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 Functional Analysis of Intergenic  
Regions for Gene Discovery  
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Pacific Tuberculosis and Cancer Research Organization, Anaheim, CA 

USA 

1. Introduction 

Gene finding can be defined as a problem of identifying a stretch of the genomic DNA 
sequence that is biologically functional. Such a genomic DNA sequence is known as a gene. 
A gene performs a function like protein coding or regulation at the molecular level and 
plays a biological role, such as growth, metabolism, and intelligence. Traditionally, gene 
finding relies on numerous biological experiments and statistical analysis to pinpoint the 
location of a new gene in a genetic map. With the advent of bioinformatics, gene finding has 
largely become a computational problem. Genes are predictable based on the genomic 
sequence alone. However, the determination of the specific function and biological role of a 
gene would still demand in vivo experimentation, which is hoped to be reduced or even 
replaced by new bioinformatics algorithms in the future. 
A newly sequenced genome is annotated thoroughly so that the information it carries can be 
utilized. In essence, genome annotation is to identify the locations of genes and all of the 
coding regions in a genome, and determine their protein products as well as functions. 
Hundreds of bacterial genome sequences are publicly available and the number will soon 
reach a new milestone. Gene annotation by hand is almost impossible to handle the deluge 
of new genome sequences appearing at this pace. The need for automated, large-scale, high-
throughput genome annotation is imminent (Overbeek, Begley et al. 2005; Van Domselaar, 
Stothard et al. 2005; Stothard and Wishart 2006). The basic level of genome annotation is the 
use of BLAST (Altschul, Gish et al. 1990) for finding similarities between related genomic 
sequences. Integration with other sources of information and experimental data is a trend in 
genome annotation.  
A recent study indicates that many genomes could be either over-annotated (too many 
genes) or under-annotated (too few genes), and a large percentage of genes may have been 
assigned a wrong start codon (Nielsen and Krogh 2005). The fact that the original genome 
annotation is accurate and complete upon submission does not guarantee that it will not be 
changed, as new experimental evidence and knowledge would continue to arrive and 
constant updates would be inevitable. However, re-annotation of the whole genome is not 
very fruitful, as most of the genes have been identified in the first annotation. For example, 
the re-annotation of the H37Rv genome resulted in about 2% of new protein-coding 
sequences (CDS) added to the genome. The result reflects the limitation with current 
genome annotation technology. To address the issue, we developed a new method for gene 
finding in an annotated genome. We select the genome of Mycobacterium tuberculosis, the 
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causative pathogen of tuberculosis, as the experimental genome for this study. The 
availability of the complete genome sequence of M. tuberculosis H37Rv (Cole, Brosch et al. 
1998) has led to a better understanding of the biology and pathogenicity of the organism, 
and new molecular targets for diagnostics and therapeutics can be invented at a fast pace by 
focusing on genes with important functions.   
In our previous studies, we found that some intergenic sequences in M. tuberculosis genome 

exhibited expression signals, as detected by the Affymetrix GeneChip (Fu 2006; Fu and Fu-

Liu 2007; Fu and Shinnick 2007). The same observation has been made for other bacteria, 

such as Bacillus subtilis (Lee, Zhang et al. 2001), and also holds true in the eukaryotic system 

(Zheng, Zhang et al. 2005). At present, it is not clear whether or how intergenic expression 

represents gene activity. Here, we presented our research work concerning gene discovery 

in the intergenic sequences based on transcription activity. In this work, new protein-coding 

genes were identified by the bioinformatics criteria based on the gene structure, protein 

coding potential, and ortholog evidence, in conjunction with microarray-based 

transcriptional evidence.  

2. Research methods and design 

The developed method of gene finding in the intergenic sequences proceeds as follows: 
1. Transcription analysis to identify intergenic regions exhibiting significant gene 

expression activity. 

2. Coding potential and gene structure analysis on active intergenic elements identified 

based on transcription evidence. 

3. Protein domain search to identify functional domains in each active intergenic element 

with significant transcription activity and coding potential. 

