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1. Introduction 

Tissue engineering is a field of medicine that has experienced significant growth in 

prominence over the past three decades. Though traditional interventions exist for many 

medical maladies, tissue engineering aims to combat such disorders through the synthesis of 

body tissues and organs, resulting in functional implants. Tissue engineering takes an 

innovative approach, often utilizing autologous stem cells for tissue construction or 

materials that are biocompatible while avoiding immune rejection (Nomi et al., 2002).  

Despite its immense successes, a major hurdle still faces tissue engineering. Large volumes 

of implanted tissue are unable to stimulate the formation of necessary blood vessels 

required for their survival. In the body, naturally occurring, equivalent vascular networks 

serve vital functions in gas and nutrient exchange, metabolic processes, and waste 

expulsion. Though individual, large vessels have been successfully engineered for implant, 

it is still exceptionally difficult to fashion a stable and sustainable network of vessels for 

large volumes of tissue (Nomi et al., 2002). Neovascularization after tissue damage requires a 

level of positive and negative control that has not been successfully replicated in a 

laboratory environment to date. As such, rapid de novo synthesis of a controlled, established 

vascular network remains a challenge today. 

Angiogenesis is the morphogenic process of forming new blood vessels from pre-existing 

ones (Laschke et al., 2006; Dai and Rabie, 2007; Li and Rabie, 2007). This event plays an 

important, normal physiological role in wound healing, tissue repair, pregnancy, and 

exercise (Ferrara and Davis-Smyth, 1997), and exists in contrast to vasculogenesis (the 

formation of the every first blood vessels in the body, and especially predominant in 

embryological development). Yet, the abuse of angiogenesis, leading to an uncontrolled 

vascular formation as a consequence of epigenetic influence, nucleotide polymorphisms, or 

endocrine irregularities can also result in tumor formation (Verbridge et al., 2010). However, 

angiogenesis is clearly an activity that is central to development and tissue maintenance. 

Successful modulation of angiogenesis can have profound therapeutic outcomes for organs 

and tissues deprived of an adequate, stable vasculature. Studies from the last two decades 

have shown that the manipulation of various factors directly influences angiogenic outcome.  
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Angiogenesis requires the activity of soluble factors such as Vascular Endothelial Growth 

Factor (VEGF; outlined in the next section and in Tables 2 & 3), basic Fibroblast Growth 

Factor (bFGF), Platelet-derived Growth Factor (PDGF), Transforming Growth Factor-β 

(TGF- β) (Nomi et al., 2002; Dai and Rabie, 2007; Li and Rabie, 2007; Kanczler and Oreffo, 

2008; Bates, 2010), Keratinocyte Growth Factor (KGF) (Elia et al., 2010), Hepatocyte Growth 

Factor (HGF) (Hoot et al., 2010), Ephrin-B2 (Herbert et al., 2009), and Angiopoietin(Han et al., 

2010) (Table 1). Morphologically, angiogenesis can be attributed to endothelial cell 

migration and proliferation as well as pericyte recruitment, migration and differentiation 

(Egginton, 2010). 

 

Molecule Known Properties Citations 

Basic Fibroblast 
Growth Factor 

(bFGF) 

Stimulates activity of fibroblasts, neurons, smooth 
muscle cells, and endothelial cells; acts via tyrosine 
kinase receptors; induces production of VEGF 
during angiogenic stimulation. 

(Pepper et al., 
1992; Lee et al., 
2003; Arkudas et 
al., 2007; Jung et 
al., 2010; Wu et 
al., 2010) 

Platelet-derived 
Growth Factor 

(PDGF) 

Certain isoforms possess survival and mitogenic 
functions; implicated in tumor angiogenesis; 
compared to VEGF, PDGF: (a) has comparable 
angiogenic activity, (b) produces blood vessels with 
decreased permeability and leakage, and (c) is 
thought to produce functionally different blood 
vessels. 

(Li et al., 2010; 
Wu et al., 2010) 

Transforming 
Growth Factor β 

(TGF-β) 

Promotes and inhibits angiogenesis and tumor 
invasion via stimulation of Hepatocyte Growth 
Factor (HGF) expression. 

(Hoot et al., 2010) 

Keratinocyte 
Growth Factor 

(KGF) 

Member of FGF family; certain isoforms have been 
implicated in wound healing as well as the inhibition 
of neovascularization. 

(Wang et al., 
2010) 

Hepatocyte 
Growth Factor 

(HGF) 

Stimulates endothelial cell growth, migration, 
scatter, and elongation independently of VEGF. 

(Hoot et al., 2010) 

Ephrin-B2 
Implicated in arterial/venous differentiation (see 
section: Modulation of Notch Signaling). 

(Herbert et al., 
2009) 

Angiopoietin 

Signals through Tie receptors; certain isoforms are 
angiogenic inhibitors, while others promote 
inhibition of apoptosis; Stabilize blood vessels and 
reduce leakage. 

(Han et al., 2010) 

Table 1. Notable Ancillary Growth Factors and Their Properties 

2. VEGF and its receptors: a brief overview 

In studying the development of cells, tissues, and organs, Vascular Endothelial Growth 
Factor (VEGF) has been identified as a key, though not sole, proponent of angiogenesis 
(Takahashi and Shibuya, 2005; Arkudas et al., 2007; Dai and Rabie, 2007; Yla-Herttuala, 2009; 
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Bates, 2010; Elia et al., 2010). VEGF exists in six classes (Table 2), lettered A through F, 
though the vast amount of literature concerning VEGF-A indicates that it is by far the most 
widely understood of all. VEGF-A exists in at least eight homodimeric isoforms, all 
conceived by alternative mRNA splicing(Ferrara, 2009) and differing by their amino acid 
number. Of these, VEGF121 and VEGF165 are predominant and show great promise in tissue 
engineering applications. 
 

VEGF Class Known Properties Citations 

A 

Induces proliferation of arterial, venous, and 
lymphatic vascular endothelial cells; stimulates 
monocyte chemotaxis; hematopoetic effects; eight 
isoforms in humans. 

(Ferrara, 2009) 

B 
May play role in atrial conduction, but not required 
for cardiovascular development. 

(Olofsson et al., 
1996a; Olofsson 
et al., 1996b; Aase 
et al., 2001) 

C 
Involved in embryonic angiogenesis, 
lymphangiogenesis, & lymphatic vessel maintenance; 
mitogenic for cultured endothelial cells. 

(Kukk et al., 1996; 
Orlandini et al., 
1996; Jeltsch et 
al., 1997; Yamada 
et al., 1997; 
Dumont et al., 
1998) 

D 
Thought to be involved in pulmonary development, 
endothelial cell mitogen; Function(s) still generally 
unclear. 

(Orlandini et al., 
1996; Yamada et 
al., 1997; Achen 
et al., 1998; 
Farnebo et al., 
1999) 

E 
Proteins are encoded by Orf-viruses and 
predominantly expressed in sheep, goats, and rarely 
in humans. 

