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GRID Computing and Computational Immunology

Ferdinando Chiacchio and Francesco Pappalardo
University of Catania

Italy

1. Introduction

Biological function emerges from the interaction of processes acting across a range
of spatio-temporal scales. Therefore understanding disease and developing potential
therapeutic strategies requires studies that bridge across multiple levels. This requires a
systems biology approach and the tools used must be based on effective mathematical
algorithms and built by combining experimental and theoretical approaches, addressing
concrete problems and clearly defined questions.
Technological revolutions in both biotechnology and information technology have produced
enormous amounts of data and are accelerating the extension of our knowledge of biological
systems. These advances are changing the way biomedical research, development and
applications are done. Mathematical and computational models are increasingly used to help
interpret data produced by high-throughput genomics and proteomics projects, and through
advances in instrumentation. Advanced applications of computer models that enable the
simulation of biological processes are used to generate hypotheses and plan experiments.
Computational modeling of immune processes has emerged as a major support area for
immunology and vaccinology research. Computational models have been developed for the
simulation of immune processes at the molecular, cellular, and system levels. Computer
models are used to complement or replace actual testing or experimentation. They are
commonly used in situations where experimentation is expensive, dangerous, or impossible
to perform. Models of the immune system fall into two categories:

1. molecular interactions (such as peptide binding to receptors), and

2. system-level interactions (such as models of immune response, or cellular models of
immune system).

Until recently, models of molecular level immune processes have been successful
in supporting immunology research, such as antigen processing and presentation.
Computational models of the complete immune system have mainly been developed in the
domain of theoretical immunology and were used to offer possible explanations of the overall
function of the immune system, but were usually not applied in practice.
Newer computational tools that focus on immune interactions include numerous methods
used for the mapping of T-cell epitopes (targets of immune responses). Computational
methods for the simulation of antigen processing include prediction of proteasomal
cleavage and peptide binding to transporters associated with antigen processing (TAP).
The basic methods for the prediction of antigen processing and presentation have been
extended to more sophisticated computational models for identification of promiscuous
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Human Leukocyte Antigens (HLA)-restricted T-cell epitopes, identification of Major
Histocompatibility Complex (MHC) supermotifs and T-cell epitope hot-spots.
Computational models of cellular or higher level processes or interactions have a longer
history than those focusing on molecular processes, but are also more complex. These
include models of T- cell responses to viruses, analysis of MHC diversity under host-pathogen
co-evolution, B-cell maturation, or even the dynamic model of the immune system that can
simulate both cellular and humoral immune responses.
The main problems that prevented the use of these models in practical applications,
such as design of vaccines and optimization of immunization regimens are: a) large
combinatorial complexity of the human immune system that could not be supported
by existing computational infrastructures, b) lack of understanding of specific molecular
interactions that resulted in an idealization of representation of molecular interactions as
binary strings, and c) lack of experimental model data and correlation of model parameters to
real-life measurements. Recent developments provide remedies to these problems and we are
in the position to address each of these issues.
Grid computing brought powerful computational infrastructure and the capacity that can
match the complexity of the real human immune system. Models of molecular interactions
have reached high accuracy and we are routinely using prediction methods of antigen
processing and presentation to identify the best targets for vaccine constructs. Finally,
experimental models of immune responses to tumors and infectious diseases have been
successfully modeled computationally.
In this work, we present two different experiences in which we show successful stories
in using computational immunology approaches that have been implemented using GRID
infrastructure:

• modeling atherosclerosis, a disease affecting arterial blood vessels, that is one of most
common disease of the developed countries;

• a biological optimization problem on the Grid, i.e. an optimal protocol search algorithm
based on Simulated Annealing (SA) capable to suggest optimal Triplex vaccine dosage
used against mammary carcinoma induced lung metastasis.

