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1. Introduction 

1.1 General properties and functions of METCAM/MUC18 
Human METCAM (huMETCAM), a CAM in the immunoglobulin-like gene superfamily, is 
an integral membrane glycoprotein. Alternative names for METCAM are MUC18 [1], CD146 
[2], MCAM [3], MelCAM [4], A32 [5], and S-endo 1 [6]. To avoid confusion with mucins and 
to reflect its biological functions, we have renamed MUC18 as METCAM (metastasis CAM), 
which means an immunoglobulin-like CAM that affects or regulates metastasis [7]. The 
huMETCAM  has 646 amino acids that include a N-terminal extra-cellular domain of 558 
amino acids, which has 28 amino acids characteristic of a signal peptide sequence at its N-
terminus, a transmembrane domain of 24 amino acids (amino acid #559-583), and a 
cytoplasmic domain of 64 amino acids at the C-terminus. HuMETCAM has eight putative N-
glycosylation sites (Asn-X-Ser/Thr), of which six are conserved, and are heavily glycosylated 
and sialylated resulting in an apparent molecular weight of 113,000-150,000. The extra-
cellular domain of the protein comprises five immunoglobulin-like domains (V-V-C2-C2-
C2) [1, 7] and an X domain [7]. The cytoplasmic tail contains peptide sequences that will 
potentially be phosphorylated by protein kinase A (PKA), protein kinase C (PKC), and 
casein kinase 2 (CK 2) [1, 7-8].  My lab has also cloned and sequenced the mouse METCAM 
(moMETCAM) cDNA, which contains 648 amino acids with a 76.2% identity with 
huMETCAM, suggesting that moMETCAM is likely to have biochemical properties and 
biological functions similar to the human counter part [9]. The structure of the huMETCAM 
protein is depicted in Fig. 1, suggesting that METCAM, similar to most CAMs, plays an 
active role in mediating cell-cell and cell-extracellular interactions, crosstalk with many 
intracellular signaling pathways, and modulating the social behaviors of cells [7].  
It is now well documented that although tissue specific signatures exist in different cancer 
types, cancers from different tissues also express some common genes [10-12]. One group of 
them is cell adhesion molecules (CAMs). CAMs do not merely act as a molecular glue to 
hold together homotypic cells in a specific tissue or to facilitate interactions of heterotypic 
cells; CAMs also actively govern the social behaviors of cells by affecting the adhesion status 
of cells and modulating cell signaling [13]. They control cell motility and invasiveness by  
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Fig. 1. HuMETCAM protein structure. SP stands for signal peptide sequence, V1, V2, C2, 
C2’, C2’’ for five Ig-like domains (each held by a disulfide bond) and X for one domain 
(without any disulfide bond) in the extracellular region, and TM for transmembrane 
domain. P stands for five potential phosphorylation sites (one for PKA, three for PKC, and 
one for CK2) in the cytoplasmic tail. The six conserved N-glycosylation sites are shown as 
wiggled lines in the extracellular domains of V1, between C2’ and C2”, C2’’, and X. 