(Lyttle et al., 
1994; Meyer et al., 
1999) 

F 
Derived from snake venom; enhances the formation 
of vascular fenestrations in guinea pigs. 

(Klein and 
Catargi, 2007; 
Matsunaga et al., 
2009; Yamazaki 
et al., 2009) 

Placental Growth 
Factor (PlGF) 

Induces vascular permeability; supplements VEGF 
activity during wound-healing; may enhance VEGF-
driven angiogenesis. 

(Carmeliet et al., 
2001; Adini et al., 
2002; Hattori et 
al., 2002; Luttun 
et al., 2002; 
Odorisio et al., 
2002) 

Table 2. Six General VEGF Classes 
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The binding of VEGF to any of its many receptors, such as VEGF-R1 (Flt-1) (Shibuya et al., 
1990; de Vries et al., 1992), VEGF-R2 (KDR) (Terman et al., 1991), VEGF-R3 (Flt-4) (Fitz et al., 
1997), and Neuropilin (NRP-1 and -2) (Soker et al., 1996; Soker et al., 1998; Dallas et al., 2008), 
has been shown to trigger a signaling cascade that results in the activation of angiogenesis 
(Stefanini et al., 2009). Not surprisingly, VEGF receptor and ligand placement and density 
have been implicated in the successful transmission of the signaling cascades required for 
angiogenesis (Stefanini et al., 2009). Modulating receptors and their densities appear to be a 
logical avenue for further efforts in modulating neovascularization. Further, Heparin Sulfate 
Proteoglycan (HSPG) has been implicated in the binding of VEGF to their receptors, but its 
exact function remains unclear (Ferrara et al., 2003; Lee et al., 2010). Preliminary findings 
suggest that HSPGs inhibit VEGF binding to its receptors, and consequently, angiogenic 
activity (Lee et al., 2010).  

3. Modulations to VEGF and its delivery 

Though VEGF has a significant influence on cell migration, proliferation, and vasodilation, 
the uncontrolled or sole use of VEGF in vivo has been shown to result in the disordered 
growth of blood vessels into a dense mass (hemangioma), malignant tumor angiogenesis, 
and the assembly of leaky vessels (Takahashi and Shibuya, 2005; Bates, 2010). As such, the 
fundamental function of VEGF in physiological development and maintenance, contrasted 
by its role in tumorigenesis and vessel instability, is paradoxical. In instances where VEGF 
is heterogeneously present in a microenvironment, areas of high VEGF expression 
resulted in abnormal angiogenesis. However, implanting VEGF-transfected myoblasts, 
with each cell equally producing VEGF over time, led to the formation of a stable, normal 
vascular network (Misteli et al., 2010). The latter provides a compelling case for carefully-
controlled VEGF release, distribution, and kinetics in tissue engineering applications. As 
discussed below, several current tissue-engineering efforts are positioned to resolve this 
dilemma.  
It should not be assumed that blind administration of VEGF is solely responsible for a 
successful angiogenic effort. Many studies have illustrated that the promotion of successful 
angiogenesis depends on a prolonged exposure to a low dose of VEGF (Wernike et al., 2010), 
while other studies claim that micro-environmental conditions must be taken into account 
(Ferrara and Davis-Smyth, 1997; Misteli et al., 2010). With regards to the latter, techniques 
like FACS purification (Misteli et al., 2010) and microdialysis (Hoier et al., 2010; Marcus et al., 
2010) are becoming increasingly prevalent in closely monitoring VEGF expression in the 
microenvironment. Further, many attempts at eliciting controlled angiogenesis also focus on 
coupling the properties of VEGF with certain other growth factors – most notably bFGF 
(Arkudas et al., 2007) or KGF (Elia et al., 2010) (see Table 1); stable vessels were formed when 
VEGF was combined with either of these two factors.  
There exist contradictions regarding the parameters of tissue exposure to VEGF. In one 
comparison, a study highlighting growth factor implementation in orthopedic applications 
suggested that VEGF delivery for over 14 days may have interfered in the vascularization 
during bone healing and restoration (Wernike et al., 2010). This suggestion challenges an 
argument that a longer VEGF exposure (of approximately one month) was necessary for the 
production of stable, but leaky, vessels as brief exposure to VEGF (less than 15 days) 
resulted in the formation of unstable vessels. Further, these vessels actually degenerated 
after VEGF delivery cessation (Tafuro et al., 2009). Disparities such as this are common in the 
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literature and demonstrate the sheer complexity of VEGF activity in various tissue 
environments. 
The view that successful VEGF delivery and angiogenic response are strictly dose-
dependent is challenged by factors such as delivery kinetics, which appear to be critical for 
proper vasculature (Borselli et al., 2010; Wernike et al., 2010). For instance, a characteristic 
problem with the bolus delivery of VEGF is the outcome of variable systemic effects 
(Matoka and Cheng, 2009) such as haemorrhage, hypotension, or flu-like symptoms 
(Benjamin et al., 1999). This method of delivery also fails to achieve the prolonged supply of 
physiological low dose of VEGF necessary to produce a mature, lasting vascular network. 
The lack of lasting vessel formation observed in many therapeutic trials is probably due to 
difficulties in the delivery of VEGF, a growth factor with an apparently narrow therapeutic 
window (Hariawala et al., 1996; Lee et al., 2000; Dor et al., 2003; Ozawa et al., 2004), in the 
optimal time and dose for maintaining sufficient vascularity.  
A need exists for biomaterials or stable scaffolds that enable slow, sustained VEGF 
release(Rocha et al., 2008) for a predictable and functional outcome. Studies in different 
laboratories have indicated that incorporation of growth factor into slow-release polymer 
formulations could present a means for better control of dose, location, and duration of 
active signals in tissue (Edelman et al., 1991; Lee et al., 2000; Sheridan et al., 2000; Ehrbar et 
al., 2004). The kinetics of VEGF delivery today depends on the physical properties (such as 
cross-linking and porosity, for instance) of biocompatible conduits such as fibrin-gels 
(Ehrbar et al., 2004; Arkudas et al., 2007), gelatin microparticles (Patel et al., 2008), collagen / 
fibronectin hydrogels (Glotzbach et al., 2010), and PLG(A) scaffolds (Murphy et al., 
2000)(Rocha et al., 2008; Matoka and Cheng, 2009; Borselli et al., 2010; Golub et al., 2010). 
Moreover, transfecting or transducing developing cells (muscle precursor cells or myoblasts, 
for instance) with VEGF and subsequently injecting them into a site can also provide a 
steady, longer-term delivery of the growth factor (Misteli et al., 2010).  
Once VEGF is coupled with a delivery conduit, a more intricate approach to controlling 
VEGF delivery involves modifying the factor itself. Extensive delivery-mechanics research 
was conducted with the isoform VEGF121. Though VEGF121 is initially confined within a 
biomaterial (such as a fibrin-gel matrix) upon implant, plasmin and metalloproteinase 
degradation of the implant over time allows for the rapid, free diffusion of VEGF121 into the 
whole body environment (Ehrbar et al., 2004), potentially resulting in angiogenesis that may 
not be localized. Additionally, the short biological half-life of VEGF impedes its use in long-
term applications. A synthetic variant of VEGF121, known as TG-VEGF121, cross-links to 
fibrinogen by the transglutaminating activity of factor XIII during fibrin-gel polymerization. 
This covalently tethered TG-VEGF121 is protected from rapid diffusion. Gradual degradation 
of the fibrin-gel by local fibrinolytic activities results in a local liberation of low levels of TG-
VEGF121 into tissue. Experimental animal models have shown that fibrin-conjugated TG-
VEGF121 produced more structurally stable vessels than VEGF121 while avoiding vascular 
leakage (Ehrbar et al., 2004; Ehrbar et al., 2008).  

