), that is

dx

dt
= f (x, w) + g(x, w)u, ŷ = x + ns, y = x, (32)

where the sensor output ŷ(t) is corrupted by a zero-mean, high-frequency measurement noise
ns(t). Hence, instead of (21)-(22), we get of the closed-loop system given by

dx

dt
= f (x, w) + g(x, w)u, ŷ = x + ns, (33)

µ
du

dt
= k0

{
1
T
(r − ŷ(t))−

dŷ(t)

dt

}

. (34)

The main disadvantage of the sensor noise ns(t) in the closed-loop system is that it leads
to high-frequency chattering in the control variable u(t). At the same time, the effect of the
high-frequency noise ns(t) on the behavior of the output variable y(t) is much smaller since
the system (32) rejects high frequencies.
From the closed-loop system equations given by (33)-(34), the FMS equation

µu̇ + k0g(x, w)u = k0

{
1
T
(r − x)− f (x, w)−

1
T

ns − ṅs

}

(35)
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results, where x(t) and w(t) are treated as the frozen variables during the transients in (35).
From (35), we obtain the transfer function Guns(s) = u(s)/ns(s), that is

Guns(s) = −
k0

T

Ts + 1
µs + k0g

,

where

lim
ω→∞

|Guns(jω)| = k0/µ. (36)

The transfer function Guns(s) determines the sensitivity of the plant input u(t) to the
sensor noise signal ns(t) in the closed-loop system. In other words, Guns(s) is an input
sensitivity function with respect to noise ns(t) in the closed-loop system. The requirement
on high-frequency sensor noise attenuation can be expressed by the following inequality:

|Guns(jω)| ≤ εuns (ω), ∀ ω ≥ ωns
min

, (37)

where εuns(ω) is an upper bound on the amplitude of the input sensitivity function with
respect to noise for high frequencies.
In order to provide a high-frequency measurement noise attenuation assigned by (37), we can
consider, instead of (18), the control law given by

µ2ü + d1µu̇ = k0

{
1
T
(r − ŷ)− ˙̂y

}

, (38)

which can also be expressed in terms of transfer functions as

u(s) =
k0

µ(µs + d1)

{
1
Ts

[r(s)− ŷ(s)]− ŷ(s)

}

.

that is, in compare with (19), the structure of PI controller with additional lowpass filtering
(PIF controller).
The way for two-time-scale motion analysis in the closed-loop system is the same as it was
shown above. Hence, from the closed-loop system equations given by (32) and (38), the FMS
equation

µ2ü + d1µu̇ + k0g(x, w)u = k0

{
1
T
(r − x)− f (x, w)−

1
T

ns − ṅs

}

(39)

results, where x(t) and w(t) are treated as the frozen variables during the transients in (39).
Accordingly, from (39), the transfer function

Guns(s) = −
k0

T

Ts + 1
µ2s2 + d1µs + k0g

results, where

|Guns(jω)| =
|k0|

T

√

(Tω)2 + 1
√

(k0g − µ2ω2)2 + (d1µω)2
. (40)
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Note, in contrast to (36), we have

lim
ω→∞

|Guns(jω)| = 0.

So, the high-frequency measurement noise attenuation is provided in case of control law
given by (38). The amplitude of high-frequency oscillations induced in behavior of the
control variable u(t) due to effect of the high-frequency harmonic measurement noise can
be calculated by (40).

4.2 Selection of PIF controller parameters

The time constant T of the reference equation (12) is selected in accordance with the desired
settling time of output transients. Take the gain k0 ≈ g−1(x, w) and parameter d1 = 2. Then,
in accordance with (39), the FMS characteristic polynomial is given by (µs + 1)2. The time
constant µ is selected as µ = T/η where η is treated as the degree of time-scale separation
between the fast and slow modes in the closed-loop system, for example, η ≥ 10.

4.3 Implementation of PIF controller

The discussed PIF controller (38) can be rewritten in the form given by

u(2) +
d1
µ

u(1) = −
k0

µ2 x(1) −
k0

µ2T
x +

k0

µ2T
r, (41)

where ŷ is replaced by x. Denote

a1 =
d1
µ

, b1 = −
k0

µ2 , b0 = −
k0

µ2T
, c0 =

k0

µ2T
.

From (41), we have u(2) + a1u(1) = b1x(1) + b0x + c0r and, thereafter, u(2) + a1u(1) − b1x(1) =

b0x + c0r. Denote u
(1)
2 = b0x + c0r. Then we get u(1) + a1u − b1x = u2. Denote u

(1)
1 =

u2 − a1u + b1x. Hence, u = u1. Finally, the state space equations of the PIF controller are
given by

u̇1 = u2 − a1u1 + b1x,

u̇2 = b0x + c0r, (42)

u = u1.