mediating the remodeling of cytoskeleton [13]. They also actively mediate the cell-to-cell 
and cell-to-extracellular matrix interactions to allow cells to constantly respond to 
physiological fluctuations and to alter/remodel the surrounding microenvironment for 
survival [14]. They do so by crosstalk with cellular surface growth factor receptors, which 
interact with growth factors that may be secreted from stromal cells or released from 
circulation and embedded in the extracellular matrix [13-14]. Thus an altered expression of 
CAMs affects the motility and invasiveness of many tumor cells in vitro and metastasis in 
vivo [13-14]. CAMs also play an important role in the favorable soil that provides a proper 
microenvironment at a suitable period to awaken the dormant metastatic tumor cells to 
enter into an aggressive growth phase. Actually, the metastatic potential of a tumor cell, as 
documented in many carcinomas, is the consequence of a complex participation of many 
over- and under-expressed CAMs [13-14]. Based on the above information, aberrant 
expression of huMETCAM may also affect the motility and invasiveness of many tumor cells 
in vitro and metastasis in vivo. It is logical to hypothesize that HuMETCAM should play an 
important role in regulating the malignant progression of many cancer types [7, 13]. 
Nevertheless, in this chapter we will only review its positive or negative roles in the 
tumorigenesis and metastasis of human and mouse melanoma cells. 
HuMETCAM is expressed in a limited number of normal tissues, such as hair follicular cells, 
smooth muscle cells, endothelial cells, cerebellum, normal mammary epithelial cells, basal 
cells of the lung, activated T cells, intermediate trophoblast, [15] and normal nasopharyngeal 
epithelial cells [16]. The protein is not expressed in melanocyte, but it is overly expressed in 
most (67%) malignant melanoma cells [1]. Thus it was postulated to play a role in the 
progression of human melanoma. Likewise, the expression of mouse METCAM 
(moMETCAM) was positively correlated with the metastatic ability of several mouse 
melanoma cell lines [9]. Since then, it has been proven that METCAM is not just correlative 
with the progression of melanoma, but also is capable of inducing non-metastatic melanoma 
cell lines to metastasize in various mouse models. First, it was shown that the stable ectopic 
expression of the huMETCAM cDNA gene in three non-metastatic human cutaneous 
melanoma cell lines increases the metastatic abilities of these cell lines in immune-deficient 
xenograft mouse models [3,17].  Second, it was shown that the stable ectopic expression of 
moMETCAM cDNA in two low-tumorigenic and low-metastatic mouse melanoma cell 
lines, K10 (tumor–/metlow) and K3 (tumor+/metlow), increases their metastatic abilities in 
immune-competent syngeneic C3H brown mice [18].  
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However, METCAM enables both human and mouse melanoma cells to metastasize only 
under an experimental metastasis assay (tail vein injection), not under a spontaneous 
metastasis assay (subcutaneous injection). In addition, the ectopic expression of METCAM 
in METCAM-minus melanoma cell lines has no effect or a slight suppressive effect on the 
tumorigenesis. Taken together, this suggests that METCAM promotes the metastasis of 
melanoma cells only at later stages of progression (it has been found that fibroblast growth 
factor-2 initiates the metastatic process) [19]. 
Recently, we further investigated the effect of moMETCAM expression on tumorigenesis 
and metastasis of a different mouse melanoma subline #9 of K1735 (K1735-9 or K9), which is 
also METCAM-minus and lowly metastatic, but has a highly tumorigenic phenotype 
(tumor+++/metlow), in the syngeneic C3H mouse model. We tested the effect of ectopic 
expression of moMETCAM on in vitro growth rate, motility, and invasiveness and in vivo 
subcutaneous tumor growth and pulmonary metastasis. Similar to the two isogenic K10 and 
K3 sublines, ectopic expression of METCAM did not significantly affect in vitro growth rate, 
but greatly increased in vitro motility and invasiveness. Surprisingly, unlike K10 and K3 
sublines, ectopic expression of METCAM in K9 cells decreased tumorigenicity and 
suppressed their ability to establish pulmonary nodules. The suppressive effect of 
METCAM is not limited to the K9 mouse melanoma cell line, but is also observed in two 
human ovarian cancer cell lines (our unpublished results).  
We suggest that METCAM-mediated tumorigenesis and metastasis of melanoma cells and 
other cancer cells is dependent on intrinsic co-factors of different K1735 sublines and cancer 
types. The establishment of an immune-competent syngeneic mouse model for the 
METCAM-mediated progression is physiologically more relevant to and should provide 
knowledge more applicable to clinical melanoma than immune-deficient xenograft mouse 
models. The putative mechanisms of METCAM-mediated promotion/suppression of 
melanoma progression will also be discussed.  
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Fig. 2. Effect of over-expression of huMETCAM on tumor formation of two human 
melanoma cell lines, SK and XP-44 [17]. SK-METCAM and XP44-METCAM were two clones 
of human melanoma cell lines, SK and XP44, respectively, which were transfected with 
huMETCAM and expressed a high level of huMETCAM. Statistical analysis was not 
possible because detailed data was not provided. 
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2. Metcam and melanoma tumorigenesis 

Over-expression of METCAM had a slight tumor suppression effect on tumorigenesis of 
human melanoma cells in xenograft mice [17], as shown in Fig. 2, but it had no effect on 
tumorigenesis of two sublines, #3 (K3) and #10 (K10), of the mouse melanoma cell line 
K1735 in syngeneic mice [18]. Fig. 3 only shows the effect of moMETCAM on the 
tumorigenesis of K3. 
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Fig. 3. Effect of over-expression of moMETCAM on tumor formation of a mouse melanoma 
cell line K1735 subline #3 (K3) [18].  K3-METCAM (High) and K3-METCAM (Low) were 
two K3 clones transfected with moMETCAM cDNA that expressed a high and a low level of 
moMETCAM, respectively. K3-Vector, as a negative control, was one clone transfected with 
an empty vector and did not express any moMETCAM. Asterisks show the results of the 
clone used as the references for the P-value calculation. The P-values should be compared 
with the reference (asterisk) on the same row. 
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Fig. 4. Effect of over-expression of huMETCAM on tumor formation of a human melanoma 
cell line SB-2 [3]. SB-2 is a human melanoma cell line, which did not express any 
huMETCAM. SB-2-neo is the SB-2 cells transected with the empty vector, as a negative 
control. SB-2-METCAM is a clone of the SB-2 cells which were transfected with huMETCAM 
cDNA and expressed a high level of huMETCAM. Since tumor formation was only shown 
in one nude mouse for each clone, statistical analysis was not possible. 
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Only one group showed that over-expression of METCAM increased tumorigenesis of a 

human melanoma cell line in xenograft mice [3]; however the results were questionable 

because only the tumorigenicity of one mouse injected with METCAM-expressing clone and 

one mouse with control cells was shown and thus no standard deviations were indicated 

and no statistical analysis done, as shown in Fig. 4.  

The most convincing evidence for its tumor suppressor effect is in the subline #9 of the 

mouse melanoma cell line K1735 (K1735-9 or K9) in syngeneic C3H mice. Over-expression of 

moMETCAM in the K9 cells significantly decreased subcutaneous tumorigenesis in 

immunocompetent syngeneic C3H mice [20-21], as shown in Fig. 5.   
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Fig. 5. Effect of over-expression of moMETCAM on tumor formation of a mouse melanoma 
K1735 subline #9 (K1735-9 or K9) in immune competent syngeneic C3H mice [20-21]. K9-
METCAM (High) and K9-METCAM (Low) were two transfected clones, which expressed a 
high and a low level of moMETCAM, respectively. K9-Vector was one clone transfected 
with the empty vector, as a negative control. K9 was the K1735 subline #9 cells, also as a 
negative control. Both K9-Vector and K9 did not express any moMETCAM. 