4. Homology search based on BLAST to seek homologue evidence. 

The flowchart of the method is displayed in Figure 1. 
The method was applied to the originally annotated M. tuberculosis H37Rv genome (Cole, 

Brosch et al. 1998). The genes discovered in the intergenic sequences were validated against 

recent findings in the literature. The research protocols (Fu and Shinnick 2007) were 

described below. 

2.1 RNA isolation 

M. tuberculosis strain H37Rv was obtained from the culture collection of the Mycobacteriology 
Laboratory Branch, Centers for Disease Control and Prevention at Atlanta. Bacterial lysis and 
RNA isolation were performed following the procedure at the CDC lab, Atlanta (Fisher, 
Plikaytis et al. 2002). Briefly, cultures were mixed with an equal volume of RNALaterTM 
(Ambion, Austin, TX) and the bacteria harvested by centrifugation (1 min, 25000g, 8°C) and 
transferred to Fast Prep tubes (Bio 101, Vista, CA) containing Trizol (Life Technologies, 
Gaithersburg, MD). Mycobacteria were mechanically disrupted in a Fast Prep apparatus. The 
aqueous phase was recovered, treated with Cleanascite (CPG, Lincoln Park, NJ), and extracted 
with chloroform-isoamyl alcohol (24:1 v/v). Nucleic acids were ethanol precipitated. DNAase 
I (Ambion) treatment to digest contaminating DNA was performed in the presence of Prime 
RNase inhibitor (5’-3’, Boulder, CO). The RNA sample was precipitated and washed in 
ethanol, and redissolved to make a final concentration of 1 mg/ml. The purity of RNA was 
estimated by the ratio of the readings at 260 nm and 280 nm (A260/A280) in the UV. 20 ul 
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RNA samples were sent to the UCI DNA core and further checked through a quality and 
quantity test based on electrophoresis before microarray hybridization. 
 

 

Fig. 1. The bioinformatics method with a flowchart developed for finding genes in intergenic 
regions. 
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2.2 Microarray hybridization 

In this study, we used the anti-sense Affymetrix M. tuberculosis genome array (GeneChip). 
The probe selection was based on the genome sequence of M. tuberculosis H37Rv (Cole, 
Brosch et al. 1998). Each annotated ORF (Open Reading Frame) or IG (Intergenic Region) 
was interrogated with oligonucleotide probe pairs. An IG referred to the region between 
two consecutive ORFs. The gene chip represented all 3924 ORFs and 740 intergenic regions 
of H37Rv. The selection of these IGs in the original design was based on the sequence 
length. Twenty 25-mer probes were selected within each ORF or IG. These probes were 
called PM (Perfect-Match) probes. The sequence of each PM probe was perturbed with a 
single substitution at the middle base. They were called MM (Mismatch) probes. A PM 
probe and its respective MM probe constituted a probe pair. The MM probe served as a 
negative control for the PM probe in hybridization.  
Microarray hybridization followed the Affymetrix protocol. In brief, the assay utilized 
reverse transcriptase and random hexamer primers to produce DNA complementary to the 
RNA. The cDNA products were then fragmented by DNAase and labeled with terminal 
transferase and biotinylated GeneChip DNA Labeling Reagent at the 3' terminal.  
Each RNA sample underwent hybridization with one gene array to produce the expression 
data of all genes on the array. We performed eleven independent bacterial cultures and 
RNA extractions at different times, and collected eleven sets of microarray data for this 
study. A global normalization scheme was applied so that each array's median value was 
adjusted to a predefine value (500). The scale factor for achieving this transformed median 
value for an array was uniformly applied to all the probe set values on a specific array to 
result in the determined signal value for all the probe sets on the array. In this manner, 
corresponding probe sets can be directly compared across arrays.  

2.3 Gene expression analysis 

The gene expression data were analyzed by the program GCOS (GeneChip Operating 
Software) version 1.4. In the program, the Detection algorithm determined whether a 
measured transcript was detected (P Call) or not detected (A Call) on a single array 
according to the Detection p-value that was computed by applying the one-sided Wilcoxon’s 
signed rank test to test the Discrimination scores (R) against a predefined adjustable 

threshold τ. The parameter τ controlled the sensitivity and specificity of the analysis, and 
was set to a typical value of 0.015, and the Detection p-value cutoffs, α1 and α2, set to their 
typical values, 0.04 and 0.06, respectively, according to the Affymetrix system.  