The block diagram of the PIF controller (42) is shown in Fig. 2(b).

5. PID controller of the 2-nd order nonlinear system

5.1 Control problem and insensitivity condition

Consider a nonlinear system of the 2-nd order given by

ẍ = f (X, w) + g(X, w)u, (43)

where x is the measurable output of the system (43), y = x, and ẋ is the unmeasurable variable
of the state X = [x, ẋ]T. Assume that the inequalities

123PI/PID Control for Nonlinear Systems via Singular Perturbation Technique
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0 < gmin ≤ g(X, w) ≤ gmax < ∞, | f (X, w)| ≤ fmax < ∞ (44)

are satisfied for all (X, w) ∈ ΩX,w, where f (X, w), g(X, w) are unknown continuous bounded
functions of X(t), w(t) on the bounded set ΩX,w.
The control objective is given by (11), where the desired settling time and overshoot have to be
provided for x(t) regardless the presence of the external disturbances and varying parameters
w(t) of the system (43).
Consider the reference equation of the desired behavior for (43) in the form of the 2nd order
stable differential equation given by

T2 ẍ + ad
1Tẋ + x = bd

1Tṙ + r.

Hence, we have

ẍ =
1
T
[bd

1 ṙ − ad
1 ẋ] +

1
T2 [r − x]. (45)

Let us rewrite (45) in the form

ẍ = F(X, R),

where R = [r, ṙ]T and the parameters T, ad
1 , and bd

1 are selected in accordance with the desired
system type, settling time, and overshoot for x(t). Denote

eF := F(X, R)− ẍ.

Hence, the behavior of x(t) with prescribed dynamics of (45) is fulfilled in presence of the
external disturbances and varying parameters of (43), if the insensitivity condition eF = 0
holds. Similar to the above, the nonlinear inverse dynamics solution is given by

uid = [g(X, w)]−1[F(X, R)− f (X, w)]. (46)

5.2 PID controller

Consider the control law in the form

µ2ü + d1µu̇ = k0[F(X, R)− ẍ], (47)

where µ is a small positive parameter. In accordance with (45), the controller (47) can be
represented as

µ2ü + d1µu̇ = k0

{

−ẍ +
1
T
[bd

1 ṙ − ad
1 ẋ] +

1
T2 [r − x]

}

. (48)

The discussed control law (48) can also be expressed in terms of transfer functions

u(s) =
k0

µ(µs + d1)

{
1
T
[bd

1r(s)− ad
1x(s)] +

1
T2s

[r(s)− x(s)]− sx(s)

}

, (49)
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which corresponds to the PID controller and (49) is implemented without an ideal
differentiation of x(t) or r(t) due to the presence of the term k0/[µ(µs + d1)]. Note, PID
controller with additional lowpass filtering (PIDF controller)

µqu(q) + dq−1µq−1u(q−1) + · · ·+ d1µu(1) = k0[F(X, R)− x(2)] (50)

can be considered as well, where q > 2.

5.3 Two-time-scale motion analysis

Consider the closed-loop system equations (43),(47), that are

ẍ = f (X, w) + g(X, w)u, (51)

µ2ü + d1µu̇ = k0[F(X, R)− ẍ]. (52)

Substitution of (51) into (52) yields

ẍ = f (X, w) + g(X, w)u, (53)

µ2ü + d1µu̇ + k0g(x, w)u = k0[F(X, R)− f (X, w)]. (54)

Denote u1 = u and u2 = µu. Hence, the system (53)–(54) can be represented as a standard
singular perturbation system, that is

ẋ1 = x2,

ẋ2 = f (x1, x2, w) + g(x1, x2, w)u1,

µu̇1 = u2,

µu̇2 = −k0g(x, w)u1 − d1u2 + k0[F(x1, x2, R)− f (x1, x2, w)].

From the above system, the fast-motion subsystem (FMS) equation

µ2ü + d1µu̇ + k0g(x, w)u = k0[F(X, R)− f (X, w)] (55)

follows, where X(t) and w(t) are frozen variables during the transients in (55).
By selection of µ, d1, and k0, we can provide the FMS stability as well as the desired degree of
time-scale separation between fast and slow modes in the closed-loop system. Then, after the
rapid decay of transients in (55) (or, by taking µ = 0 in (55)), we obtain the steady state (more
precisely, quasi-steady state) for the FMS (55), where u(t) = uid(t). Hence, from (53)–(54), we
get the slow-motion subsystem (SMS) equation, which is the same as (45) in spite of unknown
external disturbances and varying parameters of (43) and by that the desired behavior of x(t)
is provided.

