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1. Introduction

The design and use of PID controllers is a part of what has been denominated Classical

Control, which as the name implies, has been studied for many years (DiStefano et al. 1996),

however it continues to be a source for research (Alvarez et al. 2008), (Ang et al. 2008),

(Su et al. 2010).

The structure of the controller contains a differential term to aid in the reduction of system

friction and an integral term to attenuate steady state error. The drawbacks of this control

scheme, particularly for nonlinear mechanical systems, include the difficulty in selecting

adecuate controller gains, a process usually refered to as tuning. The difficulty usually lies in

the fact that if the controller gains are set too small, the control objective may never be reached,

whereas the selection of excesively large controller gains may result in system instability.

Many approaches have been proposed to properly tune PID gains (Ang et al. 2008),

(Chang & Jung 2009), (Su et al. 2010), others have tried to improve upon the performance

of the PID controller by including modern control techniques such as neural networks, fuzzy

logic or variable structure control (Guerra et al. 2005).

Among these, variable structure control, specifically sliding mode control, has shown

to possess certain desirable properties, such as disturbance rejection and finite time

convergence; however it also presents unwanted behaviors mainly high frequency switching,

a phenomenon refered to as chattering, which is undesirable in mechanical systems because

it can cause accelerated wear of the mechanical components as well as activate unmodeled

dynamics. One solution presented is to include an adaptive gain in the high frequency term

so that the desirable properties may be exploited, and the undesirable effects minimized,

achieving an enhanced performance (Guerra et al. 2005).

2. Background

The control of mechanical systems is subject to many difficulties, as evidenced by the research

devoted to such aspects of mechanical systems as dead zone (Zhang & Gen 2009), and friction

(Canudas de Wit et al. 1995).

Consider a first order mechanical system given by (Canudas de Wit et al. 1995)
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ẍ =
u − f (ẋ)

m
(1)

where x is the position variable, m is the mass, u is the control input and the

function f (ẋ) denotes the nonlinear friction force. The PID control law is given by

(Canudas de Wit et al. 1995):

u = Kpe + Ki

∫ t

0
e(τ)dτ + Kd ė (2)

where Kp, Kd and Ki, are the proportional, derivative and integral gains, respectively and the

error term is given by e = x − xd, where xd is the constant desired value.

Mechanical systems under integral control action have been known to present limit cycles, due

in part to the complex nature of the friction force. This results in the system never reaching

the desired position (Canudas de Wit et al. 1995).

The authors in (Guerra et al. 2005) present an approach considering a PD controller which

is modified by the inclusion of a neural networks chattering controller that allows the high

frequency swithching when the system is away from the desired position, but tends to vanish

once the desired position is reached. In this chapter we will build upon that result and apply

a similar stragegy to a PID controller.

3. Controller design

Consider the system (1) with unit mass and friction force given by (Makkar et al. 2005):

f (ẋ) = γ1 [tanh (γ2 ẋ)− tanh (γ3 ẋ)] + γ4 tanh (γ5 ẋ) + γ6 ẋ (3)

The objective is for the error e to reach zero, i.e.,:

lim
t→∞

e(t) = 0 (4)

where

e = x − xd (5)

to achieve this, the controller (2) is modified to:

u = −Kpe − Kiζ − [2ε + δKd]ė (6)

where

ζ̇ = e (7)

δ̇ = −α ln(δ + 1) + Kr
[δ + 1]

ln(δ + 1) + 1
e2 (8)

where ε > 0, α > 0 and Kr > 0 are constant parameters. The term ζ is used for simplicity in

place of the term
∫ t

0 e(τ)dτ. It should be noted that for an intnitial condition δ(t0) = δ0 ≥ 0,

δ(t) ≥ 0, for all t ≥ t0 (Hench, 1999). In addtion, the adaptive gain can be considered to be

bound by δ ≤ δM by taking into account that a practical controller is subject to saturation.
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4. Closed loop system

To analyze the stability of the closed loop system, the following variable change is introduced:

ω = εζ + e (9)

which is used to form the vector ξ = [ω e ė]T. Using equations (1), (3), (5), (6) and (7) the

dynamic of the closed loop system is given by:

ξ̇ = A(δ)ξ + B(ė) (10)

where

A(δ) =

⎡

⎣

0 ε 1

0 0 1

−ε−1Ki −
[

Kp − ε−1Ki

]

− [2ε + δKd]

⎤

⎦ (11)

B(ė) = [0 0 − f (ė)]T (12)

The state δ contained in A(δ)3,3 is governed by the dynamic adaptation law (8). By setting (8)

and (10) to zero, it can be seen that the origin of the state space (ξ = 0, δ = 0) is the unique

equillibrium for the system which, when applied to equation (9), implies ζ = 0.