4. Hypoxia-mediated control and modulation of notch signaling 

Hypoxia presents another means of employing direct control on VEGF and ancillary 
angiogenic factors. In the low-oxygen environments of normal muscle, VEGF mRNA 
experiences decreased degradation and increased expression (Ikeda et al., 1995; Levy et al., 
1995; Levy et al., 1996; Tang et al., 2004), though severely hypoxic settings will actually 
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impede VEGF up-regulation (Milkiewicz et al., 2004). VEGF mRNA stability is made 
possible by its interaction with HuR, a complex that binds and stabilizes RNAs, 
consequently regulating gene expression (Levy et al., 1998). The increase in VEGF 
production can be attributed to the Internal Ribosome Entry Site (IRES), which is 
accountable for efficient factor synthesis under hypoxic conditions (Stein et al., 1998). Other 
proteins can also impact VEGF efficiency and activity. Control of expressed VEGF lies with 
ORP150 (oxygen regulated protein), a chaperone that transports VEGF from the cell’s 
endoplasmic reticulum to the Golgi apparatus (Kuwabara et al., 1996; Ozawa et al., 2001). An 
increase in ORP150 levels correlates with an increased production of VEGF during hypoxia 
(Ozawa et al., 2001). Further, Hypoxia-inducing factor (HIF) is responsible for activating the 
transcription of genes associated with neovascularization (Covello and Simon, 2004; 
Ramirez-Bergeron et al., 2006). These proteins represent points of control for VEGF 
modulation. 
Because angiogenesis is the synthesis of vasculature from existing vessels, constant 
remodeling and modification of vessels takes place in vivo. Existing endothelial cells, such as 
stalk and tip cells, have receptors that respond to environmental conditions like hypoxia, in 
which Notch signaling (driven by VEGF-A presence) is most prevalent. The presence of 
VEGF-A leads to an increase in the presence of Delta-like Ligand 4 (DLL4), a major Notch 
ligand. It is believed that Notch signaling modulates the ratio of VEGF to its receptors 
through the inhibition of VEGF-R2. 
Manipulation of the Notch signaling pathway presents another means of controlling 
angiogenesis. Cao, et al., discussed the role of Notch signaling in modulating VEGF activity, 
resulting in effective pruning and branching of vascular vessels (Cao et al., 2009; Cao et al., 
2010). Activation of the Notch signaling pathway inhibits VEGF signaling by down-
regulating the VEGF receptor synthesis. With fewer available receptors for free VEGF to 
bind, endothelial cell proliferation is effectually curbed. This process occurs at the cellular 
level of the lining endothelium, a major component of vascular vessels, and vascular growth 
in any particular direction is controlled. 

5. Applications in regenerative medicine: notable case studies 

Recent advances in understanding the angiogenic process and isolating potent and specific 
angiogenic growth factors prompted their therapeutic usage. Evidence that VEGF is a 
specific endothelial cell growth factor suggested its potential in therapeutic angiogenesis. 
Injection of the VEGF165 protein enhanced revascularization of rabbit ischemic hindlimbs 
(Takeshita et al., 1994). VEGF treatment induced collateral vessel formation, endothelium-
dependent blood flow and tissue perfusion. VEGF has been tested for potential beneficial 
effects on wound repair in diabetic animal models (Greenhalgh et al., 1990; Tsuboi and 
Rifkin, 1990; Frank et al., 1995). The growth factor treatment regimens accelerated 
granulation, tissue formation, and wound closure. However, due to the high clearance 
and/or degradation of the proteins from the administration site, topically administered 
growth factors would require high dosages and frequent delivery.  
An alternative strategy for therapeutic angiogenesis is gene therapy using recombinant 
angiogenic growth factors. The first study using VEGF165 cDNA was performed by gene 
transfer into the iliac artery of an ischemic hindlimb of a rabbit (Bauters et al., 1994; 
Takeshita et al., 1996). VEGF protein was expressed at the site of injection, augmenting the 
formation of collateral vessels. Subsequently, intramuscular gene transfer of VEGF cDNA 
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was used in a similar model with similar results (Asahara et al., 1996). This technique was 
further employed in patients with peripheral vascular disease and critical limb ischemia 
(Isner et al., 1996). Clinical trials showed significant improvement in collateral blood flow, 
healed ischemic ulcers, and most importantly, salvage of limbs in patients in whom 
amputation was imminent (Isner, 1998; Isner and Takayuki, 1998). VEGF protein and cDNA 
have been used for coronary revascularization, resulting in improved myocardial perfusion 
and increased collateral density (Isner and Losordo, 1999). 
As previously discussed, a successful angiogenic outcome is not solely attributed to VEGF 

implementation alone (discussed in Section 3 and Table 1). Wilcke, et al., showcased the 

coupling of VEGF with bFGF in a fibrin dermal substitute (Wilcke et al., 2007). This led to a 

marked improvement in factor delivery, with a notable, prolonged release and resulted in a 

higher density of newly developed vessels in in vivo murine models. Concurrently, an in 

vivo experiment performed by Zacchigna, et al., studied the effect of a VEGF and 

Angiopoietin 1 (Ang 1) combination (delivered via an adeno-associated viral vector, for 

long-term protein production and release) on the muscle blood flow (MBF) and vascular 

permeability of rat skeletal muscle (Zacchigna et al., 2007). The grouping elicited a marked 

increase in both resting MBF and perfusion post exercise stimulation. To contrast, VEGF 

expression alone did not enhance the resting MBF and actually reduced tissue perfusion 

after exercise.  