2.4 Gene prediction 

Protein-coding region identification and gene prediction were performed by the programs, 
GeneMark and GeneMark.hmm (Lukashin and Borodovsky 1998; Besemer and Borodovsky 
2005) (http://exon.gatech.edu/GeneMark/), respectively. The prokaryotic version and the 
M. tuberculosis H37Rv genome were selected. Both programs use inhomogeneous Markov 
chain models for coding DNA and homogeneous Markov chain models for non-coding 
DNA. GeneMark adopts Bayesian formalism, while GeneMark.hmm uses a Hidden Markov 
Model (HMM).  

2.5 Protein domain search 

The Pfam program version 20.0 (Finn, Mistry et al. 2006) (http://pfam.wustl.edu/) was 
employed to conduct protein domain search after the input DNA sequence was translated 
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into a protein sequence in six possible frames. The search mode was set to “global and local 
alignments merged”, and the cut-off E-value set to 0.001, which was more stringent than the 
default value of 1.0. Pfam maintained a comprehensive collection of multiple sequence 
alignments and hidden Markov models for 8296 common protein families based on the 
Swissprot 48.9 and SP-TrEMBL 31.9 protein sequence databases.  

2.6 Homology search 

The BLASTx program (Altschul, Gish et al. 1990) (http://www.ncbi.nlm.nih.gov/BLAST/) 

was used to identify high-scoring homologous sequences. The program first translated the 

input DNA sequence into a protein sequence in six possible frames, and then matched it 

against the non-redundant protein sequence database (nr) in the GenBank and calculated 

the statistical significance of the matches. The default cut-off E-value was 10.0 but we set it 

to 101.0 10−× . Orthologs refer to homologs in different strains of the same species. Orthologs 

provide critical evidence for gene finding and characterization in a new genome sequence. A 

typical prokaryotic gene has the following structure: the promoter, transcription initiation, 

the 5' untranslated region, translation initiation, the coding region, translation stop, the 3' 

untranslated region, and transcription stop. 

3. Results 

In our previous research, we conducted a genome-wide expression analysis on intergenic 

regions using the Affymetrix GeneChip (Fu and Shinnick 2007). The transcriptional activity 

of intergenic regions was measured based on a set of eleven independent RNA samples 

extracted from M. tuberculosis culture. Each RNA sample contained the information of 

genome-wide expression of genes and intergenic elements. The Affymetrix GeneChip was 

uniquely suited to this study since it had the advantage of encoding both genes and 

intergenic sequences whereas other types of microarray like the cDNA array could not 

profile intergenic sequences. As an additional strength, the Affymetrix array was designed 

to minimize cross-hybridization by using unique oligonucleotide probes and the pair of PM 

(Perfect-Match) and MM (Mismatch) probes. The cross-hybridization of related or 

overlapping gene sequences often contributed to false positive signals, especially in the case 

when long cDNA sequences were used as probes. A study demonstrated that the Affymetrix 

GeneChip produced more reliable results in detecting changes in gene expression than 

cDNA microarrays (Li, Pankratz et al. 2002). 

In this work, genes in the intergenic sequences were recognized based on transcriptional 

activity, structural patterns, and coding potential, and subsequently validated through 

sequence comparison with orthologs from other M. tuberculosis strains. 

3.1 Transcriptional analysis 

An intergenic region was assumed to transcribe if there existed transcripts in the RNA 
sample that were bound to the probes encoding that intergenic sequence. The presence or 
absence of a given transcript was determined in accordance with the Detection algorithm of 
the Affymetrix system. In this study, a gene or intergenic region was determined to express 
(transcriptionally active) only if the derived mRNA was present (P-call) in more than 90% of 

the collected RNA samples with a Detection p-value < 0.001. The status of active 
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transcription assigned to an intergenic sequence signified the possible presence of a gene 
within that sequence. We focused on finding protein-coding genes and neglected regulatory 
genes that transcribed into a regulatory RNA instead of mRNA. Furthermore, it was not 
clear how much cross-hybridization would occur between genes and intergenic sequences. 
As a result, the functional criterion based on expression activity was strengthened by 
structural analysis for minimizing false positives in gene identification. 