5. Stability analysis

Consider the candidate Lyapunov function:

V(ξ, δ) = ξTPcξ + (δ + 1) ln(δ + 1) (13)

where

Pc =
1

2

(

P + PT
)

(14)

P =

⎡

⎣

βε−1Ki 0 0

0 β
[

Kp − ε−1Ki

]

0

0 2βε β

⎤

⎦ (15)

It should be noted that V > 0 implies that Pc > 0, which by applying Sylvester’s Theorem

(Kelly et al. 2005) requires that β > 0, the complete analysis to ensure positivity of matrix Pc

is presented in the next section. To simplify stability analysis, the equality ξTPcξ = ξTPξ is

considered so that expression (13) can be restated as

V(ξ, δ) = ξT Pξ + (δ + 1) ln(δ + 1) (16)

The time derivative of (16) along the closed loop system (8) and (10) yields:

V̇ = −ξTQ(δ)ξ − R(ξ)− α ln(δ + 1)[ln(δ + 1) + 1] (17)

where

R(ξ) = −B(ė)T Pξ − ξTPB(ė) = 2 β ε e f (ė) + 2βė f (ė) (18)
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W(δ) = −
[

PA(δ) + A(δ)TP
]

(19)

Q(δ) =
1

2

[

W(δ) + W(δ)T
]

− ê2Kr(δ + 1)êT
2

=

⎡

⎣

0 0 0

0 2βε
[

Kp − ε−1Ki

]

− Kr (δ + 1) βε [2ε + δKd]
0 βε [2ε + δKd] 2β [ε + δKd]

⎤

⎦ (20)

where ê2 = [0 1 0]T. Regarding equation (3) used in (18), every term in the expression can

be bound by b tanh(c) ≤ |b||c|∀b, c ∈ ℜ. It can be stated that equation (3) satisfies:

− e f (ė) ≤ Kγ|e||ė| (21)

where

Kγ = γ1|γ2 − γ3|+ γ4γ5 + γ6 (22)

it should be remembered that all the parameters γι for ι = 1 . . . 6 are positive constants.

Regarding the term ė f (ė) in equation (18), it can be seen that this term is positive for

γ2 ≥ γ3 > 0 by using the properties of hiperbolic functions in equation (3) and considering

ė → Θ ≥ 0 (first quadrant) we find that:

tanh ([γ2 − γ3]Θ) [1 − tanh (γ2Θ) tanh (γ3Θ)] ≥ 0 (23)

given that Θ, γ2 and γ3 are considered to be positive, the second term will always be non

negative, whereas the first will be non negative if γ2 ≥ γ3 > 0 (as was previously stated).

These considerations apply also when ė → Θ ≤ 0 (third quadrant). By applying (21), (22) and

(23) in (18), along with the previously stated δ ≤ δM equation (17) can be bounded by:

V̇ ≤ −
[ |e|
|ė|

]T

Qc

[ |e|
|ė|

]

− 2βė f (ė)− α ln(δ + 1) [ln(δ + 1) + 1] (24)

where

Qc =

[

2βε
(

Kp − ε−1Ki

)

− Kr (δM + 1) βε (2ε + δMKd − Kγ)
βε (2ε + δMKd − Kγ) 2βε

]

(25)

In the follwing section, a process for tuning the controller gains will be introduced, this will

also be useful in provinding sufficient conditions to guarantee the positiviy of matrices Pc and

Qc.

6. Controller tuning

In order to establish bounds on the controller gains, we first analyze the matrix Pc defined

in expression (14). To find the roots of this symmetric matrix, we apply Sylvester’s Theorem

(Kelly et al. 2005), which generates a cubic polynomial of the form ε3 − 3bε + 2a < 0 with

a = Ki
2 and b =

Kp

3 which is satisfied for b3
> a2. Using exp(•) to denote the exponential

function, we define the terms υ1,2 = −a ± ic = r exp [∓i (θ − π)], c =
√

b3 − a2, r = b
3
2 ,

θ = arctan
(

c
a

)

, ϑ1,2 = 2a + υ1,2 = r exp (±iθ) and using Euler’s formula the roots are:
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ε1 = − (p1 + p2) = −2r
1
3 cos

(

θ

3

)

(26)

ε2 =
√

y1y2 = 2r
1
3 sin

(

π − 2θ

6

)

(27)

ε1 = q1 + q2 = 2r
1
3 cos

(

π − θ

3

)

(28)

considering that pι = ϑ
1
3
ι , qι = υ

1
3
ι , and yι = pι − qι for ι = 1, 2. Given that

c ∈ ℜ+, θ ∈
(

0, π
2

]

. Taking then ε1 < 0, and 0 < ε2 ≤ ε3. The polynomial

ε3 − 3bε + 2a = ( ε − ε1 ) ( ε − ε2 ) ( ε − ε3 ) < 0 is satisfied for all ε2 < ε < ε3.