Elcin, et al., researched in vitro release kinetics and in vivo angiogenic effects of human 

VEGF-loaded PLGA sponges in rats (Elcin and Elcin, 2006). When compared with control 

sponges (containing no factor) and bolus injections of VEGF, the use of VEGF-loaded PLGA 

sponges led to the establishment of neovascularized sites suitable for tissue engineering 

purposes. Patel, et al., who utilized VEGF-loaded gelatin microparticles infused in 

biodegradable composite scaffolds, outlined another notable attempt in VEGF delivery 

modulation in the field of orthopedics (Patel et al., 2008). Findings suggested that 

modulating the degree of gelatin cross-linking could affect VEGF release into the 

microenvironment and, consequently, angiogenic outcome. Ennett, et al., studied the 

temporally regulated delivery of VEGF in vivo, hypothesizing that the means of VEGF-

loading into a delivery scaffold would have an impact on the factor release kinetics (Ennett 

et al., 2006). They compared (a) VEGF loaded directly into a PLG scaffold with (b) VEGF pre-

encapsulated in PLG microspheres that were later used to fabricate a PLG scaffold. Though 

pre-encapsulated VEGF microspheres further delayed the factor’s release into the 

surrounding environment, this approach produced a desirable angiogenic outcome, with 

significant local angiogenesis and negligible systemic effects. 

Pre-encapsulation of VEGF by nanoparticles or microspheres has also been investigated in 

conjunction with Matrigel hydrogels, PLGA-, and collagen-scaffolds. While it is clear that 

encapsulation protects the factor(s) within the nanoparticles and microspheres, it also offers 

a mechanism of controlled release – especially ideal for a potent angiogenic factor like 

VEGF. Even though pre-encapsulated VEGF-loaded PLGA scaffolds performed better than 

similarly loaded Matrigel hydrogels (with respect to release profiles in a saline solution; also 

in comparison with free VEGF) in vitro, both of the loaded delivery conduits improved 

angiogenesis in vivo. An increase in both endothelial cell counts and red blood cells was 

noted at the sites of implantation (des Rieux et al., 2010). Further, VEGF-loaded PLGA 

microspheres combined with collagen elicited strong enhancements to vascular sprouting 

and activation of endothelial cells in vivo and in vitro, respectively (des Rieux et al., 2010).  
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The idea of optimizing delivery agents combined with the notion that co-factor usage is 

ideal for neovascularization resulted in an experiment that analyzed the co-implementation 

of VEGF with FGF-2 via an acellular collagen scaffold implant (Nillesen et al., 2007). An 

implant containing both factors resulted in the highest vessel density and the most mature 

blood vessels (characteristics of an enhanced, stable vasculature) in a rat model when 

compared with scaffolds containing either of the factors alone or no factor at all.  

6. Conclusion 

A significant challenge facing tissue engineering lies in eliciting controlled 

neovascularization. Controlled neovascularization can have a profound impact in vessel and 

organ synthesis, as well as in the treatment of damaged tissues. Many current attempts for 

such control entail the use of VEGF. Attempts at fabricating an ordered vascular network 

include changes to VEGF through structural modification, the employment of strategies 

controlling its release, and coupling VEGF to other growth factors. 

Yet, despite the promises shown by VEGF, significant obstacles remain. Many researchers 

propose that use of growth factors alone will not ensure stable angiogenesis. Rather, a 

combination of growth factors (VEGF and bFGF, for example), delivery methods, and 

modulation of inflammatory responses (via fibroblast, macrophage, cell-adhesion molecule 

and cytokine manipulation, for instance) and pathways (such as hypoxia and Notch) are 

thought to facilitate adequate vessel fabrication and stability. 

Additionally, investigation into the mechanisms of cellular crosstalk is necessary to better 

understand angiogenesis in general. Moreover, the refinement and implementation of 

microenvironment monitoring technologies are vital in ensuring proper vascular 

development. Such technologies would enable researchers to closely study the impact of 

gross- or modulated-release of growth factors on the delicate balance required for vascular 

formation and branching. 

7. Acknowledgements 

Remo A. Largo and Venkat M. Ramakrishnan contributed equally to the production of this 

chapter. 

8. References 

Aase, K., von Euler, G., Li, X., Ponten, A., Thoren, P., Cao, R., Cao, Y., Olofsson, B., Gebre-

Medhin, S., Pekny, M., Alitalo, K., Betsholtz, C., and Eriksson, U. (2001). Vascular 

endothelial growth factor-B-deficient mice display an atrial conduction defect. 

Circulation 104, 358-364. 

Achen, M.G., Jeltsch, M., Kukk, E., Makinen, T., Vitali, A., Wilks, A.F., Alitalo, K., and 

Stacker, S.A. (1998). Vascular endothelial growth factor D (VEGF-D) is a ligand for 

the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl 

Acad Sci U S A 95, 548-553. 

Adini, A., Kornaga, T., Firoozbakht, F., and Benjamin, L.E. (2002). Placental growth factor is 

a survival factor for tumor endothelial cells and macrophages. Cancer Res 62, 2749-

2752. 

www.intechopen.com



 
Angiogenesis and Vascularity for Tissue Engineering Applications 

 

441 

Arkudas, A., Tjiawi, J., Bleiziffer, O., Grabinger, L., Polykandriotis, E., Beier, J.P., Sturzl, M., 

Horch, R.E., and Kneser, U. (2007). Fibrin gel-immobilized VEGF and bFGF 

efficiently stimulate angiogenesis in the AV loop model. Mol Med 13, 480-487. 

Asahara, T., Tsurumi, Y., Takeshita, S., and Isner, J.M. (1996). Naked cDNA encoding 

secreted proteins for intra-arterial and intramuscular gene transfer. Seminars in 

interventional cardiology : SIIC 1, 225-232. 

Bates, D.O. (2010). Vascular endothelial growth factors and vascular permeability. Cardiovasc 

Res 87, 262-271. 

Bauters, C., Asahara, T., Zheng, L.P., Takeshita, S., Bunting, S., Ferrara, N., Symes, J.F., and 

Isner, J.M. (1994). Physiological assessment of augmented vascularity induced by 

VEGF in ischemic rabbit hindlimb. The American journal of physiology 267, H1263-

1271. 

Benjamin, L.E., Golijanin, D., Itin, A., Pode, D., and Keshet, E. (1999). Selective ablation of 

immature blood vessels in established human tumors follows vascular endothelial 

growth factor withdrawal. J Clin Invest 103, 159-165. 

Borselli, C., Ungaro, F., Oliviero, O., d'Angelo, I., Quaglia, F., La Rotonda, M.I., and Netti, 

P.A. (2010). Bioactivation of collagen matrices through sustained VEGF release 

from PLGA microspheres. J Biomed Mater Res A 92, 94-102. 

Cao, L., Arany, P.R., Kim, J., Rivera-Feliciano, J., Wang, Y.S., He, Z., Rask-Madsen, C., King, 

G.L., and Mooney, D.J. (2010). Modulating Notch signaling to enhance 

neovascularization and reperfusion in diabetic mice. Biomaterials 31, 9048-9056. 