3. Metcam and melanoma metastasis 

HuMETCAM/MUC18 was originally found to be abundantly expressed on the cellular 

surface of most malignant human melanomas; since then, it has been postulated to play a 

role in the progression of human melanoma [1]. This notion is also supported by the positive 

correlation of moMETCAM expression with the metastatic ability of several mouse 

melanoma cells lines [9]. Definitive proof comes from the results that the stable, ectopic 

expression of the huMETCAM cDNA gene in three non-metastatic human cutaneous 

melanoma cell lines increases the metastatic abilities of these cell lines in immune-deficient 

mouse models [3, 17].  Furthermore, the stable, ectopic expression of moMETCAM cDNA in 

two low-metastatic mouse melanoma cell lines increases the metastatic abilities of these cell 

lines in immune-competent syngeneic mice [18], as shown in Figs. 6 & 7. 
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Fig. 6. Enforced expression of moMETCAM increased lung nodule formation of mouse 
melanoma K1735-3 (K3) cells in syngeneic C3H mice. K4, the highly tumorigenic and 
metastatic subline #4 of K1735 (Tumor+++/Methigh), was used as a positive control. K3-
METCAM clone expressed a high level of moMETCAM. K3, K3-Vector, and K3-METCAM 
(Rev), in which the moMETCAM cDNA was inserted into the expression vector in anti-
sense orientation, were the control clones that did not express any moMETCAM. 
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Fig. 7. Enforced expression of moMETCAM increased lung nodule formation of mouse 
melanoma K1735-10 (K10) cells in syngeneic C3H mice. The K10-METCAM clone expressed 
a high level of moMETCAM. K10, K10-Vector, and K10-METCAM (Rev), in which the 
moMETCAM cDNA was inserted into the expression vector in anti-sense orientation, were 
the control clones that did not express any moMETCAM. 

However, METCAM enables melanoma cells to establish pulmonary metastasis only when 
the cells are injected into the tail vein (experimental metastasis assay) [3, 17-18], thus 
bypassing the initial stages of metastasis. No metastasis was found when METCAM-
expressing melanoma cells were injected subcutaneously (spontaneous metastasis assay) 
either in immune-deficient mouse models [3, 17] or in immune-competent syngeneic mouse 
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models [18].  Taken together, METCAM promotes the metastasis of melanoma cells, but at 
later stages [7]; thus over-expression of METCAM did not initiate the metastasis of 
melanoma cells. This result is consistent with the recent observation that fibroblast growth 
factor 2, but not huMETCAM, nor integrin, actually initiates the malignant progression of 
subcutaneous melanocyte into melanoma [19].  
METCAM increases the progression of most melanoma cell lines with the exception of one 
mouse melanoma subline, K1735-9. We found over-expression of moMETCAM in one mouse 
melanoma K1735 subline #9 (K1735-9 or K9) decreased pulmonary lung nodule formation 
when cells were injected into tail veins (experimental metastasis test) [20-21], as shown in 
Fig. 8. 
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Fig. 8. Enforced expression of moMETCAM suppressed lung nodule formation of mouse 
melanoma K1735-9 (K9) cells in syngeneic C3H mice. Clones K9-METCAM (High) and K9-
METCAM (Low) clones expressed high and low levels of moMETCAM, respectively. K9-
Vector, K9, and K9-METCAM (Rev), in which the moMETCAM cDNA was inserted into the 
expression vector in anti-sense orientation, were the control clones that did not express any 
moMETCAM. 

Summary  

Table 1 summarizes the possible role of METCAM in the tumorigenesis and metastasis of 
various melanoma cells.  
 

Melanoma cells Tumorigenesis Metastasis References 

Clinical melanoma 
and human 
melanoma cell lines 

No effect 
Increasing (effect is 
in the late stages) 

3, 17 

Mouse melanoma 
K1735 sublines #3 
and #10 

No effect or slight 
suppression 

Increasing (effect is 
in the late stages) 

9, 18 

Mouse melanoma 
K1735 subline #9 

Suppression Suppression 20, 21 

Table 1. The role of METCAM in the tumorigenesis and metastasis of melanoma cells. 
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As shown in Table 1, huMETCAM does not affect the tumorigenesis of most melanoma cell 
lines, but it increases metastasis, thus is a metastatic gene, for most melanoma cell lines.  
However, in one case it acts as a tumor suppressor and a metastasis suppressor for a mouse 
melanoma subline.  

4. Mechanisms of metcam-mediated melanoma progression 

How does METCAM mediate or regulate tumorigenesis and metastasis of melanoma cells? 
We may be able to find some common clues to begin understanding its mechanisms by 
deducing knowledge learned from the tumorigenesis of other tumors [10-14, 22] and the 
huMETCAM-mediated progression of melanoma [23-25] and tumor angiogenesis [2, 26-29]. 
First, the transcriptional expression of METCAM gene may be regulated by PKA/CREB 

(cAMP-responsive element binding protein), AP-2 [24-25] and other transcription factors, 
such as SP-1, c-Myb, N-Oct2, ETs, CArG, Egr-1, and transcription factors binding to insulin 
response elements [7].  Among these potential regulators, it is well documented that the AP-