3.2 Sequence-based gene prediction 

In the sequence-based approach to gene prediction, gene structure and coding potential are 
the two mutually supportive elements. The GeneMark algorithm was applied to an 
intergenic sequence for checking whether it contained a probable coding region, and the 
GeneMark.hmm algorithm was used for predicting a gene within the sequence. The criteria 
based on the predefined transcriptional evidence, coding potential, and gene structure 
yielded 65 candidate genes in the intergenic regions of M. tuberculosis H37Rv. 

3.3 Protein domain search 

The biological function of a gene is determined using in vivo experimentation in a traditional 

approach. Recently, the wealth of bioinformatics knowledge in the functional domains of 

proteins has enabled the function of a molecular sequence to be characterized directly, 

subject to in vivo validation. Thus, the “candidate” genes within the intergenic sequences 

that satisfied the criteria based on transcription activity, gene structure, and coding potential 

were further examined for embedded functional domains. To this end, Pfam was applied to 

search on the protein sequences of the candidate genes. Twelve of them were found to have 

a known domain (Tables 1); a found domain was generally located within the predicted 

gene sequence, but there were a few exceptions (i.e., IG398 and IG1140) in which a domain 

was found within the intergenic sequence but outside the predicted gene sequence. The 

biological function and role of a gene is deducible from its associated functional domains; 

yet sufficient evidence from homology or biochemistry would serve to corroborate it.  

3.4 Homologue evidence 

In evolutionary biology, a reliable means for predicting the function of an unknown gene 
sequence is based on homologs or orthologs. BLAST is a bioinformatics program for 
database search, allowing functional and evolutionary inference between sequences. In this 
study, BLAST was employed to retrieve from sequence databases all proteins that produced 
statistically significant alignment with a given intergenic sequence under consideration. The 
sequences retrieved by BLAST were homologous to the query sequence. It turned out that 

the highest-scoring homologous sequences with ≥98% identity were consistently those 
belonging to the same strain (H37Rv) or different strains of Mycobacterium tuberculosis (e.g., 
CDC1551, F11, and C). These sequences are coding sequences described in the currently 
annotated genome of M.  tuberculosis. 
A homologous sequence found in different strains of the same species often represents an 
ortholog that shares similar function, whereas a homologous sequence found in the same 
organism is a paralog (which is produced via gene duplication within a genome) that tends 
to have a different function. No evidence suggested paralogs in our analysis, as argued 
based on the following observation. We noted that, given an intergenic sequence, when 
BLAST returned a homologous sequence pertaining to the H37Rv strain, it was apparently 
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the same protein-coding sequence contained in the intergenic sequence. This is because the 
intergenic sequence used as a query and its homologous sequence returned by BLAST 
occupied the same physical location within the genome, as inferred from information given 
by the Affymetrix Genechip. This coincidence was further explained by the fact that the 
intergenic sequence was named according to the early version of the H37Rv genome 
annotation while the homologous sequence was retrieved from the GenBank which 
contained all up-to-date genes. The results are significant. First, we demonstrated that our 
method was able to identify protein-coding genes in intergenic regions previously 
considered as non-coding sequences. Secondly, our method based on bioinformatics and 
transcriptional evidence correctly predicted these changes on a high-throughput, genomic 
scale. The changes refer to  