2. Modeling atherogenesis using GRID computing

Atherosclerosis is, in large part, due to the deposition of low density lipoproteins (LDLs),
i.e., plasma proteins carrying cholesterol and triglycerides, that determine the formation of
multiple plaques within the arteries (Hanson, 2002; Ross, 1999). The origin of atherosclerosis
is still not fully understood. However there are risk factors which increase the probability
of developing atherosclerosis in humans. Some of these risk factors are beyond a person’s
control (smoking, obesity), others seem to have genetic origin (familial hypercholesterolemia,
diabetes, hypertension) (Romero-Corral et al., 2006). Common denominator in all the form of
atherosclerosis is the elevated level of LDL, which is subject to oxidation becoming oxidized
low density lipoproteins (ox-LDL), that promotes an inflammatory response and immune
activation in the artery walls (Berliner et al., 1996). The formation of atherosclerotic plaques in
the artery reduces both the internal diameter of vessels and the blood flux leading to a number
of serious pathologies (Vinereanu, 2006). Early studies demonstrated that ox-LDL can induce
activation of monocytes/macrophages, endothelial cells and T cells. Ox-LDLs engulfed by
macrophages form the so called foam cells (Steinberg, 1997). These cells represent the nucleus
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of the plaques formation. Ox-LDL promotes also immune activation of B cells inducing the
production of specific anti ox-LDL antibody (OLAB).
Atherosclerosis and their anatomical consequences cause severe problems. Stenosis
(narrowing) and aneurysm of the artery are chronic, slowly progressing and cumulative
effects indicating the progression of atherosclerotic disease. In both case the result is an
insufficient blood supply to the organ fed by the artery. Most commonly, soft plaque suddenly
ruptures, causes the formation of a thrombus that will rapidly slow or stop blood flow, leading
to death of the tissues fed by the artery. This catastrophic event is called infarction and is not
predictable. The most common event is thrombosis of the coronary artery causing infarction
(a heart attack): However, since atherosclerosis is a body wide process, similar events also
occur in the arteries of the brain (stroke attack), intestines, kidneys, etc. Those atherosclerosis
associated events often cause of dead or serious invalidating diseases and require preventive
treatments. Vaccine research for atherosclerosis is a hot pharmaceutical topic.
Recently we proposed a model based on the Agent Based Model (ABM) paradigm
(Pappalardo et al., 2008) which reproduces clinical and laboratory parameters associated to
atherogenesis. The model and its computer implementation (SimAthero simulator) considers
all the relevant variables that play an important role in atherogenesis and its induced immune
response, i.e., LDL, ox-LDL, OLAB, chitotriosidase and the foam cells generated in the artery
wall.
We present three different situations over a time scale of two years. The standard normal
patients where no foam cells are formed; patients having high level of LDL but who delay to
apply appropriate treatments and finally patients who may have many events of high level of
LDL but takes immediately appropriate treatments.

2.1 Description of the model

2.1.1 The biological scenario

Exogenous and endogenous factors induce in humans a very small, first oxidative process
of blood circulating native LDLs (minimally modified LDLs or mm-LDLs). In endothelium
mm-LDLs are extensively oxidized from intracellular oxidative products and then recognized
by the macrophage scavenger receptor. High level and persistent in time LDLs lead to
macrophages engulfment and their transformation in foam cells. Contrary, low level of
LDLs and their oxidized fraction, lead to the internalization of the oxidized low density
lipoproteins and subsequent presentation by major histocompatibility complex class II at the
macrophages surface. Recognition of ox-LDL by macrophages and naive B cells, leads, by
T helper lymphocytes cooperation, to the activation of humoral response and production
of OLAB. When the OLAB/ox-LDL immune complexes are generated in the vascular wall,
the macrophages catch them by the Fc receptor or via phagocytosis and destroy ox-LDL in
the lysosome system. During this process, the activated macrophage releases chitotriosidase
enzyme, that is then used as a marker of macrophage activation.