Cao, L., Arany, P.R., Wang, Y.S., and Mooney, D.J. (2009). Promoting angiogenesis via 

manipulation of VEGF responsiveness with notch signaling. Biomaterials 30, 4085-

4093. 
Carmeliet, P., Moons, L., Luttun, A., Vincenti, V., Compernolle, V., De Mol, M., Wu, Y., 

Bono, F., Devy, L., Beck, H., Scholz, D., Acker, T., DiPalma, T., Dewerchin, M., 
Noel, A., Stalmans, I., Barra, A., Blacher, S., Vandendriessche, T., Ponten, A., 
Eriksson, U., Plate, K.H., Foidart, J.M., Schaper, W., Charnock-Jones, D.S., Hicklin, 
D.J., Herbert, J.M., Collen, D., and Persico, M.G. (2001). Synergism between 
vascular endothelial growth factor and placental growth factor contributes to 
angiogenesis and plasma extravasation in pathological conditions. Nat Med 7, 575-
583. 

Covello, K.L., and Simon, M.C. (2004). HIFs, hypoxia, and vascular development. Current 

topics in developmental biology 62, 37-54. 

Dai, J., and Rabie, A.B. (2007). VEGF: an essential mediator of both angiogenesis and 

endochondral ossification. Journal of dental research 86, 937-950. 

Dallas, N.A., Gray, M.J., Xia, L., Fan, F., van Buren, G., 2nd, Gaur, P., Samuel, S., Lim, S.J., 

Arumugam, T., Ramachandran, V., Wang, H., and Ellis, L.M. (2008). Neuropilin-2-

mediated tumor growth and angiogenesis in pancreatic adenocarcinoma. Clin 

Cancer Res 14, 8052-8060. 
de Vries, C., Escobedo, J.A., Ueno, H., Houck, K., Ferrara, N., and Williams, L.T. (1992). The 

fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 
255, 989-991. 

des Rieux, A., Ucakar, B., Mupendwa, B.P., Colau, D., Feron, O., Carmeliet, P., and Preat, V. 

(2010). 3D systems delivering VEGF to promote angiogenesis for tissue 

engineering. J Control Release. 

www.intechopen.com



  
Regenerative Medicine and Tissue Engineering - Cells and Biomaterials 

 

442 

Dor, Y., Djonov, V., and Keshet, E. (2003). Induction of vascular networks in adult organs: 

implications to proangiogenic therapy. Annals of the New York Academy of Sciences 

995, 208-216. 

Dumont, D.J., Jussila, L., Taipale, J., Lymboussaki, A., Mustonen, T., Pajusola, K., Breitman, 

M., and Alitalo, K. (1998). Cardiovascular failure in mouse embryos deficient in 

VEGF receptor-3. Science 282, 946-949. 

Edelman, E.R., Mathiowitz, E., Langer, R., and Klagsbrun, M. (1991). Controlled and 

modulated release of basic fibroblast growth factor. Biomaterials 12, 619-626. 

Egginton, S. (2010). Physiological factors influencing capillary growth. Acta physiologica. 

Ehrbar, M., Djonov, V.G., Schnell, C., Tschanz, S.A., Martiny-Baron, G., Schenk, U., Wood, J., 

Burri, P.H., Hubbell, J.A., and Zisch, A.H. (2004). Cell-demanded liberation of 

VEGF121 from fibrin implants induces local and controlled blood vessel growth. 

Circulation research 94, 1124-1132. 

Ehrbar, M., Zeisberger, S.M., Raeber, G.P., Hubbell, J.A., Schnell, C., and Zisch, A.H. (2008). 

The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene 

activation and the enhancement of angiogenesis. Biomaterials 29, 1720-1729. 

Elcin, A.E., and Elcin, Y.M. (2006). Localized angiogenesis induced by human vascular 

endothelial growth factor-activated PLGA sponge. Tissue engineering 12, 959-

968. 

Elia, R., Fuegy, P.W., VanDelden, A., Firpo, M.A., Prestwich, G.D., and Peattie, R.A. (2010). 

Stimulation of in vivo angiogenesis by in situ crosslinked, dual growth factor-

loaded, glycosaminoglycan hydrogels. Biomaterials 31, 4630-4638. 

Ennett, A.B., Kaigler, D., and Mooney, D.J. (2006). Temporally regulated delivery of VEGF in 

vitro and in vivo. J Biomed Mater Res A 79, 176-184. 

Farnebo, F., Piehl, F., and Lagercrantz, J. (1999). Restricted expression pattern of vegf-d in 

the adult and fetal mouse: high expression in the embryonic lung. Biochem Biophys 

Res Commun 257, 891-894. 

Ferrara, N. (2009). VEGF-A: a critical regulator of blood vessel growth. Eur Cytokine Netw 20, 

158-163. 

Ferrara, N., and Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. 

Endocr Rev 18, 4-25. 

Ferrara, N., Gerber, H.P., and LeCouter, J. (2003). The biology of VEGF and its receptors. Nat 

Med 9, 669-676. 

Fitz, L.J., Morris, J.C., Towler, P., Long, A., Burgess, P., Greco, R., Wang, J., Gassaway, R., 

Nickbarg, E., Kovacic, S., Ciarletta, A., Giannotti, J., Finnerty, H., Zollner, R., Beier, 

D.R., Leak, L.V., Turner, K.J., and Wood, C.R. (1997). Characterization of murine Flt4 

ligand/VEGF-C. Oncogene 15, 613-618. 

Frank, S., Hubner, G., Breier, G., Longaker, M.T., Greenhalgh, D.G., and Werner, S. (1995). 

Regulation of vascular endothelial growth factor expression in cultured 

keratinocytes. Implications for normal and impaired wound healing. J Biol Chem 

270, 12607-12613. 

Glotzbach, J.P., Levi, B., Wong, V.W., Longaker, M.T., and Gurtner, G.C. (2010). The basic 

science of vascular biology: implications for the practicing surgeon. Plast Reconstr 

Surg 126, 1528-1538. 

www.intechopen.com



 
Angiogenesis and Vascularity for Tissue Engineering Applications 

 

443 

Golub, J.S., Kim, Y.T., Duvall, C.L., Bellamkonda, R.V., Gupta, D., Lin, A.S., Weiss, D., 

Robert Taylor, W., and Guldberg, R.E. (2010). Sustained VEGF delivery via PLGA 

nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol 298, H1959-

1965. 

Greenhalgh, D.G., Sprugel, K.H., Murray, M.J., and Ross, R. (1990). PDGF and FGF stimulate 

wound healing in the genetically diabetic mouse. Am J Pathol 136, 1235-1246. 

Han, S., Arnold, S.A., Sithu, S.D., Mahoney, E.T., Geralds, J.T., Tran, P., Benton, R.L., 

Maddie, M.A., D'Souza, S.E., Whittemore, S.R., and Hagg, T. (2010). Rescuing 

vasculature with intravenous angiopoietin-1 and alpha v beta 3 integrin peptide is 

protective after spinal cord injury. Brain : a journal of neurology 133, 1026-1042. 

Hariawala, M.D., Horowitz, J.R., Esakof, D., Sheriff, D.D., Walter, D.H., Keyt, B., Isner, J.M., 

and Symes, J.F. (1996). VEGF improves myocardial blood flow but produces EDRF-

mediated hypotension in porcine hearts. J Surg Res 63, 77-82. 