• IG1061 → (containing) Rv1322A  

• IG499 → Rv0634B  

• IG617 → Rv0787A 

• IG1741 → Rv2219A  

• IG2500 → Rv3198A  

• IG2053 → Rv2631  

• IG1179 → Rv1489A  

• IG2522 → Rv3224B  

• IG1291 → Rv1638A  

• IG398 → Rv0500A 

• IG2870 → Rv3678A  

• IG188 → Rv0236A 

• IG2498 → Rv3196A,  

• IG2591 → Rv3312A  

• IG595 → Rv0755A 

• IG1814 → Rv2309A  

• IG1030 → Rv1290A  

• IG2141 → Rv2737A 
In the above findings, each intergenic region contained an independent gene/CDS with the 
only exception that part of IG2053 was incorporated in its left-flanking CDS. The presence of 
a gene structure in an IG and its lack of functional correlation with its adjacent genes 
suggested that it was not a run-away segment from adjacent genes. 
In our analysis, predicted genes located within intergenic sequences that met the criteria 
defined based on protein-coding potential, structural patterns, and transcription evidence, 
were called “candidate” genes. If a candidate gene of unknown function was homologous to 
another gene of know function, the candidate gene was assigned the function associated 
with its homologous gene. Nonetheless, the strategy of inferring the function of an 
uncharacterized sequence from its orthologs had limited value in analyzing intergenic data 
mainly because most of the orthologs found in this study were hypothetical proteins with 
unknown function. We did not assign a specific function to a candidate gene until it had an 
ortholog of known function, whether or not the candidate gene carried a known functional 
domain. In the absence of a specific function assigned, a CDS was termed a hypothetical 
protein rather than a gene in our system.  
In this work, six intergenic sequences were identified that met the criteria we defined, 

including protein coding, structural patterns, transcription, and ortholog evidence: IG499, 
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IG617, IG1741, IG2500, IG1567, and IG2229, among which four genes had been reported in 

the M. tuberculosis H37Rv genome (Table 1). A hypothetical protein was found in 52 

intergenic sequences and 14 among them had been reported in the H37Rv genome. Overall, 

this research discovered two genes with a specific function and 38 hypothetical proteins that 

had not been reported in the H37Rv genome (Fu and Shinnick 2007). The two new genes 

discovered were a DNA-binding protein in the CopG family and a nickel binding GTPase, 

located in IG1567 and IG2229, respectively (Figure 2). It was worth noting that 4.3% of 

intergenic regions exhibiting transcriptional activity contained a gene described in the re-

annotated H37Rv genome, compared with 1.0% of intergenic regions in the absence 

transcriptional activity. The four-fold increase in likelihood suggested that microarray-based 

transcriptional analysis would facilitate genome-wide gene finding. 

 

IG Lt Flank Rt Flank Domain ID Re-annotated H37Rv Gene 

IG1061 Rv1322 Rv1323 Glyoxalase Rv1322A* 

IG499 Rv0634c Rv0635 Ribosomal_L33 Rv0634B 

IG617 Rv0787 
 

Rv0788 PurS Rv0787A 

IG398 Rv0500 Rv0501 DUF1713 Rv0500A* 

IG1741 Rv2219 
 

Rv2220 RDD Rv2219A 

IG2500 Rv3198c Rv3199c Glutaredoxin Rv3198A 

IG2053 Rv2631 Rv2632c UPF0027 Rv2631* 

IG1179 Rv1489c Rv1490 MM_CoA_mutase Rv1489A* 

IG1140 Rv1438 Rv1439c TetR_N None 

IG2522 Rv3224 
 

Rv3225c YbaK Rv3224B* 

IG1567 Rv1991c Rv1992c RHH_1 None 

IG2229 Rv2856 Rv2857c cobW None 

*: Hypothetical protein 

Table 1. The functional domains of the predicted genes located within the intergenic 

sequences of M. tuberculosis H37Rv genome. Each intergenic sequence shown is 

characterized by its flanking genes or ORFs and the functional domain identified in the 

translated protein sequence. Most of IGs with a functional domain contain a gene in the re-

annotated H37Rv genome (Fu and Shinnick 2007).  

4. Discussion 

Computational algorithms for gene prediction are divided in two classes: One is based on 

sequence similarity and the other based on gene structure and signal. The latter is known as 

ab initio prediction. The first class of algorithm, represented by BLAST (Altschul, Gish et al. 