5.4 Selection of PID controller parameters

The time constant T of the reference equation (45) is selected in accordance with the desired
settling time of output transients. The parameter ad

1 is defined by permissible overshoot of
the output step response. Take, for example ad

1 = 2. Take bd
1 = 0 if the reference model given

by (45) is a system of type 1. Take bd
1 = ad

1 if the reference model given by (45) is a system
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of type 2. Take the gain k0 ≈ g−1(X, w), and parameter d1 = 2. Then, in accordance with
(55), the FMS characteristic polynomial is given by (µs + 1)2. The time constant µ is selected
as µ = T/η where η is the desired degree of time-scale separation between the fast and slow
modes in the closed-loop system, for example, η ≥ 10.
Note, in case of PIDF controller given by (50), the FMS characteristic polynomial has the form
(µs + 1)q when the parameters dq−1, . . . , d2, d1 are selected as the coefficients of the binomial
polynomial, that is

(s + 1)q = sq + dq−1sq−1 + · · ·+ d2s2 + d1s + 1.

The more detailed results and procedures for selection of controller parameters can be found
in (Yurkevich, 2004).

5.5 Implementation of PID controller

The discussed control law (48) can be rewritten in the form given by

u(2) +
d1
µ

u(1) = −
k0

µ2 x(2) −
k0ad

1
µ2T

x(1) −
k0

µ2T2 x +
k0bd

1
µ2T

r(1) +
k0

µ2T2 r,

that is

u(2) + a1u(1) = b2x(2) + b1x(1) + b0x + c1r(1) + c0r, (56)

where

a1 =
d1
µ

, b2 = −
k0

µ2 , b1 = −
k0ad

1
µ2T

, b0 = −
k0

µ2T2 , c1 =
k0bd

1
µ2T

, c0 =
k0

µ2T2 .

The block diagram representation of the discussed control law (56) can be obtained based on
the following derivations:

u(2)−b2x(2)+a1u(1)−b1x(1)−c1r(1) = b0x+c0r
︸ ︷︷ ︸

=u̇2

=⇒ u(1)−b2x(1)+a1u−b1x−c1r = u2

=⇒ u(1) − b2x(1) = u2 − a1u + b1x + c1r
︸ ︷︷ ︸

=u̇1

=⇒ u = u1 + b2x.

Hence, we obtain the equations of the controller given by

u̇1 = u2 − a1u + b1x + c1r,

u̇2 = b0x + c0r, (57)

u = u1 + b2x.

From (57), the block diagram of the controller follows as shown in Fig. 4(a).
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(a) Block diagram of PID controller (48) represented in
the form (57)

(b) Control system with
additional pulse signal ū(t)

Fig. 4. Control system with PID controller

6. On-line tuning of controller parameters

Let us consider the closed-loop system with an additional pulse signal ū(t) as shown in
Fig. 4(b). Then, instead of (51)–(52), we get

ẍ = f (X, w) + g(X, w)[ũ + ū],

µ2ũ(2) + d1µũ(1) = k0[F(X, R)− x(2)].

From the above system, the FMS equation

µ2ũ(2) + d1µũ(1) + k0g(x, w)ũ = k0[F(X, R)− f (X, w)− g(x, w)ū] (58)

results, where X(t) and w(t) are frozen variables during the transients in (58). In accordance
with (58) and u = ũ + ū, the input sensitivity function with respect to pulse signal ū(t) can be
defined as the following transfer function Guū(s) = u(s)/ū(s), that is

Guū(s) =
µ2s2 + d1µs

µ2s2 + d1µs + k0g
,

or we may consider sensitivity function defined as Gũū(s) = ũ(s)/ū(s), that is

Gũū(s) = −
k0g

µ2s2 + d1µs + k0g
.

For example, if d1 = 2 and k0g = 1, then the shape of the fast-motion transients excited by ū(t)
in behavior of u(t) and ũ(t) is easily predictable one. Therefore, on-line tuning of controller
parameters can be provided based on direct observations of the fast-motion transients that are
excited by the pulse signal ū(t). In particular, if d1 = 2 and the high-frequency gain g(x, w)
is unknown, then the gain k0 can be manually adjusted such that to provide acceptable small
oscillations of FMS transients excited by ū(t).
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6.1 Example 2

Consider a SISO nonlinear continuous-time system in the form

x(2) = x3 + |x(1)| − (2 + x2)u + w, (59)

where the reference equation of the desired behavior for the output x(t) is assigned by (45)
and the control law structure is given by (48).
Take T = 0.3 s, ad