Hattori, K., Heissig, B., Wu, Y., Dias, S., Tejada, R., Ferris, B., Hicklin, D.J., Zhu, Z., Bohlen, 

P., Witte, L., Hendrikx, J., Hackett, N.R., Crystal, R.G., Moore, M.A., Werb, Z., 

Lyden, D., and Rafii, S. (2002). Placental growth factor reconstitutes hematopoiesis 

by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 

8, 841-849. 

Herbert, S.P., Huisken, J., Kim, T.N., Feldman, M.E., Houseman, B.T., Wang, R.A., Shokat, 

K.M., and Stainier, D.Y. (2009). Arterial-venous segregation by selective cell 

sprouting: an alternative mode of blood vessel formation. Science 326, 294-298. 

Hoier, B., Rufener, N., Bojsen-Moller, J., Bangsbo, J., and Hellsten, Y. (2010). The effect of 

passive movement training on angiogenic factors and capillary growth in human 

skeletal muscle. The Journal of physiology 588, 3833-3845. 

Hoot, K.E., Oka, M., Han, G., Bottinger, E., Zhang, Q., and Wang, X.J. (2010). HGF 

upregulation contributes to angiogenesis in mice with keratinocyte-specific Smad2 

deletion. J Clin Invest 120, 3606-3616. 

Ikeda, E., Achen, M.G., Breier, G., and Risau, W. (1995). Hypoxia-induced transcriptional 

activation and increased mRNA stability of vascular endothelial growth factor in 

C6 glioma cells. J Biol Chem 270, 19761-19766. 

Isner, J.M. (1998). Vascular endothelial growth factor: gene therapy and therapeutic 

angiogenesis. The American journal of cardiology 82, 63S-64S. 

Isner, J.M., and Losordo, D.W. (1999). Therapeutic angiogenesis for heart failure. Nat Med 5, 

491-492. 

Isner, J.M., and Takayuki, A. (1998). Therapeutic angiogenesis. Frontiers in bioscience : a 

journal and virtual library 3, e49-69. 

Isner, J.M., Walsh, K., Symes, J., Pieczek, A., Takeshita, S., Lowry, J., Rosenfield, K., Weir, L., 

Brogi, E., and Jurayj, D. (1996). Arterial gene transfer for therapeutic angiogenesis 

in patients with peripheral artery disease. Human gene therapy 7, 959-988. 

Jeltsch, M., Kaipainen, A., Joukov, V., Meng, X., Lakso, M., Rauvala, H., Swartz, M., 

Fukumura, D., Jain, R.K., and Alitalo, K. (1997). Hyperplasia of lymphatic vessels in 

VEGF-C transgenic mice. Science 276, 1423-1425. 

Jung, S., Wermker, K., Poetschik, H., Ziebura, T., and Kleinheinz, J. (2010). The impact of 

hyperbaric oxygen therapy on serological values of vascular endothelial growth 

www.intechopen.com



  
Regenerative Medicine and Tissue Engineering - Cells and Biomaterials 

 

444 

factor (VEGF) and basic fibroblast growth factor (bFGF). Head & face medicine 6, 

29. 

Kanczler, J.M., and Oreffo, R.O. (2008). Osteogenesis and angiogenesis: the potential for 

engineering bone. Eur Cell Mater 15, 100-114. 

Klein, M., and Catargi, B. (2007). VEGF in physiological process and thyroid disease. Annales 

d'endocrinologie 68, 438-448. 

Kukk, E., Lymboussaki, A., Taira, S., Kaipainen, A., Jeltsch, M., Joukov, V., and Alitalo, K. 

(1996). VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests 

a role in lymphatic vascular development. Development 122, 3829-3837. 

Kuwabara, K., Matsumoto, M., Ikeda, J., Hori, O., Ogawa, S., Maeda, Y., Kitagawa, K., 

Imuta, N., Kinoshita, T., Stern, D.M., Yanagi, H., and Kamada, T. (1996). 

Purification and characterization of a novel stress protein, the 150-kDa oxygen-

regulated protein (ORP150), from cultured rat astrocytes and its expression in 

ischemic mouse brain. J Biol Chem 271, 5025-5032. 

Laschke, M.W., Harder, Y., Amon, M., Martin, I., Farhadi, J., Ring, A., Torio-Padron, N., 

Schramm, R., Rucker, M., Junker, D., Haufel, J.M., Carvalho, C., Heberer, M., 

Germann, G., Vollmar, B., and Menger, M.D. (2006). Angiogenesis in tissue 

engineering: breathing life into constructed tissue substitutes. Tissue engineering 12, 

2093-2104. 

Lee, K.Y., Peters, M.C., Anderson, K.W., and Mooney, D.J. (2000). Controlled growth factor 

release from synthetic extracellular matrices. Nature 408, 998-1000. 

Lee, K.Y., Peters, M.C., and Mooney, D.J. (2003). Comparison of vascular endothelial growth 

factor and basic fibroblast growth factor on angiogenesis in SCID mice. J Control 

Release 87, 49-56. 

Lee, T.Y., Folkman, J., and Javaherian, K. (2010). HSPG-binding peptide corresponding to 

the exon 6a-encoded domain of VEGF inhibits tumor growth by blocking 

angiogenesis in murine model. PLoS One 5, e9945. 

Levy, A.P., Levy, N.S., and Goldberg, M.A. (1996). Post-transcriptional regulation of 

vascular endothelial growth factor by hypoxia. J Biol Chem 271, 2746-2753. 

Levy, A.P., Levy, N.S., Wegner, S., and Goldberg, M.A. (1995). Transcriptional regulation of 

the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 270, 13333-

13340. 

Levy, N.S., Chung, S., Furneaux, H., and Levy, A.P. (1998). Hypoxic stabilization of vascular 

endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 

273, 6417-6423. 

Li, Q.F., and Rabie, A.B. (2007). A new approach to control condylar growth by regulating 

angiogenesis. Archives of oral biology 52, 1009-1017. 

Li, X., Kumar, A., Zhang, F., Lee, C., Li, Y., Tang, Z., and Arjuna, P. (2010). VEGF-

independent angiogenic pathways induced by PDGF-C. Oncotarget 1, 309-314. 

Luttun, A., Tjwa, M., Moons, L., Wu, Y., Angelillo-Scherrer, A., Liao, F., Nagy, J.A., Hooper, 

A., Priller, J., De Klerck, B., Compernolle, V., Daci, E., Bohlen, P., Dewerchin, M., 

Herbert, J.M., Fava, R., Matthys, P., Carmeliet, G., Collen, D., Dvorak, H.F., Hicklin, 

D.J., and Carmeliet, P. (2002). Revascularization of ischemic tissues by PlGF 

treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by 

anti-Flt1. Nat Med 8, 831-840. 

www.intechopen.com



 
Angiogenesis and Vascularity for Tissue Engineering Applications 

 

445 

Lyttle, D.J., Fraser, K.M., Fleming, S.B., Mercer, A.A., and Robinson, A.J. (1994). Homologs 

of vascular endothelial growth factor are encoded by the poxvirus orf virus. Journal 

of virology 68, 84-92. 