2transcription factor plays a crucial tumor suppressor role in the progression of 
melanoma [25]. However, the roles of other transcription regulators, tissue specific 
enhancers and repressors, epigenetic control, and control at the level of chromatin 
remodeling of the gene have still yet to be investigated [7]. 
Second, since the cytoplasmic tail of METCAM contains consensus sequences potentially to 
be phosphorylated by PKA, PKC, and CK2, it may manifest its functions by cross-talk with 
various signaling pathways mediated by these protein kinases [7]. For example, METCAM 
expression in melanoma cells is reciprocally regulated by AKT, in which AKT up-regulates 
the level METCAM and over-expression of METCAM activates endogenous AKT, which in 
turn inhibits apoptosis and increases survival ability [23]. However the detailed mechanism 
of how AKT up-regulates the expression of METCAM has not been worked out. PKA, PKC, 
and CK2 may phosphorylate the cytoplasmic tail of METCAM, which then facilitates its 
interaction with FAK, thus promoting cytoskeleton remodeling. Alternatively, after 
phosphorylation of its cytoplasmic tail by these protein kinases, METCAM may interact with 
the downstream effectors of Ras, activating ERK and JNK, which in turn may 
transcriptionally activate the expression of AKT or other genes that promote the 
proliferation and angiogenesis of tumor cells. Though METCAM has not been shown to be a 
substrate of CK2, which has been shown to phosphorylate other CAMs, such as CD44, E-
cadherin, L1-CAM, and vitronectin, it is also likely that CK2 may be able to phosphorylate 
METCAM and link it to AKT and affect the proliferation, survival and other tumorigenesis-
related functions of tumor cells [30]. 
Third, after the engagement of METCAM with the ligand(s) or extracellular matrix, it may 
transmit the outside-in signals into tumor cells by activating FAK and the downstream 
signaling components, promoting cytoskeleton remodeling and increasing tumor cell 
motility and invasiveness [2, 7].  
Fourth, from what we know about the roles of other CAMs in the progression of other 
tumors [10-14, 22], it is logical to postulate that METCAM may affect cancer cell progression 
by cross-talk with signaling pathways that affect apoptosis, survival and proliferation and 
angiogenesis of tumor cells [7, 13, 22]. Thus METCAM may affect tumorigenesis and 
metastasis by altering the expression of various indexes in apoptosis, survival signaling, 
proliferation signaling, and angiogenesis. To support this notion, we have found that 
METCAM promotes the progression of prostate cancer cells by increasing proliferative 
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ability (with elevated levels of Ki67 and PCNA), by increasing survival ability (with an 
elevated level of phosphorylated AKT), and by increasing angiogenic ability (with elevated 
levels of VEGF, VEGFR2, and CD31) [31]; but it has no effect on the process of apoptosis. In 
fact, METCAM promotes the progression of melanoma cells differently by preventing the 
apoptosis of melanoma cells [32] and reciprocally affecting the expression of a survival 
index, phospho-AKT [23]. Further systematic studies by using specific RNAi’s to 
knockdown the downstream effectors one by one in METCAM-expressing clones may be 
necessary to further understand this aspect of the mechanism.  
Fifth, METCAM may mediate the hematogenous spreading of melanoma cells, which had 

been implicated by its expression in endothelial cells, as well as in malignant melanoma cells 

[26]. Furthermore it has been shown to be present in the junctions of endothelial cells [27-28] 

and essential for tumor angiogenesis in at least three tumor cell lines [29] and human 

prostate cancer LNCaP cells [31, 33]. It is highly likely that METCAM expression may 

promote the hematogenous spreading of melanoma cells. However, it is not known if 

METCAM plays a role in the lymphatic spread of cancer cells. Recent results from one group 

showed that METCAM is one of the lymphatic metastasis-associated genes, which is up-

regulated in malignant mouse hepatocarcinoma [34]; suggesting that METCAM may also 

play a role in promoting lymphatic metastasis of melanoma cells. But the details of how 

METCAM mediates hematogenous or lymphatic spreading of melanoma cells have still yet 

to be investigated. Labeling the cells with viable dyes and following the process in real time 

by using a non-intruding, but highly photo-penetrating imaging method of photoacoustic 

tomography (PAT) [35-36] may be useful for monitoring each step in the METCAM-

mediated progression. For the METCAM-mediated dynamic spreading of melanoma cells in 

vivo, the PAT imaging method coupled with using hairless syngeneic mouse animal models 

[37] should reveal the process more clearly and in real time.  

Sixth, METCAM has been shown to express in normal mesenchymal cells (smooth muscle, 

endothelium, and Schwann cells) in the tissue stroma and to be a marker for the 

mesenchymal stem cells [38]. METCAM may play an important role in regulating melanoma 

dormancy or awakening, driving or preventing melanoma cells to pre-metastatic niche, and 

formatting a microenvironment for favorable or unfavorable melanoma growth in 

secondary sites. 