We propose the definition b3 =
(

σ2 + 1
)

a2 with σ ≫ 0, in other words, the proportional gain

in equation (6) is tuned as

Kp =

[

27K2
i

4

(

σ2 + 1
)

]
1
3

(29)

Returning to Qc defined in expression (25), this matrix can be defined as positive by applying

Sylvester’s Theorem (Kelly et al. 2005) and tuning the derivitave gain in (6) as

Kd =
Kγ − 2ε

δM
(30)

the numerator in this equation must be positive, specifically, the constant bound from

equation (22) must satisfy Kγ > 2ε, so from equations (26)-(30) the positivity of matrices Pc

and Qc is restricted to

max

{

Ki

Kp
,

2βKi + Kr(δM + 1)

2βKp
, ε2

}

< ε < min

{

Kγ

2
, ε3

}

(31)

By establishing conditions to satisfy (31), which include the values of Kr and Ki selected to

generate a valid range for ε, we can conclude that expression (13) is positive definite and

that expression (17) is locally negative semi-definite, consequently the system (8) and (10)

has a stable equilibrium at the origin. Moreover, by restricting η =
[

ξTδ
]T

by the bounds

ηmin ≤ η ≤ ηmax and applying LaSalle’s Principle (Kelly et al. 2005) to expression (24) a

closed set can be defined as:

Ω = {η ∈ ℜ4 : V̇ (η) = 0} = {ω ∈ ℜ, [e ė δ]T = 0} (32)

Solving (32) along (8) and (10) it can be seen that

lim
t→∞

ω(t) = 0 (33)

and by invoking the variable change (9) that

lim
t→∞

ζ(t) = 0 (34)

therefore the origin of the system defined by (8) and (10) is locally asymptotically stable.
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7. Simulation results

In order to test the performance of the proposed controller simulations were carried out using

the friction model (3) with the parameters set to γ1 = 1.25, γ2 = 100, γ3 = 10, γ4 = γ5 = 1.,

γ6 = 0.1, α = 10, β = 1, δM = 1, σ = 100, Ki = Kr = 10 and the mass is considered to be

unitary.

Using the mentioned values in equations (22), (29) and (30) we obtain Kp = 188.9945,

Kγ = 122.6 and applying the obtained values to equation (31) we arrive at

max {0.53, 0.106, 0.52 } < ε < min { 61.3, 13.7 } such that the value chosen was ε = 6.808

and hence Kd = 108.9848.

Figure 1 shows the performance of the position regulation. It should be noted that there is

a very small overshot and that no limit cycles are present. The asymptotic stability can be

easily seen in Figure 2 where the error is presented, it is clear that the error is still decreasing,

achieving an accuracy within a micrometer after 200 seconds.
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Fig. 1. Controller Performance: Achieved Position.

Figure 3 shows the evolution of the adaptive gain δ, it is clear that as the error approaches

zero, so too does the value of the adaptive gain, and consequently so does the value of the

control variable, shown in Figure 4.

The control variable initially presents a large value which then decreases. It can be inferred

from the asymptotic stability that the control variable decreses asymptotically with time as

shown in Figures 4 and 5. Figure 5 shows the control variable in more detail. During the first

ten seconds a small oscillation can be seen but it is eliminated after approximately 3 seconds.

Figures 6 and 7 show that the term ζ =
∫ t

0 e(τ)dτ also approaches zero. It can be clearly seen,

especially in Figure 7 that ζ asymptotically approaches zero.
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Fig. 2. Controller Performance: Position Error.
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Fig. 3. Controller Performance: Adaptive Gain.
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Fig. 4. Controller Performance: Control Variable.

0 2 4 6 8 10
−50

0

50

100

150

200

Time [seconds]

C
o

n
tr

o
l 
V

a
ri
a

b
le

Fig. 5. Controller Performance: Control Variable (detail).
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Fig. 6. Controller Performance: Error Integral.
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Fig. 7. Controller Performance: Error Integral (detail).
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Figure 8 shows how with increasing time, the value of the adaptive gain draws even closer to

zero. The same can be said of the error in Figure 9 and of ζ in Figure 10.
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Fig. 8. Controller Performance: Adaptive Gain (detail).
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Fig. 9. Controller Performance: Position Error (detail).
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Fig. 10. Controller Performance: Error Integral (detail).

8. Conclusions

An extension to the traditional PID controller has been presented that incorporates an

adaptive gain. The adaptive gain PID controller presented is demonstrated to asymptotically

stabilize the system, this is shown in the simulations where the position error converges to

zero.

In the presented analysis, considerations using known bounds of the system (such as friction

coefficients) are used to show the stability of the system as well as to tune the controller gains

Kp and Kd.
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