2.1.2 The model

To describe the above scenario one needs to include all the crucial entities (cells, molecules,
adjuvants, cytokines, interactions) that biologists and medical doctors recognize as relevant in
the game. The model described in (Pappalardo et al., 2008) contains entities and interactions
which both biologist and MD considered relevant to describe the process.
Atherosclerosis is a very complex phenomenon which involves many components some of
them not fully understood. In the present version of the simulator we considered only in
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the immune system processes that control the atherogenesis. These processes may occur in
immune system organs like lymph nodes or locally in the artery endothelium. To describe the
Immune processes we considered both cellular and molecular entities.
Cellular entities can take up a state from a certain set of suitable states and their dynamics
is realized by means of state-changes. A state change takes place when a cell interacts with
another cell or with a molecule or both of them. We considered the relevant lymphocytes
that play a role in the atherogenesis-immune system response, B lymphocytes and helper T
lymphocytes. Monocytes are represented as well and we take care of macrophages. Specific
entities involved in atherogenesis are present in the model: low density lipoproteins, oxidized
low density lipoproteins, foam cells, auto antibodies anti oxidized low density lipoproteins
and chitotriosidase enzyme. Cytotoxic T lymphocytes are not taken into consideration
because they are not involved in the immune response (only humoral response is present
during atherogenesis).
Molecular entities The model distinguishes between simple small molecules like interleukins
or signaling molecules in general and more complex molecules like immunoglobulins and
antigens, for which we need to represent the specificity. We only represent interleukin 2
that is necessary for the development of T cell immunologic memory, one of the unique
characteristics of the immune system, which depends upon the expansion of the number
and function of antigen-selected T cell clones. For what is related to the immunoglobulins,
we represent only type immunoglobulins of class G (IgG). This just because at the actual
state we don’t need to represent other classes of Ig and because IgG is the most versatile
immunoglobulin since it is capable of carrying out all of the functions of immunoglobulins
molecules. Moreover IgG is the major immunoglobulin in serum (75% of serum Ig is IgG) and
IgG is the major Ig in extra vascular spaces.
The actual model does not consider multi-compartments processes and mimics all processes
in a virtual region in which all interactions take place. Our physical space is therefore
represented by a 2D domain bounded by two opposite rigid walls and left and right periodic
boundaries. This biological knowledge is represented using an ABM technique. This allows to
describe, in a defined space, the immune system entities with their different biological states
and the interactions between different entities. The system evolution in space and in time
is generated from the interactions and diffusion of the different entities. Compared to the
complexity of the real biological system our model is still very naive and it can be extended
in many aspects. However, the model is sufficiently complete to describe the major aspects of
the atherogenesis-immune system response phenomenon.
The computer implementation of the model (SimAthero hereafter) has two main classes of
parameters: the first one refers to values known from standard immunology literature (Abbas
et al., 2007; Celada et al., 1996; Goldspy et al., 2000; Klimov et al., 1999); the second one collects
all the parameters with unknown values which we arbitrarily set to plausible values after
performing a series of tests (tuning phase).
The simulator takes care of the main interactions that happens during an immune response
against atherogenesis.
Physical proximity is modeled through the concept of lattice-site. All interactions among cells
and molecules take place within a lattice-site in a single time step, so that there is no correlation
between entities residing on different sites at a fixed time. The simulation space is represented
as a L × L hexagonal (or triangular) lattice (six neighbors), with periodic boundary conditions
to the left and right side, while the top and bottom are represented by rigid walls. All
entities are allowed to move with uniform probability between neighboring lattices in the
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grid with equal diffusion coefficient. In the present release of the simulator chemotaxis is not
implemented.
LDLs values can be fixed in order to simulate different patients both in normolipidic condition
and in hypercholesterolemic condition. The same applies to ox-LDLs. However human habits
change with time and personal life style. A normolipidic patient can change its attitude
becoming an hypercholesterolemic one and vice versa. For this reason we allow the simulator
to accept varying life style conditions and preventive actions to decrease risk factors.

2.2 Results

The model described include the possibility of mimicking biological diversity between
patients. The general behavior of a class of virtual patients arise from the results of a suitable
set of patients, i.e., the mean values of many runs of the simulator of different patients under
the same conditions. The class of virtual patients described by the model were tuned against
human data data collected by (Brizzi et al., 2003; 2004) where different conditions, normal and
hypercholesterolemic diabetic patients were analyzed.
In this section we analyze the behavior of the same patients in three broad class of clinical
conditions to show how SimAthero could be used in order to analyze and predict the effects
of various LDL levels in blood. The normal patient simulation is used as control experiment
for the other simulations. The differences among these four clinical conditions depend on
the LDL level and the time interval which occurs between the time in which concentration of
LDL rise above normal level and the time in which the patient take appropriate treatments
(lifestyle o drug) to reduce it to normal level.
Jobs were launched using the SimAthero simulator on the COMETA Grid. The
submission process was done through the web interface of the ImmunoGrid project
(http://www.immunogrid.eu).
A patient with a LDL level of roughly 950-970 ng/µl of blood is considered normal in clinical
practice and he has with very low risk of atheroslerotique plaque. The results of SimAthero
for a virtual normal patient (Figure 1) show that he will not support the formation of foam
cells and, as a consequence, the beginning of atherogenesis process is absent.
We then simulated a scenario in which a patient, due to several reasons (diet, life style,
oxidative agents and so on, so forth) leads its LDL level at 1300 ng/µl, taking it up to 1700
ng/mul. Looking at figure 2 one can observe about 12 foam cells per µl at the end of in silico
follow up. This leads to a small atherogenesis process due to the high level of LDL.
Lastly (figure 3), we analyzed a virtual patient that initially takes its LDL level to small peaks,
causing no damage. After that, he takes its LDL level to a hypercholesterolemic behavior,
generating a small damage, as shown. This shows that small LDL alteration are completely
taken under control by the normal behavior of the organism, but high LDL peaks lead to foam
cells formation and then to the beginning of the atherogenesis process.