Seventh, METCAM may affect the progression of cancer cells by interactions with the host 

immune system, which, however, has been shown to have a paradoxical role in tumor 

progression [39]. Recently one group has shown that a subset of host B lymphocytes may 

control melanoma metastasis through METCAM-dependent interaction [40]. On the other 

hand, it is highly likely that the tumor suppression effect of METCAM expression in 

melanoma K1735-9 subline may be due to the interaction of METCAM-expressing cells with 

the host immune defense system in the immunocompetent syngeneic C3H brown mouse, 

since the intrinsic motility and invasiveness of mouse melanoma K1735-9 was increased by 

METCAM expression [20-21]. For example, the surface METCAM expressed in this 

particular melanoma cell line may have a homophilic interaction with the NK cells, which 

also express METCAM, and enhance the cytotoxic functions of NK cells [41]. This hypothesis 

should be testable by studying the METCAM-mediated progression of METCAM-

expressing K1735-9 cells in mice treated with antibodies against CD4+T cells, CD8+T cells, 

or NK cells, or mice with a combined treatment with the antibodies to impair the functions 

of these immune cells.   
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Eighth, malignant progression of cancer cells has been shown to associate with abnormal 
glycosylation, resulting in expression of altered carbohydrate determinants [42]. Thus, the 
glycosylated status of METCAM in different cancer types may be different from normal 
cells, thus manifesting positive or negative effect on the progression of melanoma cells. This 
aspect of the METCAM-mediate cancer progression has not been well studied, but is 
especially intriguing since METCAM possesses six conserved N-glycosylation sites in the 
extracellular domain [7-9].  
We should always keep in mind that the mechanisms of METCAM-mediated melanoma 
progression may be slightly different in different melanoma cell lines due to their different 
intrinsic properties, which provide different co-factors and/or different ligand(s) that either 
positively or negatively regulate the METCAM-mediated tumorigenesis and metastasis. To 
further understand the role of METCAM in these processes, it is essential to identify the co-
factors and the METCAM-cognate heterophilic ligand(s), which modulate the biological 
functions of METCAM. The endeavor in this direction appears to be promising: from our 
preliminary attempts we may have successfully found a possible candidate of METCAM’s 
heterophilic ligand in METCAM-expressing human melanoma SK-Mel-28 cells [7].  
Mechanisms of METCAM-mediated negative role in the progression of melanoma cells have 
not been studied at all. In some cancers does METCAM behave like E-cadherin, which 
always plays a negative role in the tumorigenesis and metastasis of melanoma as well as 
most epithelial cancer cells [13] But even E-cadherin may function differently in different 
cancer cells. For example, its expression is temporally different and correlates with different 
stages during the progression of ovarian cancer [43]: E-cadherin is not expressed in the 
ovarian surface epithelial cells, but is expressed in premalignant lesions and in well-
differentiated tumors, and finally is not expressed in late–stage invasive tumors [43]. 
Alternatively, METCAM may behave differently from E-cadherin by being modulated by 
different cofactors or ligands, which are expressed at different stages of the cancer. The 
tumor suppressor role of METCAM is not restricted to the mouse melanoma K9 subline and 
it was first suggested in breast cancer cells [44]; however, the tumor suppression of 
METCAM in breast cancer cell lines could not be reproduced [45]. Recently we also found 
the tumor suppressor role of METCAM in two human ovarian cancer cell lines [46]. The 
tumor suppressor role of METCAM in ovarian cancer cells is different from mouse 
melanoma subline K9 in that the METCAM expression suppressed the intrinsic motility and 
invasiveness of human ovarian cancer cells [46]. Our preliminary results appear to suggest 
an alternative mechanism that a soluble form of METCAM, which is produced by MMPs in 
the METCAM-expressing cells, may mediate the suppressive effect in ovarian cancer cells, 
similar to the production of a soluble form of P-cadherin by the induced MMPs in breast 
cancer cells, which then dictates, instead of suppresses, the aggressive behavior of the breast 
cancer cells [47]. 

5. Conclusion and clinical applications 

METCAM may have a key positive function in the progression of most melanoma cell lines. 
On the other hand, it may also have a key function in suppressing the progression of a few 
melanoma cell lines. To further understand its mechanisms in these processes, it is crucial to 
define its functional domains, identify its cognate ligand(s) and cofactor regulators, and 
study its cross-talk with members of various signaling pathways [7]. These model systems 
may be useful for real time observation of the dynamic process of cancer progression by 
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using a non-intrusive and high photo-penetrating imaging system, such as the newly 
developed photoacoustic tomography (PAT), to further understanding the process in mouse 
models [35-36]. The knowledge gained would also be useful for designing effective means to 
decrease or even to block the metastatic potential of these cancers. Along these lines, 
preclinical trials using a fully humanized anti-METCAM antibody against melanoma 
growth and metastasis [48-49] and using a mouse anti-METCAM monoclonal antibody 
against angiogenesis and tumor growth of hepatocarcinoma, leiomyosarcoma, and 
pancreatic cancer [29] have been successfully demonstrated. Alternatively, small soluble 
peptides derived from METCAM may also be useful for blocking the tumor formation and 
tumor angiogenesis of melanoma cells [33, 50-51]. The attachment of these reagents to 
nanoparticles may be another alternative for therapeutic use [52]. 

6. Acknowledgement 

I thank Mr. Jonathan C. – Y. Wu for critical reading of the manuscript and proof reading of 
the English. 

7. References 

[1] Lehmann, J. M., Reithmuller, G., Johnson, J. P. 1989, “MUC18, a marker of tumor 
progression in human melanoma.” Proc. Natl. Acad. Sci. USA, 86, 9891-9895. 

[2] Anfosso, F., Bardin, N., Vivier, E., Sabatier, F., Sampol, J., Dignat-George, F., 2001, 
“Outside-in signaling pathway linked to CD146 engagement in human endothelial 
cells.” J. Biol. Chem., 276, 1564-1569. 