Marcus, H.J., Carpenter, K.L., Price, S.J., and Hutchinson, P.J. (2010). In vivo assessment of 

high-grade glioma biochemistry using microdialysis: a study of energy-related 

molecules, growth factors and cytokines. J Neurooncol 97, 11-23. 

Matoka, D.J., and Cheng, E.Y. (2009). Tissue engineering in urology. Canadian Urological 

Association journal = Journal de l'Association des urologues du Canada 3, 403-408. 

Matsunaga, Y., Yamazaki, Y., Suzuki, H., and Morita, T. (2009). VEGF-A and VEGF-F evoke 

distinct changes in vascular ultrastructure. Biochem Biophys Res Commun 379, 872-

875. 

Meyer, M., Clauss, M., Lepple-Wienhues, A., Waltenberger, J., Augustin, H.G., Ziche, M., 

Lanz, C., Buttner, M., Rziha, H.J., and Dehio, C. (1999). A novel vascular 

endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis 

via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine 

kinases. Embo J 18, 363-374. 

Milkiewicz, M., Pugh, C.W., and Egginton, S. (2004). Inhibition of endogenous HIF 

inactivation induces angiogenesis in ischaemic skeletal muscles of mice. The Journal 

of physiology 560, 21-26. 

Misteli, H., Wolff, T., Fuglistaler, P., Gianni-Barrera, R., Gurke, L., Heberer, M., and Banfi, A. 

(2010). High-throughput flow cytometry purification of transduced progenitors 

expressing defined levels of vascular endothelial growth factor induces controlled 

angiogenesis in vivo. Stem Cells 28, 611-619. 

Murphy, W.L., Peters, M.C., Kohn, D.H., and Mooney, D.J. (2000). Sustained release of 

vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) 

scaffolds for tissue engineering. Biomaterials 21, 2521-2527. 

Nillesen, S.T., Geutjes, P.J., Wismans, R., Schalkwijk, J., Daamen, W.F., and van Kuppevelt, 

T.H. (2007). Increased angiogenesis and blood vessel maturation in acellular 

collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28, 1123-

1131. 

Nomi, M., Atala, A., Coppi, P.D., and Soker, S. (2002). Principals of neovascularization for 

tissue engineering. Molecular aspects of medicine 23, 463-483. 

Odorisio, T., Schietroma, C., Zaccaria, M.L., Cianfarani, F., Tiveron, C., Tatangelo, L., Failla, 

C.M., and Zambruno, G. (2002). Mice overexpressing placenta growth factor exhibit 

increased vascularization and vessel permeability. J Cell Sci 115, 2559-2567. 

Olofsson, B., Pajusola, K., Kaipainen, A., von Euler, G., Joukov, V., Saksela, O., Orpana, A., 

Pettersson, R.F., Alitalo, K., and Eriksson, U. (1996a). Vascular endothelial growth 

factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci U S A 93, 

2576-2581. 

Olofsson, B., Pajusola, K., von Euler, G., Chilov, D., Alitalo, K., and Eriksson, U. (1996b). 

Genomic organization of the mouse and human genes for vascular endothelial 

growth factor B (VEGF-B) and characterization of a second splice isoform. J Biol 

Chem 271, 19310-19317. 

www.intechopen.com



  
Regenerative Medicine and Tissue Engineering - Cells and Biomaterials 

 

446 

Orlandini, M., Marconcini, L., Ferruzzi, R., and Oliviero, S. (1996). Identification of a c-fos-

induced gene that is related to the platelet-derived growth factor/vascular 

endothelial growth factor family. Proc Natl Acad Sci U S A 93, 11675-11680. 

Ozawa, C.R., Banfi, A., Glazer, N.L., Thurston, G., Springer, M.L., Kraft, P.E., McDonald, 

D.M., and Blau, H.M. (2004). Microenvironmental VEGF concentration, not total 

dose, determines a threshold between normal and aberrant angiogenesis. J Clin 

Invest 113, 516-527. 

Ozawa, K., Kondo, T., Hori, O., Kitao, Y., Stern, D.M., Eisenmenger, W., Ogawa, S., and 

Ohshima, T. (2001). Expression of the oxygen-regulated protein ORP150 accelerates 

wound healing by modulating intracellular VEGF transport. J Clin Invest 108, 41-50. 

Patel, Z.S., Ueda, H., Yamamoto, M., Tabata, Y., and Mikos, A.G. (2008). In vitro and in vivo 

release of vascular endothelial growth factor from gelatin microparticles and 

biodegradable composite scaffolds. Pharm Res 25, 2370-2378. 

Pepper, M.S., Ferrara, N., Orci, L., and Montesano, R. (1992). Potent synergism between 

vascular endothelial growth factor and basic fibroblast growth factor in the 

induction of angiogenesis in vitro. Biochem Biophys Res Commun 189, 824-831. 

Ramirez-Bergeron, D.L., Runge, A., Adelman, D.M., Gohil, M., and Simon, M.C. (2006). HIF-

dependent hematopoietic factors regulate the development of the embryonic 

vasculature. Developmental cell 11, 81-92. 

Rocha, F.G., Sundback, C.A., Krebs, N.J., Leach, J.K., Mooney, D.J., Ashley, S.W., Vacanti, 

J.P., and Whang, E.E. (2008). The effect of sustained delivery of vascular endothelial 

growth factor on angiogenesis in tissue-engineered intestine. Biomaterials 29, 2884-

2890. 

Sheridan, M.H., Shea, L.D., Peters, M.C., and Mooney, D.J. (2000). Bioabsorbable polymer 

scaffolds for tissue engineering capable of sustained growth factor delivery. J 

Control Release 64, 91-102. 

Shibuya, M., Yamaguchi, S., Yamane, A., Ikeda, T., Tojo, A., Matsushime, H., and Sato, M. 

(1990). Nucleotide sequence and expression of a novel human receptor-type 

tyrosine kinase gene (flt) closely related to the fms family. Oncogene 5, 519-524. 

Soker, S., Fidder, H., Neufeld, G., and Klagsbrun, M. (1996). Characterization of novel 

vascular endothelial growth factor (VEGF) receptors on tumor cells that bind 

VEGF165 via its exon 7-encoded domain. J Biol Chem 271, 5761-5767. 

Soker, S., Takashima, S., Miao, H.Q., Neufeld, G., and Klagsbrun, M. (1998). Neuropilin-1 is 

expressed by endothelial and tumor cells as an isoform-specific receptor for 

vascular endothelial growth factor. Cell 92, 735-745. 

Stefanini, M.O., Wu, F.T., Mac Gabhann, F., and Popel, A.S. (2009). The presence of VEGF 

receptors on the luminal surface of endothelial cells affects VEGF distribution and 

VEGF signaling. PLoS computational biology 5, e1000622. 