2.3 Remarks on atherosclerosis modeling using GRID computing

Atherosclerosis is a pathology where the immune control plays a relevant role. We presented
studies on the increased atherosclerosis risk using an ABM model of atherogenesis and its
induced immune system response in humans. Very few mathematical models (Cobbold et
al., 2002; Ibragimov et al., 2005) and (to our best knowledge) no computational models of
atherogenesis have been developed to date.
It is well known that the major risk in atherosclerosis is persistent high level of LDL
concentration. However it is not known if short period of high LDL concentration can cause
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Fig. 1. Simulation results of a virtual patient with level of LDL considered normal. The
follow-up period is two years. The figure shows that foam cells formation is absent in this
patient.

Fig. 2. Simulation results of a virtual patient with level of LDL considered at high risk. The
follow-up period is two years. The figure shows that foam cells formation is present, leading
to an atherogenesis process.
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Fig. 3. Simulation results of a virtual patient with level of LDL considered quasi-normal at
the beginning and then at high risk. The follow-up period is two years. The figure shows that
foam cells formation is negligible in the first time, but becomes important soon after.

irreversible damage and if reduction of the LDL concentration (either by lfe style or drug) can
drastically or partially reduce the already acquired risk.
Using an ABM cellular model describing the initial phase of plaque formation (atherogenesis)
we are able to simulate the effect of life style which increases the risk of atherosclerosis.

3. Vaccine dosage optimization using GRID

As a second application, we show an example of how a physiological model in conjunction with
some optimization techniques can be used to speed-up the research of an opitmal vaccination
schedule for an immunopreventive vaccine, using the powerful of the GRID computing
paradigm.
A vaccination schedule is usually designed empirically using a combination of immunological
knowledge, vaccinological experience from previous endeavors, and practical constraints. In
subsequent trials, the schedule of vaccinations is then renewed on the basis of the protection
elicited in the first batch of subjects and their immunological responses e.g. kinetics of
antibody titers, cell mediated response, etc. The problem of defining optimal schedules is
particularly important in cancer immunopreventive approaches, which requires a sequence
of vaccine administrations to keep a high level of protective immunity against the constant
generation of cancer cells over very long periods, ideally for the entire lifetime of the host.
The Triplex vaccine represents a clear example of such immunopreventive approaches. It has
been designed to raise the immune response against the breast cancer for the prevention of
the mammary carcinoma formation in HER-2/Neu mouse models using a Chronic schedule in
a follow up time between 52 and 57 weeks.
However it is not known if the Chronic schedule schedule is minimal, i.e. if it can guarantee
survival for the mice population avoiding unnecessary/redoundant vaccine administrations.
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Shorter heuristic protocols failed, in in vivo experiments, in fulfilling this requirement, but
between the Chronic and the shorter schedules there is still a huge number of possibilities
which remain yet unexplored.
The SimTriplex () is a physiological computational model developed with the aim to answer
to this question. It demonstrated able to reproduce in silico the in vivo Immune System (IS) -
breast cancer competition elicted by the Triplex vaccine.
Optimal search strategy was biologically guided. Considering that Chronic proved to be
effective for tumor control, the optimal search tried to find a protocol with minimum number
of vaccine administrations able to reproduce, in silico, the time evolution of the chronic
schedule. This strategy was used in the GA optimal search. It is well known that GA are
slowly converging algorithms; the GA optimal search required several days using 32 nodes of
an High Performance Computing infrastructure.
To this end we decided to investigate the applicability of Simulated Annealing (SA), a global
optimization algorithm, widely tested and known for its computational speed and ability
to achieve optimal solutions. (Interested readers can found an extended description of SA
algorithm in (Van Laarhoven at al., 1987)). The combination of the Simulated Annealing
algorithm with biologically driven heuristic strategies, leads to a much faster algorithm and
better results for the optimal vaccination schedule problem for Triplex vaccine. In this context
we remark how the COMETA grid infrastructure demostrated an excellent framework for
protocol search and validation. We first executed the SA algorithm on a subset of the virtual
mice population using MPI jobs. We therefore checked the protocol quality calculating (with
simple jobs) the survivals of the entire population.