1 = 2, µ = 0.03 s, k0 = −0.5, , and d1 = 2 , where the control law (48)
is represented in the form (57). The simulation results of the system (59) controlled by the
algorithm (57) are displayed in Figs. 5–9, where the initial conditions are zero. The output
response of the system (59) with controller (57) for a ramp reference input r(t), in case where
bd

1 = 0 (the reference model is a system of type 1) reveals the large value of a velocity error
as shown in Fig 6. The velocity error can be significantly reduced by taking bd

1 = ad
1 (the

reference model is a system of type 2) as shown in Fig 8. Note, the high pulse in control
variable, as shown in Fig 7(b), is caused by discrepancy between relative degree of the system
(59) and relative degree of (45) when bd

1 = ad
1 . This high pulse can be eliminated by the use of

a smooth reference input function r(t) as shown in Fig. 9.

(a) Reference input r(t) and output x(t) (b) Control u(t) and disturbance w(t)

Fig. 5. Output response of the system (59) with controller (57) for a step reference input r(t)
and a step disturbance w(t), where bd

1 = 0 (the reference model is a system of type 1)

7. Sampled-data nonlinear system of the 1-st order

7.1 Control problem and insensitivity condition

In this section the discrete-time counterpart of the above singular perturbation design
methodology is discussed. Let us consider the backward difference approximation of the
nonlinear system (9) preceded by a zero-order hold (ZOH) with the sampling period Ts, that
is

xk = xk−1 + Ts[ f (xk−1, wk−1) + g(xk−1, wk−1)uk−1], (60)

where xk, wk, and uk represent samples of x(t), w(t), and u(t) at t = kTs, respectively.
The objective is to design a control system having

lim
k→∞

ek = 0. (61)
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(a) Reference input r(t) and output x(t) (b) Control u(t) and disturbance w(t)

Fig. 6. Output response of the system (59) with controller (57) for a ramp reference input r(t),
where bd

1 = 0 and w(t) = 0 (the reference model is a system of type 1)

(a) Reference input r(t) and output x(t) (b) Control u(t) and disturbance w(t)

Fig. 7. Output response of the system (59) with controller (57) for a step reference input r(t)
and a step disturbance w(t), where bd

1 = ad
1 (the reference model is a system of type 2)

(a) Reference input r(t) and output x(t) (b) Control u(t) and disturbance w(t)

Fig. 8. Output response of the system (59) with controller (57) for a ramp reference input r(t),
where bd

1 = ad
1 and w(t) = 0 (the reference model is a system of type 2)

Here ek := rk − xk is the error of the reference input realization, rk being the samples of the
reference input r(t), where the control transients ek → 0 should meet the desired performance
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(a) Reference input r(t) and output x(t) (b) Control u(t) and disturbance w(t)

Fig. 9. Output response of the system (59) with controller (57) for a smooth reference input
r(t) and a step disturbance w(t), where bd

1 = ad
1 (the reference model is a system of type 2)

specifications given by (12).
By a Z-transform of (12) preceded by a ZOH, the desired pulse transfer function

Hd
xr(z) =

z − 1
z

Z

{

L−1
[

1/T

s(s + 1/T)

]∣
∣
∣
∣
t=kTs

}

=
1 − e−Ts/T

z − e−Ts/T
(62)

follows. Hence, from (62), the desired stable difference equation

xk = xk−1 + Tsa(Ts)[rk−1 − xk−1] (63)

results, where

a(Ts) =
1 − e−Ts/T

Ts
, lim

Ts→0
a(Ts) =

1
T

,

and the output response of (63) corresponds to the assigned output transient performance
indices.
Let us rewrite, for short, the desired difference equation (63) as

xk = F(xk−1, rk−1), (64)

where we have rk = xk at the equilibrium of (64) for rk = const, ∀ k. Denote

eF
k := F(xk−1, rk−1)− xk, (65)

where eF
k is the realization error of the desired dynamics assigned by (64). Accordingly, if for

all k = 0, 1, . . . the condition

eF
k = 0 (66)

holds, then the desired behavior of xk with the prescribed dynamics of (64) is fulfilled. The
expression (66) is the insensitivity condition for the output transient performance with respect
to the external disturbances and varying parameters of the plant model given by (60). In
other words, the control design problem (61) has been reformulated as the requirement (66).
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The insensitivity condition given by (66) is the discrete-time counterpart of (15) which was
introduced for the continuous-time system (9).