Stein, I., Itin, A., Einat, P., Skaliter, R., Grossman, Z., and Keshet, E. (1998). Translation of 

vascular endothelial growth factor mRNA by internal ribosome entry: implications 

for translation under hypoxia. Mol Cell Biol 18, 3112-3119. 

Tafuro, S., Ayuso, E., Zacchigna, S., Zentilin, L., Moimas, S., Dore, F., and Giacca, M. (2009). 

Inducible adeno-associated virus vectors promote functional angiogenesis in adult 

organisms via regulated vascular endothelial growth factor expression. Cardiovasc 

Res 83, 663-671. 

www.intechopen.com



 
Angiogenesis and Vascularity for Tissue Engineering Applications 

 

447 

Takahashi, H., and Shibuya, M. (2005). The vascular endothelial growth factor 

(VEGF)/VEGF receptor system and its role under physiological and pathological 

conditions. Clinical science 109, 227-241. 

Takeshita, S., Weir, L., Chen, D., Zheng, L.P., Riessen, R., Bauters, C., Symes, J.F., Ferrara, N., 

and Isner, J.M. (1996). Therapeutic angiogenesis following arterial gene transfer of 

vascular endothelial growth factor in a rabbit model of hindlimb ischemia. Biochem 

Biophys Res Commun 227, 628-635. 

Takeshita, S., Zheng, L.P., Brogi, E., Kearney, M., Pu, L.Q., Bunting, S., Ferrara, N., Symes, 

J.F., and Isner, J.M. (1994). Therapeutic angiogenesis. A single intraarterial bolus of 

vascular endothelial growth factor augments revascularization in a rabbit ischemic 

hind limb model. J Clin Invest 93, 662-670. 

Tang, N., Wang, L., Esko, J., Giordano, F.J., Huang, Y., Gerber, H.P., Ferrara, N., and 

Johnson, R.S. (2004). Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-

driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6, 485-495. 

Terman, B.I., Carrion, M.E., Kovacs, E., Rasmussen, B.A., Eddy, R.L., and Shows, T.B. (1991). 

Identification of a new endothelial cell growth factor receptor tyrosine kinase. 

Oncogene 6, 1677-1683. 

Tsuboi, R., and Rifkin, D.B. (1990). Recombinant basic fibroblast growth factor stimulates 

wound healing in healing-impaired db/db mice. The Journal of experimental medicine 

172, 245-251. 

Verbridge, S.S., Choi, N.W., Zheng, Y., Brooks, D.J., Stroock, A.D., and Fischbach, C. (2010). 

Oxygen-controlled three-dimensional cultures to analyze tumor angiogenesis. 

Tissue Eng Part A 16, 2133-2141. 

Wang, X., Zhou, X., Ma, J., Tian, H., Jiao, Y., Zhang, R., Huang, Z., Xiao, J., Zhao, B., Qian, 

H., and Li, X. (2010). Effects of keratinocyte growth factor-2 on corneal epithelial 

wound healing in a rabbit model of carbon dioxide laser injury. Biological & 

pharmaceutical bulletin 33, 971-976. 

Wernike, E., Montjovent, M.O., Liu, Y., Wismeijer, D., Hunziker, E.B., Siebenrock, K.A., 

Hofstetter, W., and Klenke, F.M. (2010). VEGF incorporated into calcium phosphate 

ceramics promotes vascularisation and bone formation in vivo. Eur Cell Mater 19, 

30-40. 

Wilcke, I., Lohmeyer, J.A., Liu, S., Condurache, A., Kruger, S., Mailander, P., and Machens, 

H.G. (2007). VEGF(165) and bFGF protein-based therapy in a slow release system to 

improve angiogenesis in a bioartificial dermal substitute in vitro and in vivo. 

Langenbeck's archives of surgery / Deutsche Gesellschaft fur Chirurgie 392, 305-314. 

Wu, S., Wu, X., Zhu, W., Cai, W.J., Schaper, J., and Schaper, W. (2010). 

Immunohistochemical study of the growth factors, aFGF, bFGF, PDGF-AB, VEGF-

A and its receptor (Flk-1) during arteriogenesis. Mol Cell Biochem 343, 223-229. 

Yamada, Y., Nezu, J., Shimane, M., and Hirata, Y. (1997). Molecular cloning of a novel 

vascular endothelial growth factor, VEGF-D. Genomics 42, 483-488. 

Yamazaki, Y., Matsunaga, Y., Tokunaga, Y., Obayashi, S., Saito, M., and Morita, T. (2009). 

Snake venom Vascular Endothelial Growth Factors (VEGF-Fs) exclusively vary 

their structures and functions among species. J Biol Chem 284, 9885-9891. 

Yla-Herttuala, S. (2009). Gene therapy with vascular endothelial growth factors. Biochem Soc 

Trans 37, 1198-1200. 

www.intechopen.com



  
Regenerative Medicine and Tissue Engineering - Cells and Biomaterials 

 

448 

Zacchigna, S., Tasciotti, E., Kusmic, C., Arsic, N., Sorace, O., Marini, C., Marzullo, P., 

Pardini, S., Petroni, D., Pattarini, L., Moimas, S., Giacca, M., and Sambuceti, G. 

(2007). In vivo imaging shows abnormal function of vascular endothelial growth 

factor-induced vasculature. Human gene therapy 18, 515-524. 

www.intechopen.com



Regenerative Medicine and Tissue Engineering - Cells and

Biomaterials

Edited by Prof. Daniel Eberli

ISBN 978-953-307-663-8

Hard cover, 588 pages

Publisher InTech

Published online 29, August, 2011

Published in print edition August, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Tissue Engineering may offer new treatment alternatives for organ replacement or repair deteriorated organs.

Among the clinical applications of Tissue Engineering are the production of artificial skin for burn patients,

tissue engineered trachea, cartilage for knee-replacement procedures, urinary bladder replacement, urethra

substitutes and cellular therapies for the treatment of urinary incontinence. The Tissue Engineering approach

has major advantages over traditional organ transplantation and circumvents the problem of organ shortage.

Tissues reconstructed from readily available biopsy material induce only minimal or no immunogenicity when

reimplanted in the patient. This book is aimed at anyone interested in the application of Tissue Engineering in

different organ systems. It offers insights into a wide variety of strategies applying the principles of Tissue

Engineering to tissue and organ regeneration.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Remo A. Largo, Venkat M. Ramakrishnan, Martin Ehrbar, Algirdas Ziogas, Jan A. Plock and Daniel Eberli

(2011). Angiogenesis and Vascularity for Tissue Engineering Applications, Regenerative Medicine and Tissue

Engineering - Cells and Biomaterials, Prof. Daniel Eberli (Ed.), ISBN: 978-953-307-663-8, InTech, Available

from: http://www.intechopen.com/books/regenerative-medicine-and-tissue-engineering-cells-and-

biomaterials/angiogenesis-and-vascularity-for-tissue-engineering-applications



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