1990), finds sequences (DNA, protein, or ESTs) in the database that match the given 

sequence, whereas the second class of algorithm, such as Hidden Markov Model (Burge and 

Karlin 1997; Lukashin and Borodovsky 1998; Besemer and Borodovsky 2005), builds a model 
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of gene structure from empirical data. They both have limitations. For instance, the 

sequence-based approach is not applicable if no homology is found, whereas the model-

based approach is not workable if no adequate training data is available for model 

parameter estimation. To explore an alternative in a different perspective, the method 

developed in our research combined sequence alignment, transcriptional evidence, and 

homology. In particular, the transcriptional activity of a piece of DNA is direct evidence that 

it is functioning. This is important because a gene means a piece of genomic DNA that is 

functional. In the absence of functional evidence, any gene computed by whatever 

algorithms will remain hypothetical. 

 

 

Fig. 2. Examples of new genes with a predicted function found in the genome of M. 

tuberculosis H37Rv (Fu and Shinnick 2007). 

The whole M. tuberculosis H37Rv genome has been sequenced and annotated 

comprehensively (Cole, Brosch et al. 1998). Transcriptional analysis of intergenic regions is a 

means of exploring unknown genes. Our idea capitalized on transcription analysis in gene 

finding, which was useful especially when applied to an annotated genome. Current 

genome annotation technology allowed all genes to be identified by a computational 

algorithm, and it was unlikely to add new genes through re-annotation at the same time 

unless using a different algorithm. Thus, it was within expectation that the number of new 

protein-coding sequences due to re-annotation was merely 2% of that in the original 

submission of M. tuberculosis genome (Camus, Pryor et al. 2002). Through homology and 

pattern-based search, most protein-coding sequences with a predicted function have been 

reported. Yet, transcriptional evidence could quickly hint at potential protein-coding genes 

in the intergenic regions. It is encouraging that we are still able to find new genes in this 

study given the fact that the current knowledge concerning M. tuberculosis genes is derived 

from intensive research in the field involving in vivo biological experiments, such as gene 

deletion and complementation. Thus the integration of the sequence- and function-based 

analyses would be a useful approach to not just gene characterization but also gene 

prediction. As the experiment was based on the standard in vitro growth condition of M. 
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tuberculosis, silent genes under this condition were not under examination in this study, but 

the same idea should be applicable to other genomes under other conditions, and contribute 

to the improvements of current gene databases. 

The methods presented here did not address the issue of genes that did not code proteins. 

There are a number of regulatory, non-coding RNAs assuming a distinct role from mRNA, 

rRNA and tRNA. Many such RNAs have been identified and characterized both in 

prokaryotes and eukaryotes and their main functions are posttranscriptional regulation of 

gene expression and RNA-directed DNA methylation (Erdmann, Barciszewska et al. 2001; 

Pickford and Cogoni 2003). A non-coding RNA has neither a long open reading frame nor a 

gene structure. The DNA sequence that encodes a non-coding RNA is called a gene if its 

regulatory function can be defined. Thus it is possible that an isolated expression element 

lacking a gene structure is a non-coding, regulatory RNA. However, it was confirmed that 

the potential protein-coding genes found in this study did not match any RNA family 

published in the RNA-families database (www.sanger.ac.uk/ Software/Rfam/). 

5. Conclusion 

High-throughput gene finding on a newly sequenced genome is enabled through advanced 

computational genome annotation software. However, genome annotation does not 

guarantee all genes to be identified since knowledge and concepts about what constitutes a 

gene are evolving and yet to be perfected. Genome re-annotation using the same kind of 

computational heuristics offers limited help, unless supported with new in vivo 

experimental evidence, but such evidence often slowly arrives. We developed a method that 

integrated sequence-based and transcriptional information for gene finding in the intergenic 

regions of an annotated genome. In the experiment with the M. tuberculosis H37Rv genome, 

the method discovered genes with a specific function, such as a DNA-binding protein in the 

CopG family and a nickel binding GTPase, as well as hypothetical proteins that have not 

been reported in the M. tuberculosis H37Rv genome. This work has demonstrated that 

microarray-based transcriptional analysis could play an important role in gene finding on 

the genomic scale.   
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