7.2 Discrete-time counterpart of PI controller

Let us consider the following control law:

uk = uk−1 + λ0[F(xk−1, rk−1)− xk], (67)

where λ0 = T−1
s λ̃ and the reference model of the desired output behavior is given by (63). In

accordance with (63) and (65), the control law (67) can be rewritten as the difference equation

uk = uk−1 + λ̃

{

a(Ts)[rk−1 − xk−1]−
xk − xk−1

Ts

}

. (68)

The control law (68) is the discrete-time counterpart of the conventional continuous-time PI
controller given by (18).

7.3 Two-time-scale motion analysis

Denote fk−1 = f (xk−1, wk−1) and gk−1 = g(xk−1, wk−1) in the expression (60). Hence, the
closed-loop system equations have the following form:

xk = xk−1 + Ts[ fk−1 + gk−1uk−1], (69)

uk = uk−1+λ̃

{

a(Ts)[rk−1−xk−1]−
xk−xk−1

Ts

}

. (70)

Substitution of (69) into (70) yields

xk = xk−1 + Ts[ fk−1 + gk−1uk−1], (71)

uk = [1−λ̃gk−1]uk−1+λ̃{a(Ts)[rk−1−xk−1]− fk−1} . (72)

The sampling period Ts can be treated as a small parameter, then the closed-loop system
equations (71)–(72) have the standard singular perturbation form given by (5)–(6). First, the
stability and the rate of the transients of uk in (71)–(72) depend on the controller parameter
λ̃. Second, note that xk − xk−1 → 0 as Ts → 0. Hence, we have a slow rate of the transients
of xk as Ts → 0. Thus, if Ts is sufficiently small, the two-time-scale transients are artificially
induced in the closed-loop system (71)–(72), where the FMS is governed by

uk = [1 − λ̃gk−1]uk−1 + λ̃ {a(Ts)[rk−1 − xk−1]− fk−1} (73)

and xk = xk−1, i.e., xk = const (hence, xk is the frozen variable) during the transients in the
FMS (73).
Let g = gk ∀ k. From (73), the FMS characteristic polynomial

z − 1 + λ̃g (74)

results, where its root lies inside the unit disk (hence, the FMS is stable) if 0 < λ̃ < 2/g.
To ensure stability and fastest transient processes of uk, let us take the controller parameter
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λ̃ = 1/g, then the root of (74) is placed at the origin. Hence, the deadbeat response of the FMS
(73) is provided. We may take Ts ≤ T/η, where η ≥ 10.
Third, assume that the FMS (73) is stable and consider its steady state (quasi-steady state), i.e.,

uk − uk−1 = 0. (75)

Then, from (73) and (75), we get uk = uid
k , where

uid
k = g−1 {a(Ts)[rk−1 − xk−1]− fk−1} . (76)

Substitution of (75) and (76) into (71) yields the SMS of (71)–(72), which is the same as
the desired difference equation (63) in spite of unknown external disturbances and varying
parameters of (60) and by that the desired behavior of xk is provided.

8. Sampled-data nonlinear system of the 2-nd order

8.1 Approximate model

The above approach to approximate model derivation can also be used for nonlinear system
of the 2-nd order, which is preceded by ZOH with high sampling rate. For instance, let us
consider the nonlinear system given by (43)

x(2) = f (X, w) + g(X, w)u, y = x,

which is preceded by ZOH, where y ∈ R
1 is the output, available for measurement; u ∈ R

1 is
the control; w is the external disturbance, unavailable for measurement; X = {x, x(1)}T is the
state vector.
We can obtain the state-space equations of (43) given by

ẋ1 = x2,

ẋ2 = f (·) + g(·)u,

y = x1.

Let us introduce the new time scale t0 = t/Ts. We obtain

d

dt0
x1 = Tsx2,

d

dt0
x2 = Ts{ f (·) + g(·)u}, (77)

y = x1,

where dX/dt0 → 0 as Ts → 0. From (77) it follows that

d2y

dt2
0
= T2

s { f (·) + g(·)u}. (78)
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Assume that the sampling period Ts is sufficiently small such that the conditions X(t) = const,
g(X, w) = const hold for kTs ≤ t < (k + 1)Ts. Then, by taking the Z-transform of (78), we get

y(z) =
E2(z)

2 ! (z − 1)2 T2
s { f (z) + {gu}(z)} , (79)

where E2(z) = z + 1. Denote E2(z) = ǫ2,1z + ǫ2,2 and z2 − a2,1z − a2,2 = (z − 1)2, where
ǫ2,1 = ǫ2,2 = 1, a2,1 = 2, and a2,2 = −1. From (79) we get the difference equation

yk =
2

∑
j=1

a2,jyk−j + T2
s

2

∑
j=1

ǫ2,j

2 !