[3] Xie, S., Luca, M., Huang, S., Gutman, M., Reich, R., Johnson, J. P., Bar-Eli, M. 1997, 
“Expression of MCAM/MCU18 by human melanoma cells leads to increased 
tumor growth and metastasis.” Cancer Research, 57, 2295-2303. 

[4] Shih, I. M., Elder, D. E., Hsu, M. Y., Herlyn, M. 1994, “Regulation of Mel-CAM/MUC18 
expression on melanocytes of different stages of tumor progression by normal 
keratinocytes.” Am. J. Pathol., 145, 837-845. 

[5] Shih, I. M., Elder, D. E., Speicher, D., Johnson, J. P., and Herlyn, M. 1994, “Isolation and 
functional characterization of the A32 melanoma-associated antigen.” Cancer 
Research, 54, 2514-2520. 

[6] Bardin, N., George, F., Mutin, M., Brisson, C., Horschowski, N., Frances, V., Lesaule, G., 
Sampol, J. 1996, “S-endo1, a pan-endothelial monoclonal antibody recognizing a 
novel human endothelial antigen.” Tissue Antigens, 48, 531-539. 

[7] Wu, G. - J. 2005, “METCAM/MUC18 expression and cancer metastasis.” Current 
Genomics, 6, 333-349. 

[8] Wu, G. – J., Wu, M. - W. H., Wang, S. W.,  Liu, Z., Peng, Q., Qu, P., Yang, H., Varma, V. 
A., Sun, Q., Petros, J. A., Lim. S., and Amin, M. B. 2001, “Isolation and 
characterization of the major form of human MUC18 cDNA gene and correlation of 
MUC18 over-expression in prostate cancer cells and tissues with malignant 
progression.” Gene, 279, 17-31.  

[9] Yang, H. Wu, M. - W. H., Wang, S. W., Liu, Z., Wu, G. - J. 2001, “Isolation and 
characterization of murine MUC18 cDNA, and correlation of its expression in 
murine melanoma cell lines with their metastatic ability.” Gene, 265, 133-145. 

www.intechopen.com



 
Research on Melanoma: A Glimpse into Current Directions and Future Trends 

 

240 

[10] Vogelstein, B., Kinzler, K. W. 2004, “Cancer genes and the pathways they control.” 
Nature Medicine, 10, 789-799. 

[11] Christofori, G. 2006, “New signals from the invasive front.” Nature, 44, 444-450. 
[12] Gupta, G. P. and Massague, J. 2006, “Cancer metastasis: building a frame work.” Cell, 

127, 679-695. 
[13] Cavallaro, U., Christofori, G. 2005, “Cell adhesion and signaling by cadherins and Ig-

CAMs in cancer.” Nature Reviews/Cancer, 4, 118-132. 
[14] Chambers, A., Groom, A. C. and MacDonald, I. C. 2002, “Dissemination and growth of 

cancer cells in metastatic sites.” Nature Reviews/Cancer 2, 563-572. 
[15] Shih, I. M. 1999, “The role of CD146 (MelCAM), in biology and pathology.” Am. J. 

Pathol., 189, 4-11. 
[16] Lin, J. C., Chiang, C. F., Wang, S. W., Wang, W. Y., Kwan, P. C., and Wu, G. - J. 2010, 

“Decreased expression of METCAM/MUC18 correlates with the appearance of, but 
its increased expression with metastasis of nasopharyngeal carcinoma.” 
(Submitted). 

[17] Schlagbauer-Wadl, H., Jansen, B., Muller, M., Polterauer, P., Wolff, K., Eichler, H.-G., 
Pehamberger, H, Konak, E., and Johnson, J. P. 1999, “Influence of 
MUC18/MCAM/CD146 expression on human melanoma growth and metastasis 
in SCID mice.” Int. J. Cancer, 81, 951-955. 

[18] Wu, G. - J., Fu, P., Wang, S. W., and Wu, M. - W. H. 2008, “Enforced expression of 
MCAM/MUC18 increases in vitro motility and invasiveness and in vivo metastasis 
of two mouse melanoma K1735 sublines in a syngeneic mouse model.” Molecular 
Cancer Research, 6 (11), 1666-1677. 

[19] Meier, F., Caroli, U., Satyamoorthy, K., Schittek, B., Bauer, J., Berking, C., Moller, H., 
Maczey, E., Rassner, G., Herlyn, M., Garbe, C. 2003, “Fibroblast growth factor-2 but 

not Mel-CAM and/or 3 integrin promotes progression of melanocytes to 
melanoma.” Expt. Dermatology, 12, 296-306. 

[20] Wu, G. - J., Peng, Q., Wang, S.  W., Yang, H., and Wu, M. - W. H. 2001, "Effect of 
MUC18 expression on the in vitro invasiveness and in vivo tumorigenesis and 
metastasis of mouse melanoma cell lines in a syngeneic mouse model", The 
proceedings of the 92nd Annual Meeting of American Association for the Cancer 
Research, 42, p.516 Abstract # 2776. 

[21] Wu, G.-J., and Wu, M. - W. H. 2011, “Ectopic expression of MCAM/MUC18 increases 
in vitro motility and invasiveness, but decreases tumorigenesis and metastasis of a 
mouse melanoma K1735-9 subline in a syngeneic mouse model.” (In preparation). 