3.1 The algorithm

The work done by Kirkpatrick (Kirkpatrick et al., 1983) opened the path to a deep analogy
between Statistical Mechanics (the behavior of systems with many degrees of freedom in
thermal equilibrium at a finite temperature) and Combinatorial Optimization (the method
of finding the minimum, if any, of a given function with respect to many parameters). There
is a close similarity, indeed, between the procedure of annealing in solids and the framework
required for optimization of complex systems.

3.1.1 The optimal vaccination schedule search problem

The SimTriplex model (Pappalardo et al., 2005) has been created with the aim to mimic the
behavior of the immune system stimulated by the Triplex vaccine. It simulates all the major
interactions of cells and molecules of the immune system in vaccinated as well as naive
HER-2/neu mice. In silico experiments showed an excellent agreement with the in vivo ones.
As previously said, a protocol is said to be optimal if it can maintain efficacy with a minimum
number of vaccine administrations. As in standard drug administration, the vaccination
protocol must assure survival for a high percentages of patients. Schedule design is usually
achieved using medical consensus, i.e. a public statement on a particular aspect of medical
knowledge available at the time it was written, and that is generally agreed upon as the
evidence-based, state-of-the-art (or state-of-science) knowledge by a representative group of
experts in that area. Our goal is to improve medical consensus, helping biologists in design
vaccine protocols with simulators and optimization techniques.
Let us consider a time interval [0, T], in which we study the action of the vaccine on a set of
virtual mice S. We then discretize the given time interval in N − 1 equally spaced subintervals
of width ∆t (=8 hours), i.e. {t1 = 0, t2, . . . , ti, . . . , tN = T}.
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Let x = {x1, x2, . . . , xi, . . . xN} be a binary vector representing a vaccine schedule, where
xi = 0/1 means respectively administration/no administration of the vaccine at time ti. The
number of vaccine administrations is given by n = ∑

N
i=1 xi. With T = 400 days, and ∆t = 8

hours the search space D has cardinality 2400, excluding any exhaustive search.
One of the wet biologists requirements imposes no more than two administrations a week
(monday and thursday) because this is already considered a very intensive schedule from an
immunological point of view. This reduces the cardinality of the search space D, from 2400

(∼ 10120) to 2114 (∼ 1034). We still have no chance for an exhaustive search.
The time of the carcinoma in situ (CIS) formation is computed through SimTriplex simulator.
It is defined by τ(x, λj), which is a function of the vaccination schedule x administered to the
mouse j ∈ S and a parameter λj which represents the biological diversity. The vaccine will be
obviously effective if τ ≥ T.
As pointed out in § 1, any optimal protocol should try to reproduce , in silico, the chronic
time evolution of cancer cells. This leads us to the need to use two thresholds on the allowed
maximum number of cancer cells.
We also note here that, due to biological variability, a schedule found for a single mouse is not
immunologically effective as it usually does not reveal able to protect high percentages of the
treated patients. Having this in mind, we formulate our optimization problem as follows.
Let {j1, j2, . . . , jm} ⊂ S, with m = 8, a random chosen subset of in silico mice, the problem is
defined as:























































τ(x̄, λj1 ) = max(τ(x, λj1 ))
τ(x̄, λj2 ) = max(τ(x, λj2 ))

...
...