{

fk−j + gk−juk−j

}

(80)

given that the high sampling rate takes place, where gk = g(X(t), w(t))|t=kTs
, fk =

f (X(t), w(t))|t=kTs
, and

yk − yk−j → 0, ∀ j = 1, 2 as Ts → 0. (81)

8.2 Reference equation and insensitivity condition

Denote ek := rk − yk is the error of the reference input realization, where rk being the reference
input. Our objective is to design a control system having

lim
k→∞

ek = 0. (82)

Moreover, the control transients ek → 0 should have desired performance indices such as
overshoot, settling time, and system type. These transients of yk should not depend on the
external disturbances and varying parameters of the nonlinear system (43).
Let us consider the continuous-time reference model for the desired behavior of the output
y(t) = x(t) in the form given by (45), which can be rewritten as

y(s) = Gd(s)r(s),

where the parameters of the 2nd-order stable continuous-time transfer function Gd(s) are
selected based on the required output transient performance indices and such that

Gd(s)
∣
∣
∣
s=0

= 1.

By a Z-transform of Gd(s) preceded by a ZOH, the desired pulse transfer function

Hd
yr(z) =

z − 1
z

Z

{

L−1

[

Gd
yr(s)

s

]∣
∣
∣
∣
∣
t=kTs

}

=
Bd(z)

Ad(z)
(83)

can be found, where

Hd
yr(z)

∣
∣
∣
z=1

= 1.
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Hence, from (83), the desired stable difference equation

yk =
2

∑
j=1

ad
j yk−j +

2

∑
j=1

bd
j rk−j (84)

results, where

1 −
2

∑
j=1

ad
j =

2

∑
j=1

bd
j ,

2

∑
j=1

bd
j �= 0,

and the parameters of (84) correspond to the assigned output transient performance indices.
Let us rewrite, for short, the desired difference equation (84) as

yk = F(Yk, Rk), (85)

where Yk = {yk−2, yk−1}
T, Rk = {rk−2, rk−1}

T, and rk = yk at the equilibrium of (85) for
rk = const, ∀ k. By definition, put Fk = F(Yk, Rk) and denote

eF
k := Fk − yk, (86)

where eF
k is the realization error of the desired dynamics assigned by (85). Accordingly, if for

all k = 0, 1, . . . the condition

eF
k = 0 (87)

holds, then the desired behavior of yk with the prescribed dynamics of (85) is fulfilled. The
expression (87) is the insensitivity condition for the output transients with respect to the
external disturbances and varying parameters of the plant model (80). In other words, the
control design problem (82) has been reformulated as the requirement (87). The insensitivity
condition (87) is the discrete-time counterpart of the condition eF = 0 for the continuous-time
system (43).

8.3 Discrete-time counterpart of PIDF controller

In order to fulfill (87), let us construct the control law as the difference equation

uk =
q≥2

∑
j=1

djuk−j + λ0[Fk − yk], (88)

where

d1 + d2 + · · ·+ dq = 1, and λ0 �= 0. (89)

From (89) it follows that the equilibrium of (88) corresponds to the insensitivity condition
(87). In accordance with (84) and (86), the control law (88) can be rewritten as the difference
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equation

uk =
q≥2

∑
j=1

djuk−j + λ0

⎧

⎨

⎩
−yk +

2

∑
j=1

ad
j yk−j +

2

∑
j=1

bd
j rk−j

⎫

⎬

⎭
. (90)

The control law (90) is the discrete-time counterpart of the continuous-time PIDF controller
(50). In particular, if q = 2, then (90) can be rewritten in the following state-space form:

ū1,k = ū2,k−1 + d1ū1,k−1 + λ0[a
d
1 − d1]yk−1 + λ0bd

1rk−1,

ū2,k = d2ū1,k−1 + λ0[a
d
2 − d2]yk−1 + λ0bd

2rk−1, (91)

uk = ū1,k − λ0yk.

Then, from (91), we get the block diagram of the controller as shown in Fig. 10.

Fig. 10. Block diagram of the control law (90), where q = 2, represented in the form (91)

8.4 Two-time-scale motion analysis

The closed-loop system equations have the following form:

yk =
2

∑
j=1

a2,jyk−j + T2
s

2

∑
j=1

ǫ2,j

2 !

[

fk−j + gk−juk−j

]

, (92)

uk =
q≥2

∑
j=1

djuk−j + λ0[Fk − yk]. (93)

Substitution of (92) into (93) yields

yk =
2

∑
j=1

a2,jyk−j + T2
s

2

∑
j=1

ǫ2,j

2 !