[22] Hanahan, D., and Weinberg, R. A. 2000, “The hallmarks of cancer.” Cell, 100, 57-70. 
[23] Li, G., Kalabis, J., Xu, X., Meier, F., Oka, M., Bogenrieder, T., and Herlyn, M. 2003, 

“Reciprocal regulation of MelCAM and AKT in human melanoma.” Oncogene 22, 
6891-6899. 

[24] Melnikva, V. O., Balasubramanian, K., Villares, G. J., Debroff, A. S., Zigler, M., Wang, 
H., Petersson, F., Price, J. E., Schroit, A., Prieto, V. G., Hung, M. – C., and Bar-Eli, M. 
2009, “Crosstalk between protease-activated receptor1 and platelet-activating factor 
receptor regulates melanoma cell adhesion molecule (MCAM/MUC18) expression 
and melanoma metastasis.” J. Biol. Chem., 284(42), 28845-28855. 

www.intechopen.com



 
Dual Roles of the Melanoma CAM (MelCAM/METCAM) in Malignant Progression of Melanoma 

 

241 

[25] Melnikova, V. O., Debroff, A. S., Zigler, M., Villares, G. J., Braeuer, R., Wang, H., 

Huang, L., and Bar-Eli, M. 2010, “CREB inhibits AP-2 expression to regulate the 
malignant phenotype of melanoma.” PLoS One, 5, e12452. 

[26] Sers, C., Riethmuller, G. and Johnson, J. P. 1994, “MUC18, a melanoma-progression 
associated molecule, and its potential role in tumor vascularization and 
hematogenous spread.” Cancer Research, 54, 5689-5694. 

[27] Bardin, N., Anfosso, F., Masse, J., Cramer, E., Sabatier, F., LeBivic, A., Sampol, J., 
Dignat-George, F. 2001, “Identification of CD146 as a component of the endothelial 
junction involved in the control of cell-cell adhesion.” Blood, 98, 3677-3684. 

[28] Kang, Y., Wang, F., Feng, J., Yang, D., Yang, X. and Yan, X. 2006, “Knockdown of 
CD146 reduces the migration and proliferation of human endothelial cells.” Cell 
Research, 16, 313-318. 

[29] Yan, X., Lin, Y., Tang, D., Shen, Y., Yuan, M., Zhang, Z., Li, P., Xia, H., Li, L., Luo, D., 
Liu, Q., Mann, K., and Bader, B. L. 2003, “A novel anti-CD146 monoclonal 
antibody, AA98, inhibits angiogenesis and tumor growth.” Blood, 102, 184-191. 

[30] Maggio, F., and Pinna, L. A. 2003, “One-thousand-and-one substrates of protein kinase 
CK2?” FASEB J., 17, 349-368. 

[31] Wu, G. - J., Wu, M. – W. H, and Liu, Y. 2011, “Enforced expression of human 
METCAM/MUC18 increases the tumorigenesis of human prostate cancer cells in 
nude mice.” J Urology 185, 1504-1512. 

[32] Datta, S. R., Brunet, A., and Greenberg, M.E. 1999, “Cellular survival: a play in three 
AKTs.” Genes and Development 13, 2905-2927. 

[33] Wu, G. - J., and Son, E. L. 2006, “Soluble METCAM/MUC18 blocks angiogenesis 
during tumor formation of human prostate cancer cells.” The proceedings of the 
97th Annual Meeting of American Association for the Cancer Research, 47, #252. 

[34] Song, B., Tang, J. - W., Wang, B., Cui, X.- N., Zhou, C.-H.,  and Hou, L. 2005, Screening 
for lymphatic metastasis-associated genes in mouse hepatocarcinoma cell lines 
Hca-F and Hca-P using gene chip.” Chinese J. Cancer, 24(7), 774-780. 

[35] Zhang, Q., Liu, Z., Carney, P. R., Yuan, Z., Chen. H., Roper, S. N. and Jiang, H. 2008, 
“Non-invasive imaging of epileptic seizures in vivo using photoacoustic 
tomography (PAT).”  Phys. Med. Biol., 53, 1921-1931. 

[36] Wang, L. V. 2008, “Prospects of photoacoustic tomography.”  Med. Phys., 35(12), 5758-
5767. 

[37] Schaffer, B. S., Grayson, M. H., Wortham, J. M. Kubicek, C. B., McCleish, A. T., 
Prajapati, S. I., Nelon, L. D., Brady, M. M., Jung, I, Hosoyama, T., Sarro, L. M., 
Hanes, M.A., Rubin, B. P., Michalek, J. E., Clifford, C. B., Infante, A. J., and Keller, 
C. 2010, “Immune competency of a hairless mouse strain for improved preclinical 
studies in genetically engineered mice.” Mol. Cancer Therapy, 9(8), 2354-2364. 

[38] Sorrentino, A. Ferracin, M., Castelli, G., Biffoni, M., Tomaselli, G., Baiocchi, M., Fatica, 
A., Negrini, M., Peschle, C., and Valtieri, M. 2008, “Isolation and characterization of 
CD146+ multipotent mesenchymal stromal cells.” Exp. Hematol., 36, 1035-1046. 

[39] deVisser, K. E., Eichten, A., and Coussens, L. M. 2006, “Paradoxical roles of the 
immune system during cancer development.” Nature Review/Cancer 6, 24-37. 