τ(x̄, λjm ) = max(τ(x, λjm ))
n(x̄) = min(n(x))

subject to:
M1(x) ≤ γ1, t ∈ [0, Tin]
M2(x) ≤ γ2, t ∈ [Tin, T]

(1)

where M1(x) and M2(x) are the maximum number of cancer cells in [0, Tin] (cellular-mediated
controlled phase) and in [Tin, T] (humoral-mediated controlled phase) respectively, and Tin ∼
T/3, while γ1 and γ2 represent cancer cells threshold in [0, Tin] and in [Tin, T], respectively.
We deal with a multi-objective discrete and constrained optimization problem.
We modified this last formulation of the problem grouping all the τ(x, λjh ) (h = 1, . . . , m) by a
proper statistical indicator. We chose the harmonic mean H of the survivals:

H(x, λj1 , . . . , λjm ) =
m

m

∑
i=1

1

τ(x, λji )

(2)

since it is very frequently used when statistic measurements of time are involved.
Therefore, the system (1) translates as:























H(x̄,�λ) = max (H(x,�λ))
n(x̄) = min(n(x))

subject to:
M1(x) ≤ γ1, t ∈ [0, Tin]
M2(x) ≤ γ2, t ∈ [Tin, T]

(3)
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with�λ = (λj1 , . . . , λjm ).

3.1.2 Simulated annealing

An acclaimed Monte Carlo method, commonly referred as the Metropolis criterion, has been
designed by Metropolis (Metropolis et al., 1953) with the aim to mimic the evolution of
the complex systems towards equilibrium at a fixed temperature. This method randomly
perturbates the position of the particles of a solid modifying its configuration. If the energy
difference, ∆E, between the unperturbed and perturbed configurations is negative, the new
configuration has lower energy and it’s considered as the new one. Otherwise the probability
of acceptance of the new configuration is given by the Boltzmann factor (which expresses the
"probability" of a state with energy E relative to the probability of a state of zero energy).
After a large number of perturbations the probability distribution of the states should
approach the Boltzmann distribution.
The Metropolis algorithm can also be used in combinatorial optimization problems to
generate sequences of configurations of a system using a cost function C and control parameter
c respectively as the energy and temperature in the physical annealing.
The SA algorithm can be represented as a sequence of Metropolis algorithms evaluated at a
sequence of decreasing values of the control parameter c. A generalization of the method is
given as follows: a generation mechanism is defined so that, given a configuration i, another
configuration j can be obtained by choosing at random an element in the neighborhood of i.
If ∆Cij = C(j)− C(i) ≤ 0, then the probability that the next configuration is j is given by 1; if

∆Cij > 0 the probability is given by e−∆Cij/c (Metropolis criterion).
This process is continued until the probability distribution, P, of the configurations
approaches the Boltzmann distribution, which translates as:

P{con f iguration = i} =
1

Q(c)
· e−C(i)/c (4)

where Q(c) is a normalization constant depending on the control parameter c.
The control parameter is then lowered in steps, with the system being allowed to reach
equilibrium by generating a chain of configurations at each step. The algorithm stops for
some fixed value of the control parameter c where virtually no deteriorations can be accepted
anymore.
At the end the final frozen configuration is assumed as a solution of the problem.

3.1.3 Implementation

In our in silico experiment, we select a population of 200 virtual mice and a simple random
sample of k = 8 mice. To use the SA algorithm for the optimal vaccine schedule search
problem we tried to define the SA relevant concepts (the solid configuration, the temperature,
the energy and the semi-equilibrium condition) in terms of vaccine protocol and to describe
the main protocol elements (the number of injections, the mean survival age, the time
distribution of injections) in terms of a cooling process.
As previously said, we describe any candidate protocol as a binary vector x of cardinality
V = 114. The total number of vaccine administrations n and the total number of possible
schedules with n vaccine administrations M are given by:
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n =
V

∑
j=1

xl
n(j)

M = V!/[n! (V − n)!]