[

fk−j + gk−juk−j

]

, (94)

uk =
q>2

∑
j=n+1

djuk−j+
2

∑
j=1

[dj−λ0T2
s

ǫ2,j

2 !
gk−j]uk−j+λ0

⎧

⎨

⎩
Fk−

2

∑
j=1

{

a2,jyk−j−T2
s

ǫ2,j

2 !
fk−j

}
⎫

⎬

⎭
. (95)

First, note that the rate of the transients of uk in (94)–(95) depends on the controller parameters
λ0, d1, . . . , dq. At the same time, in accordance with (81), we have a slow rate of the transients
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of yk, because the sampling period Ts is sufficiently small one. Therefore, by choosing the
controller parameters it is possible to induce two-time scale transients in the closed-loop
system (94)–(95), where the rate of the transients of yk is much smaller than that of uk. Then, as
an asymptotic limit, from the closed-loop system equations (94)–(95) it follows that the FMS
is governed by

uk=
q>2

∑
j=3

djuk−j+
2

∑
j=1

[dj−λ0T2
s

ǫ2,j

2 !
gk−j]uk−j+λ0

⎧

⎨

⎩
Fk−

2

∑
j=1

{

a2,jyk−j−T2
s

ǫ2,j

2 !
fk−j

}
⎫

⎬

⎭
, (96)

where yk − yk−j ≈ 0, ∀ 1, . . . , q, i.e., yk = const during the transients in the system (96).
Second, assume that the FMS (96) is exponentially stable (that means that the unique
equilibrium point of (96) is exponentially stable), and gk − gk−j → 0, ∀ j = 1, 2, . . . , q as
Ts → 0. Then, consider steady state (or more exactly quasi-steady state) of (96), i.e.,

uk − uk−j = 0, ∀ j = 1, . . . , q. (97)

Then, from (89), (96), and (97) we get uk = uid
k , where

uid
k = [T2

s gk]
−1

⎧

⎨

⎩
Fk −

2

∑
j=1

{

a2,jyk−j + T2
s

ǫ2,j

2 !
fk−j

}
⎫

⎬

⎭
. (98)

The discrete-time control function uid
k given by (98) corresponds to the insensitivity condition

(87), that is, uid
k is the discrete-time counterpart of the nonlinear inverse dynamics solution

(46). Substitution of (97) into (94)–(95) yields the SMS of (94)–(95), which is the same as the
desired difference equation (85) and by that the desired behavior of yk is provided.

8.5 Selection of discrete-time controller parameters

Let, the sake of simplicity, q = 2, ḡ = gk = const ∀ k, and take

λ0 = {T2
s ḡ}−1, dj =

ǫ2,j

2 !
, ∀ i = 1, 2. (99)

Then all roots of the characteristic polynomial of the FMS (96) are placed at the origin. Hence,
the deadbeat response of the FMS (96) is provided. This, along with assumption that the
sampling period Ts is sufficiently small, justifies two-time-scale separation between the fast
and slow motions. So, if the degree of time-scale separation between fast and slow motions
in the closed-loop system (94)–(95) is sufficiently large and the FMS transients are stable, then
after the fast transients have vanished the behavior of yk tends to the solution of the reference
equation given by (85). Accordingly, the controlled output transient process meets the desired
performance specifications. The deadbeat response of the FMS (96) has a finite settling time
given by ts,FMS = 2Ts when q = 2. Then the relationship

Ts ≤
ts,SMS

2 η
(100)
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may be used to estimate the sampling period in accordance with the required degree of
time-scale separation between the fast and slow modes in the closed-loop system. Here ts,SMS

is the settling time of the SMS and η is the degree of time-scale separation, η ≥ 10.
The advantage of the presented above method is that knowledge of the high-frequency gain
g suffices for controller design; knowledge of external disturbances and other parameters of
the system is not needed. Note that variation of the parameter g is possible within the domain
where the FMS (96) is stable and the fast and slow motion separation is maintained.