[40] Staquicini, F., Tandle, A., Libutti, S. K., Sun, J., Zigler, M., Bar-Eli, M., Aliperti, F., 
Perez, E. C., Gershenwald, J. E., Mariano, M., Pasqualini, R., Arap, W., and Lopes, J. 
D. 2008, “A subset of host B lymphocytes controls melanoma metastasis through a 

www.intechopen.com



 
Research on Melanoma: A Glimpse into Current Directions and Future Trends 

 

242 

melanoma cell adhesion molecule/MUC18-dependent interaction: evidence from 
mice and humans.” Cancer Research, 68(20), 8419-8428. 

[41] Despoix, N., Walzer, T. Jouve, N, Blot-Chabaud, M., Bardin, N., Paul, P., Lyonnet, L., 
Vivier, E., Dignat-George, F., and Vely, F. 2008, “Mouse CD146/MCAM is a marker 
of natural killer cell maturation.” Eur. J. Immunol., 38, 2855-2864. 

[42] Kannagi, R., Izawa, M., Koike, T., Miyazaki, K., and Kimura, N. 2004, “Carbohydrate-
mediated cell adhesion in cancer metastasis and angiogenesis.” Cancer Science 
95(5), 377-384. 

[43] Wu, C., Cipollone, J., Maines-Bandiera, S., Tan, C., Karsan, A., Auersperg, N., 
Roskelley, C. D. 2008, “The morphogenic function of E-cadherin-mediated 
adherens junctions in epithelial ovarian carcinoma formation and progression.” 
Differentiation, 76, 193-205. 

[44] Shih, I. M., Hsu, M. - Y. Palazzo, J. P., and Herlyn, M. 1997, “The cell-cell adhesion 
receptor MEL-CAM acts as a tumor suppressor in breast carcinoma.” Am. J. 
Pathology, 151, 745-751. 

[45] Zeng, G., Cai, S., and Wu, G. - J. 2011, “Up-regulation of METCAM/MUC18 promotes 
motility, invasion, and tumorigenesis of human breast cancer cells.” BMC Cancer 
2011, 11:113 (30 March 2011) doi: 10.1186/1471-2407-11-113. 

[46] Zeng, G. and Wu, G. - J. 2011, “METCAM/MUC18 over-expression suppresses in vitro 
motility and invasiveness and in vivo progression of human ovarian cancer cells.” 
(in preparation). 

[47] Ribeiro, A. S., Albergaria, A., Sousa, B., Correia, A. L., Bracke, M., Seruca, R., Schmitt, 
F.C., and Paredes, J. 2010, “Extracellular cleavage and shedding of P-cadherin: a 
mechanism underlying the invasive behaviour of breast cancer cells.” Oncogene, 
29, 392-402. 

[48] Mills, L., Ellez, C., Huang, S., Baker, C., McCarty, M., Green, L., Gudas, J. M., Feng, X., 
and Bar-Eli, M. 2002, “Fully human antibodies to MCAM/MUC18 inhibit tumor 
growth and metastasis of human melanoma.” Cancer Research, 62, 5106-5114. 

[49] Leslie, M. C., Zhao, Y. – J., Lachman, L. B., Hwu, P., Wu, G. - J., and Bar-Eli, M. (2007) 
“Immunization against MUC18/MCAM, a novel antigen that drives melanoma 
invasion and metastasis.” Gene therapy, 14, 316-323. 

[50] Satyamoothy, K., Muyrers, J., Meier, F., Patel, D. and Herlyn, M. 2001, “Mel-CAM-
specific genetic suppressor elements inhibit melanoma growth and invasion 
through loss of gap junction communication.” Oncogene, 20, 4676-4684. 

[51] Hafner, C., Samwald, U., Wagner, S., Felici, F., Heere-Ress, E., Jensen-Jarolim, E., 
Wolff, K., Scheiner, O., Pehamberger, H., and Breiteneder, H. 2002, “Selection of 
mimotopes of the cell surface adhesion molecule of Mel-CAM from a random 
pVIII-28aa phage peptide library.”  J. Invest. Dermatol., 119, 865-869. 

[52] Nie, S. 2006, “Nanotechnology for personalized and predictive medicine.” 
Nanomedicine, 2(4), 305. 

www.intechopen.com



Research on Melanoma - A Glimpse into Current Directions and

Future Trends

Edited by Prof. Mandi Murph

ISBN 978-953-307-293-7

Hard cover, 414 pages

Publisher InTech

Published online 12, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The book Research on Melanoma: A Glimpse into Current Directions and Future Trends, is divided into

sections to represent the most cutting-edge topics in melanoma from around the world. The emerging

epigenetics of disease, novel therapeutics under development and the molecular signaling aberrations are

explained in detail. Since there are a number of areas in which unknowns exist surrounding the complex

development of melanoma and its response to therapy, this book illuminates and comprehensively discusses

such aspects. It is relevant for teaching the novice researcher who wants to initiate projects in melanoma and

the more senior researcher seeking to polish their existing knowledge in this area. Many chapters include

visuals and illustrations designed to easily guide the reader through the ideas presented.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Guang-Jer Wu (2011). Dual Roles of the Melanoma CAM (MelCAM/METCAM) in Malignant Progression of

Melanoma, Research on Melanoma - A Glimpse into Current Directions and Future Trends, Prof. Mandi Murph

(Ed.), ISBN: 978-953-307-293-7, InTech, Available from: http://www.intechopen.com/books/research-on-

melanoma-a-glimpse-into-current-directions-and-future-trends/dual-roles-of-the-melanoma-cam-melcam-

metcam-in-malignant-progression-of-melanoma



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