The configuration distribution is defined by xin, nin, and the initial energy Ein as defined later
on.
The temperature is slowly but constantly lowered to reach a state with minimum energy.
We coupled this entity with n, the number of vaccine administrations of a semi-equilibrium
configuration.
At a given temperature, a semi-equilibrium configuration is reached when its Energy is
minimal. Since we want to maximize survival times of a mice sample set, the concept of

Energy can be easily associated with the harmonic mean H of the survival times τi, H(x̄,�λ) (i.e.
E ∝ H). As a matter of fact H decreases when the cumulative survival time of the sample
increases, in perfect accord with the energy definition.
The perturbation of a protocol has been initially implemented as random 1 bits reallocation
(Pennisi et al., 2008b). This perturbation has been heuristically improved using biological
knowledge. As we want to optimize mice survival, scheduling many vaccine administrations

after the death of a mouse makes nonsense. So, in moving from x
j
i to x

j+1
i , we improve random

bits reallocation also moving some “1” at a suitable time t < min{τi} , i = 1, k.
The SA algorithm for protocol optimization. i) starts from a randomly chosen initial vaccine

distribution and finds the initial semi-equilibrium configuration nin, xlin
nin

, Elin
nin

ii) Decrease the number of injections of 1 unit; iii) find a semi-equilibrium configuration xi,
Ei according to Metropolis algorithm; iv) cycle on (ii). The algorithm stops when, once the
algorithm control parameter, i.e. the number of vaccine administrations, is decreased from
n to n − 1, the Metropolis algorithm is not able to find a semi-equilibrium configuration, i.e.
an acceptable value of survivals, in λ iterations. The accepted protocol is the last found at
temperature n.

3.2 Computational results and conclusions

In silico optimal protocol search is a two-step process: search and validation. During the search
step, the optimization tecnique tries to find an optimal protocol. As pointed out in section
3.1.1, optimal search stragies have to be executed on a representative subset of the population
in order to guarantee significative survival percentages for the population.
The search technique therefore needs to test simultaneously every candidate protocol on
the mice subset to compute its fitness function. This process usually requires a relatively
small number of nodes with high communication throughputs, representing a typical massive
parrallel application. In our case it has been implemented using the MPI (Message passing
Interface) libraries.
Validation represents a completely different process. Here the protocol found by the search
technique is tested over the entire population to compute mean survival rates, requiring an
high number of CPUs with almost no need of communication. The “search and validation”
process is represented in figure 4.
In this context the Cometa grid revealed itself as an excellent tool for our needs. It
demonstrated to be highly flexible, giving us the opportunity to execute these so-different
processes on the same infrastructure. We only needed to define the first process as an MPI
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Fig. 4. The “in silico” search and validation optimal protocol representation.

job and the second as a sequence of simple jobs in a trasparent way, without worrying of the
hidden the architectures behind the job submission interface.
To compare the results with those obtained using GA optimization technique (Lollini et al.,
2006), we executed the SA algorithm on the same 8 random selected virtual mice sample used
by GA. The protocol was then validated on the same population set (200 virtual mice).
The SA in silico tumor free percentages of the mice population show no substantial difference
with GA results (87% for GA vs 86, 5% for SA). Figure 5 shows the mean number of cancer
cells, computed on the 200-mice set, for the GA-protocol (up lhs) and the SA-protocol (down
lhs). Only the SA-protocol is able to totally fulfill the safety threshold conditions (shown in
red).
Moreover the SA algorithm required a computational effort of about 2 hrs on a 8 processor
unit to find a protocol with 37 vaccine administrations, showing speed-up factor of ∼ 1.4 · 102

in respect to previous GA experiments (Pennisi et al., 2008a).
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Fig. 5. Cancer cells behaviors and thresholds in GA (top) and SA (bottom). Small vertical
bars on the x-axis represent vaccine administration times. Broken-line graphs on the lhs
represent safety thresholds.

4. Conclusions

Mathematical models and Cellular Automata are mostly used for cellular level simulations,
while a range of statistical modeling applications are suitable for the analysis of sequences at
molecular level of the immune system.
Grid computing technology brings the possibility of simulating the immune system at the
natural scale. In our opinion, a Grid solution is only as good as the interface provided to
the users. We presented two successful stories in which we have shown successful stories
in using computational immunology approaches that have been implemented using GRID
infrastructure.
We like to conclude by stressing the interdisciplinary nature of the experiences described
above and by noting that the contribution of life scientists needs to go beyond the only data
supply, as it is extremely important in defining the biological scenario and ultimately construct
a robust and validated mathematical or computational model. Only through a common effort
of life and computer scientists it is possible to turn software into a valuable tools in life
sciences.
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