8.6 Example 3

Let us consider the system (59). Assume that the specified region of x(t) is given by x(t) ∈
[−2, 2]. Hence, the range of high-frequency gain variations has the following bounds g(x) ∈
[2, 6]. We have that E2(z) = z+ 1. Let the desired output behavior is described by the reference
equation (45) where ad

1 = 2. Therefore, from (45), the desired transfer function

Gd(s) =
bd

1Ts + 1

T2s2 + ad
1Ts + 1

=
bd

1Ts + 1
T2(s + ᾱ)2 (101)

results, where ᾱ = 1/T. The pulse transfer function Hd(z) of a series connection of a
zero-order hold and the system of (101) is the function given by

Hd(z) =
b̄d

1z + b̄d
2

z2 − ād
1z − ād

2
, (102)

where ād
1 = 2d, ād

2 = −d2, b̄d
1 = T−2[1 − d + (bd

1 T − ᾱ)dTs], and b̄d
2 = T−2d[d − 1 + (ᾱ −

bd
1 T)Ts]. Take, for simplicity, q = 2. Hence, in accordance with (90) and (99), the discrete-time

controller has been obtained

uk = d1uk−1 + d2uk−2 + [T2
s ḡ]−1{−yk + ād

1yk−1 + ād
2yk−2 + b̄d

1rk−1 + b̄d
2rk−2}, (103)

where d1 = d2 = 0.5. The controller given by (103) is the discrete-time counterpart of PID
controller (48). Let the sampling period Ts is so small that the degree of time-scale separation
between fast and slow motions in the closed-loop system is large enough, then gk = gk−1 =
gk−2, ∀ k. From (96) and (99), the FMS characteristic equation

z2 + 0.5
[

g

ḡ
− 1

]

z + 0.5
[

g

ḡ
− 1

]

= 0 (104)

results, where the parameter g is treated as a constant value during the transients in the FMS.
Take ḡ = 4, then it can be easily verified, that max{|z1|, |z2|} ≤ 0.6404 for all g ∈ [2, 6], where
z1 and z2 are the roots of (104). Hence, the stability of the FMS is maintained for all g ∈ [2, 6].
Let T = 0.3 s. and η = 10. Take Ts = T/η = 0.03 s. The simulation results for the output of
the system (59) controlled by the algorithm (103) are displayed in Figs. 11–15, where the initial
conditions are zero. Note, the simulation results shown in Figs. 11–15 approach ones shown
in Figs. 5–9 when Ts becomes smaller.
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(a) Reference input r(t) and output x(t) (b) Control u(t) and disturbance w(t)

Fig. 11. Output response of the system (59) with controller (103) for a step reference input
r(t) and a step disturbance w(t), where bd

1 = 0 (the reference model is a system of type 1)

(a) Reference input r(t) and output x(t) (b) Control u(t) and disturbance w(t)

Fig. 12. Output response of the system (59) with controller (103) for a ramp reference input
r(t), where bd

1 = 0 and w(t) = 0 (the reference model is a system of type 1)

(a) Reference input r(t) and output x(t) (b) Control u(t) and disturbance w(t)

Fig. 13. Output response of the system (59) with controller (103) for a step reference input
r(t) and a step disturbance w(t), where bd

1 = ad
1 (the reference model is a system of type 2)
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(a) Reference input r(t) and output x(t) (b) Control u(t) and disturbance w(t)

Fig. 14. Output response of the system (59) with controller (103) for a ramp reference input
r(t), where bd

1 = ad
1 and w(t) = 0 (the reference model is a system of type 2)

(a) Reference input r(t) and output x(t) (b) Control u(t) and disturbance w(t)

Fig. 15. Output response of the system (59) with controller (103) for a smooth reference input
r(t) and a step disturbance w(t), where bd

1 = ad
1 (the reference model is a system of type 2)

9. Conclusion

In accordance with the presented above approach the fast motions occur in the closed-loop
system such that after fast ending of the fast-motion transients, the behavior of the overall
singularly perturbed closed-loop system approaches that of the SMS, which is the same as
the reference model. The desired dynamics realization accuracy and an acceptable level of
disturbance rejection can be provided by increase of time-scale separation degree between
slow and fast motions in the closed-loop system. However, it should be emphasized that the
time-scale separation degree is bounded above in practice due to the presence of unmodeled
dynamics or time delay in feedback loop. So, the effect of unmodeled dynamics and
time delay on FMS transients stability should be taken in to account in order to proper
selection of controller parameters (Yurkevich, 2004). This effect puts the main restriction
on the practical implementation of the discussed control design methodology via singular
perturbation technique. The presented design methodology may be used for a broad class
of nonlinear time-varying systems, where the main advantage is the unified approach to
continuous as well as digital control system design that allows to guarantee the desired output
transient performances in the presence of plant parameter variations and unknown external
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disturbances. The other advantage, caused by two-time-scale technique for closed-loop
system analysis, is that analytical expressions for parameters of PI, PID, or PID controller with
additional lowpass filtering for nonlinear systems can be found, where controller parameters
depend explicitly on the specifications of the desired output behavior. The presented design
methodology may be useful for real-time control system design under uncertainties and
illustrative examples can be found in (Czyba & Błachuta, 2003; Khorasani et al., 2005).
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